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The Japanese Contributions to Martingales

Shinzo WATANABE1

1 Probability theory in Japan before 1960: Itô’s work on stochas-
tic analysis

Modern probability theory, as founded and developed by distinguished pio-
neers such as A. N. Kolmogorov, P. Lévy, N. Wiener, and so on, attracted
great interest and attention from Japanese mathematicians, including K.
Yosida, S. Kakutani, K. Itô and G. Maruyama, and others. Around 1935,
Kiyosi Itô (1915–2008), then a student at the University of Tokyo, found Kol-
mogorov’s recently published book, “Grundbegriffe der Wahrscheinlichkeits-
rechnung” one day in a bookstore. As he often recollected in later years,2 this
fortuitous discovery of Kolmogorov’s book gave him one of his motivations
for devoting his future life to the study of probability theory.

Although the study of modern probability theory in Japan certainly
started before 1940, the war disrupted communications with other advanced
countries. Under these circumstances, Itô completed two important contri-
butions ([I 1], [I 2]) that are now considered the origin of Itô’s stochastic
analysis or Itô’s stochastic calculus. In the first work, he gave a rigorous
proof of what is now called the Lévy-Itô theorem for the structure of sample
functions of Lévy processes, through which we have a complete understand-
ing of the Lévy-Khinchin formula for canonical forms of infinitely divisible
distributions. In the second work, he developed a complete theory of stochas-
tic differential equations determining sample functions of diffusion processes
whose laws are described by Kolmogorov’s differential equations. In this
work, he introduced the important notion of a stochastic integral and the
basic formula now known as Itô’s formula or Itô’s lemma and thus founded
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2Cf. e.g. [I 9] in the page next to Preface.

1



Journ@l électronique d’Histoire des Probabilités et de la Statistique/ Electronic Journal for 
History of Probability and Statistics . Vol.5, n°1. Juin/June 2009

a kind of Newton-Leibniz differential and integral calculus for a class of ran-
dom functions now often called Itô processes. As we will see below, this work
by Itô was further developed and refined in the martingale framework. Itô
himself did not say anything about martingale theory in this work; the the-
ory of martingales began to be noticed in Japan only after the publication
of Doob’s book ([Do]) in 1953.
Itô published two books in Japanese on modern probability theory, [I 3]

in 1944 and [I 6] in 1953, in which he introduced the modern theory of proba-
bility to the mathematical community in Japan. He thus provided beginning
Japanese researchers and students in this field with excellent textbooks. He
incorporated his results in [I 1] and [I 2] into these books, especially into [I
6], the more advanced of the two. Although the term martingale cannot be
found in the books, some fundamental ideas and techniques of martingale
theory are implicit in them. In particular, von Mises’s important ideas of
“Stellenauswahl” (selection) from a random sequence and “Regellosigkeit”
(irregularity) are explained in Sections 26 and 27 of [I 3] and in Section 17
of [I 6]. In modern martingale theory, selection is a typical example of a
martingale transform, a discrete-time version of the stochastic integral (for
martingale transforms, cf. e.g., [Wi], p. 97 and [Ik-W], p. 25). Such ideas and
notions are used to obtain an extension of the famous Kolmogorov maximal
inequality for sums of independent random variables, which plays an impor-
tant role when we define stochastic integrals. As we know, Doob extended
this inequality in his martingale theory, so that it is now well known as the
Kolmogorov-Doob maximal inequality.
After the war ended and international communications began to recover,

Itô sent an expanded and refined English version of [I 2] to Doob, asking
him to help with its publication in United States. Doob was kind enough
to arrange its publication in Memoirs of AMS in 1951 ([I 4]). When Doob’s
book ([Do]) appeared in 1953, Itô was impressed by its beautiful theory of
martingales and was glad to see its treatment of his stochastic integrals in
the martingale framework.3 But Itô was given a chance to visit the Institute
for Advanced Study at Princeton University from 1954 to 1956, and during
that period and for some time thereafter, his main effort was devoted to the
study of one-dimensional diffusion processes jointly with Henry P. McKean.4

At Princeton, W. Feller had already almost completed his theory of the
analytical description of one-dimensional diffusion processes. At his sugges-
tion, Itô began to work with McKean, who was then a student of Feller’s, on
a pathwise theoretic construction of one-dimensional diffusion processes.
Apparently this work was done independently of Doob’s martingale the-

ory,5 but in fact it has much to do with martingale theories: the Itô-McKean

3Cf. [I-Sel], p. xv.
4Cf. [I-Sel], p. xv, [I 10], p. 2.
5The situation at the time was similar in all work on Markov processes, perhaps with the

exception of Doob’s work. The same objects were given different names in each theory; for
example, stopping times were called Markov times in Markov process theory. Since then,
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himself did not say anything about martingale theory in this work; the the-
ory of martingales began to be noticed in Japan only after the publication
of Doob’s book ([Do]) in 1953.
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construction of sample paths of one-dimensional diffusions makes a random
time change in the paths of a one-dimensional Wiener process (Brownian
motion), while, in Doob’s theory, a time change is formulated as an optional
sampling, and, indeed, Doob’s optional sampling theorem plays a key role
in his theory of martingales. Also, Itô-McKean’s time change is based on
Brownian local time. Later, a general notion of local time was established by
the French school (cf. e.g., [RY], p. 206 and [RW], p. 96) in the martingale
framework, and it plays an important role in the stochastic calculus of the
random functions called semimartingales.

2 Japanese contributions to martingales from 1961 to 1970

Itô returned to Kyoto from Princeton in 1956. His and McKean’s joint work
continued at Kyoto University for several years; there McKean gave a series
of lectures that stimulated much younger researchers (T. Hida, N. Ikeda, M.
Motoo, M. Nisio, H. Tanaka, T. Ueno, T. Watanabe,. . . ) as well as graduate
students (M. Fukushima, H. Kunita, K. Sato, S. Watanabe, T. Yamada,. . . ).
Many were interested in the problem of extending the theory of Feller and
Itô-McKean from one-dimensional diffusions to multidimensional cases, par-
ticularly the problem of diffusion processes with Wentzell’s boundary con-
ditions. World-wide, modern probability theory had been developing from
the pioneering works by Kolmogorov, Lévy and Wiener and others. In the
theory of Markov processes, the most advanced countries around 1960 were
the United States and the Soviet Union. The main themes were Markov pro-
cesses and related problems in analysis, potential theory in particular, and
functionals of sample functions such as additive and multiplicative function-
als, as studied by W. Feller, S. Kakutani, J. L. Doob, M. Kac, G. A. Hunt,
and many others in United States, E. B. Dynkin and his group in Moscow,
A. B. Skorohod and his group in Kiev, and so on.
The theory of martingales became known very gradually at the time,

mostly from the work of Doob and the influence of his book [Do]. It was
recognized as useful because of the (sub-,super-) martingale convergence the-
orems and the theorems on the existence of regular modifications of sample
functions of (sub-,super-) martingales in continuous time. I personally came
to know of it for the first time in Khinchin’s paper [Kh] treating McMillan’s
theorem in information theory by Doob’s martingale convergence theorem.
In Markov process theory, the existence of a nice Markov process (Hunt pro-
cess) has usually been based on the existence of regular modifications for
sample functions of (sub-,super-) martingales in continuous time.
Doob applied his martingale theory to the study of Markov processes and

potentials in an essential way. One of his typical ideas was the following: if
u(x) is a harmonic or a sub(super)harmonic function in a domain D of Rd,
and, if B(t) is a d-dimensional Brownian motion (i.e., Wiener process) start-
ing from a point in D, then the stochastic process t ∈ [0, τD) → u(B(t)),

the two theories have gradually mixed together, bringing remarkable progress to each.
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where τD is the first exit time from D of B(t), is a continuous (local) mar-
tingale (resp. sub(super)martingale). So, for example, if u(x) is a positive
superharmonic function, then the process t → u(B(t)) has bounded and
continuous sample functions with probability one, because of a well known
result of Doob on sample paths of positive supermartingales. So we can say,
for example, that Brownian motion behaves so as to avoid any discontinuity
or any point at which a positive superharmonic function assumes an infinite
value.
Gradually it began to be understood that there is a deep interplay be-

tween Markov process theory and the martingale theory: Many important
results in Markov processes, formulated in a more abstract and general frame-
work in the martingale theory, may be regarded as basic and abstract results
and principles, so that the original results in Markov processes are just typical
applications in a more concrete or special situation. The following subsec-
tions are all concerned, more or less, with this kind of progress in martingale
theory.

2.1 The Doob-Meyer decomposition theorem for supermartingales

The theory of Markov processes and potentials has advanced a great deal.
In particular, G. A. Hunt developed a very general theory of excessive func-
tions for a given Markov process in a restricted but reasonably general and
convenient class (these Markov processes are now known as Hunt processes).
In Moscow, Dynkin emphasized6 the importance of the study of additive and
multiplicative functionals of Markov processes in connection with potential
theory. (Actually, some of its importance had already been demonstrated
in Itô and McKean’s work.) P. A. Meyer, who originally studied potential
theory in the famous French school guided by Brelot, Choquet and Deny,
made a deep study of additive functionals (AFs) of a Hunt process ([Me 1])
from a potential theoretic point of view. His results, viewed in a martingale
framework, could be understood as giving an abstract and general principle
in stochastic processes. It is indeed a realization of Doob’s idea that a sub-
martingale should be a sum of a martingale and a process with increasing
sample paths, so that a supermartingale should have a representation as a
martingale minus an increasing process. Meyer rewrote his results on AFs of
a Hunt process in a framework of martingale theory ([Me 2], [Me 3]) and thus
obtained a general result concerning the representation of a supermartingale
as a difference of a martingale and an increasing process. This is now called
the Doob-Meyer decomposition of supermartingales, which is certainly one of
the most basic and important results in martingale theory.
K. Itô and S. Watanabe ([It-W]) studied, in contrast with the additive

decomposition of Doob-Meyer, the multiplicative decomposition of a posi-
tive supermartingale into a product of a positive martingale and a positive

6Cf. Introduction of [Dy], which was originally his plenary lecture at ICM 1962, Stock-
holm.
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decreasing process. This problem originated in the study of multiplicative
functionals (MFs) in connection with transformations of Markov processes,
a problem much studied at that time. This paper introduced the notion
of local martingales, which is now a basic tool in localization arguments in
martingale theory.
We would mention here some relevant important developments, around

that time, in the study on positive martingales. C. Doléans-Dade ([D-D],
1970) obtained a general expression of so-called exponential martingales. I. V.
Girsanov ([G], 1960) (with later generalization and refinement by P. A. Meyer
and others of the French school) established the Girsanov theorem which
is concerned with the transformation of the martingale character under an
equivalent change of the underlying probability.7 These cannot be considered
Japanese contributions, but G. Maruyama ([Ma], 1954) and M. Motoo ([Mo],
1960–61) had already studied, in their works on diffusion processes associated
with Kolmogorov differential equations, important examples of exponential
martingales and the Girsanov transformations they define, even though they
did not state their results in terms of martingale theory.

2.2 Stochastic integrals for square-integrable martingales and semimartin-
gales

Stochastic integrals were first introduced by K. Itô ([I 2]) in 1942. J. L.
Doob ([Do]) pointed out the martingale character of stochastic integrals and
suggested that a unified theory of stochastic integrals should be established
in a framework of martingale theory. His program was accomplished by H.
Kunita and S. Watanabe ([Ku-W]) and P. A. Meyer ([Me 5]), among others.
I would like to comment on these works in more detail. Here again, they

have their origin in the theory of Markov processes, particularly in the work
of M. Motoo and S. Watanbe ([MW] and [Wa]) on square-integrable additive
functionals (AFs) of a Hunt process having zero expectations.8 A main aim
of the work in [MW] and [Wa] was to study the structure of the space M
formed by the square-integrable AFs having zero expectations, particularly
to understand and generalize a result of A. D. Wentzell ([We]) in the case of
Brownian motion; if X(t) = (X1(t), . . . , Xd(t)) is a d-dimensional Brownian
motion, the space M consists of AF A(t) represented in the form A(t) =d

i=1

 t
0 fi(X(s))dXi(t) as a sum of Itô’s stochastic integrals.9 In this study,

a fundamental role is played by a random inner product M,N, M,N ∈
M, which is defined to be a continuous AF with almost all sample paths
locally of bounded variation. Using this random inner product, important
and useful notions such as stochastic integrals, stable subspaces, orthogonality
and projection of subspaces in M, basis of a subspace, and so on, can be
introduced and studied. The orthogonal complement Md of the subspace

7Cf. e.g., [P], p. 109.
8For an AF, it is equivalent that it have zero expectation and that it be a martingale

with respect to the natural filtration of the process.
9fi are Borel functions on Rd with certain integrability conditions.
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Mc formed of all continuous elements in M was studied in [Wa]. There, a
random point process was defined by jumps of sample paths of the Hunt
process and its compensator, called the Lévy measure of the Hunt process,
was introduced and studied.
During a period around 1963, H. Kunita and I conceived the idea of

extending results in [MW] and [Wa] to a more general and abstract situation
in which the natural filtration associated with the Hunt process is replaced
by a general filtration and an AF is replaced by a general càdlàg adapted
process. By the Doob-Meyer decomposition theorem, we can still define the
random inner product M,N for square-integrable martingales M and N .10

Stochastic integrals with respect to a square-integrable martingale can be
characterized by this random inner product and can be constructed along
the lines of Itô and Doob.
In this period, I was visiting Paris as a scholarship student (boursier) of

the French Government. Very fortunately, I had an opportunity to attend a
lecture on the decomposition of supermartingales by Meyer at the Collège de
France, just before he moved from Paris to Strasbourg. After the lecture, he
kindly invited me to his home and we exchanged information on our current
work.
Thus, the works [Ku-W] and [Me 5], which finally appeared in the same

year, are very much related; indeed, as Meyer kindly stated in [Me 5], his
work was motivated by the work [Ku-W]. If we review the work in [Ku-W]
now from the standpoint of martingale theory, it should be said that, as far as
discontinuous stochastic processes are concerned, it is rather restricted and
incomplete in many points. As we know, a mathematically complete and
satisfactory theory was established by Meyer and his French (Strasbourg)
school (cf. e.g., [DM], [JS], [P] as important texts treating the theory), and
[Me 5] was a starting point for this French contribution.
The class of stochastic processes introduced in Itô’s original paper [I

2] (now often called Itô processes) can be naturally extended to a class of
stochastic processes called semimartingales.11 Itô’s formula or Itô’s lemma
leads to a kind of Newton-Leibniz differential and integral calculus for semi-
martingales.
For a semimartingale, we have a decomposition of a sample function as

the sum of a continuous semimartingale and a discontinuous semimartingale.
Roughly speaking, a process is a discontinuous semimartingale if its sample
function can be obtained as a compensated sum of jumps. The continuous
part is a sum of a (locally) square-integrable continuous martingale and a

10A standard terminology now is predictable quadratic co-variation of M and N . Meyer
[Me 5] introduced another random inner product [M, N ], called the quadratic co-variation
of M and N , which plays important role in the study of discontinuous semimartingales.

11The term semimartingale and its notion were introduced by Meyer ([Me 5]). Note
that this terminology is used differently in Doob’s book ([Do]); there, the term semi-
martingale is used to mean submartingale, and the term lower semi-martingale to mean
supermartingale.
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continuous process with sample functions (locally) of bounded variation. So
a semimartingale has sample functions similar to those of a Lévy process. We
can associate with a semimartingale a system of quantities which correspond,
in the case of a Lévy process, to its Lévy-Khinchin characteristic: What
corresponds to the covariance of the Gaussian component in the Lévy process
is the predictable quadratic co-variation of the continuous martingale part
of the semimartingale. What corresponds to the Lévy measure of the Lévy
process is the compensator of a point process defined by the size of jumps of
sample paths of the semimartingale.12

Actually, Lévy processes are a particular case of semimartingales. Indeed,
it is the most fundamental case, in which the associated characteristic quan-
tities are deterministic (i.e., non-random). In particular, a d-dimensional
Wiener process X(t) is characterized as a d-dimensional continuous martin-
gale X(t) = (X1(t), . . . , Xd(t)) with the predictable quadratic co-variation
satisfying the condition Xi, Xj(t) = δi,jt, i, j = 1, . . . , d. In [Do], this
characterization of the Wiener process in the frame of martingale theory
is attributed to P. Lévy. Also, there is a similar martingale characterization
theorem for a Poisson process ([Wa]) and Poisson point processes (cf. e.g.
[Ik-W], [JS]).
Thus, we can see that Itô’s works on Lévy processes in [I 1] and on stochas-

tic integrals and Itô processes in [I 2] have grown into a unified general theory
of semimartingales. In this framework, many important stochastic models
can be defined and constructed by appealing to the theory of stochastic dif-
ferential equations or the method of martingale problems.

2.3 Martingale representation theorems

In the case of a Wiener process, the martingale representation theorem13

states that every local martingale with respect to the natural filtration of a
Wiener process can be expressed as the sum of a constant and a stochastic
integral of a predictable integrand f(s) with

 t
0 f(s)

2ds <∞ for every t, a.s.
As mentioned above, this kind of representation theorem first appeared in
Wentzell’s study of AFs, and its extension to general Hunt processes has been
a main motivation of our work in [MW]. Its further extension to the case of
general square-integrable martingales motivated our work in [Ku-W]. In [Ku-
W], we presented several useful results for the representation of martingales.
However, the notion of a basis in the sense of [MW] could not be stated
explicitly. Later, this notion was completely established by M. H. A. Davis

12The notion of the compensator for a point process is key in the martingale theo-
retic approach to point processes. Indeed, it has much to do with semimartingale theory;
the discontinuities of a semimartingale define a point process on the real line and, con-
versely, a point process on a general state space defines a discontinuous semimartingale
by a projection of the state space to the real line. Cf. e.g. [Ik-W], [JS], [Ka-W], for the
martingale-theoretic approach to point processes and applications.

13We state it in the one-dimensional case; its multi-dimensional extension is straight-
forward.
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and P. Varaiya ([DV]).
The martingale representation theorem for a Wiener process as stated

above has played an important role in financial mathematics. In this field,
this theorem is very well known as Itô’s representation theorem.14 Indeed,
this is because an essential part of the proof of this theorem is to prove
that every square-integrable functional F of Wiener process paths {w(t); 0 ≤
t ≤ T} can be represented as F = E(F ) +

 T
0 f(s)dw(s) by Itô’s stochastic

integral. Such a representation can be obtained, as Itô remarked on page
168 (Th. 5.1) of [I 5], by expanding F into an orthogonal sum of multiple
Wiener integrals and then rewriting the multiple Wiener integrals as iterated
Itô stochastic integrals.

3 Japanese contributions to martingales after 1971

During this period, stochastic analysis based on semimartingales was devel-
oped and used around the world. It became one of the most important and
useful methods in probability theory and its applications. Many standard
textbooks, including [Ik-W], [KS], [RW], [RY], and [JS], treated stochastic
analysis based on semimartingales and martingale methods. Here, I review
some work in this period in which we can find some Japanese contributions.

3.1 Fisk-Stratonovich symmetric stochastic integrals. Itô’s circle operation

K. Itô ([I 7]), based on the general results in [Ku-W] and [Me 5], reformulated
the stochastic calculus in terms of stochastic differentials. This put Itô’s
formula in a form convenient for applications. The fact that Itô’s formula
needs extra terms as compared with the standard Newton-Leibniz rule is most
interesting and mysterious in the stochastic calculus; it might be a surprise
for beginners. This causes a difficulty when we want to apply the stochastic
calculus for stochastic processes moving on a differentiable manifold. The
process given in each local coordinate is a semimartingale but the rule of the
calculus is not a usual one, so that some difficulty always arises when we
want to obtain coordinate-free notions and results. For a typical example,
see a very troublesome construction of a solution of stochastic differential
equations on a manifold in [Mc].
On the other hand, Stratonovich ([Stra]) and Fisk ([F]) introduced a type

of stochastic integral (sometimes called a symmetric stochastic integral) dif-
ferent from Itô’s. Itô noticed that this kind of stochastic integral can be
immediately defined by modifying Itô integrals; for two continuous semi-
martingales X and Y , the symmetric stochastic integral of X by Y , denoted
as

X ◦ dY , is, by definition, a continuous semimartingale Z given by

Z(t) = (
 t

0
X(s) ◦ dY (s)) :=

 t

0
X(s)dY (s) +

1

2
MX ,MY (t),

14Cf. D. W. Stroock’s interesting remark on page 180 of [Stro].
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this theorem is very well known as Itô’s representation theorem.14 Indeed,
this is because an essential part of the proof of this theorem is to prove
that every square-integrable functional F of Wiener process paths {w(t); 0 ≤
t ≤ T} can be represented as F = E(F ) +

 T
0 f(s)dw(s) by Itô’s stochastic
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where the first term on the right-hand side is Itô’s stochastic integral and
the second term is the predictable quadratic co-variation of the martingale
parts MX and MY of X and Y , respectively. Itô wrote this in stochastic-
differential form as X ◦ dY = XdY + 1

2
dXdY . This operation on stochastic

differentials is often called Itô’s circle operation. Under this new operation,
we have the same rule of transformations as that of Newton-Leibniz in the
ordinary differential calculus. In other words, under Itô’s circle operation
Itô’s formula has the same form as in ordinary differential calculus. As it
has turned out in many later works, this circle operation is an indispensable
tool in the study of random motions on manifolds, producing many fruitful
results (cf. e.g., [Ik-W], [RW]).

3.2 Itô-Tanaka’s formula and local times

In the Itô-McKean theory, the local time of Brownian motion (i.e., the Brow-
nian local time) plays a fundamental role. The notion of Brownian local time
was first introduced by Lévy, and a rigorous and precise result on its exis-
tence as a sojourn time density and its continuity on the space variable was
obtained by H. F. Trotter ([T], [IM]). However, Trotter’s paper was rather
hard to follow, at least for beginners.

Around 1962, H. Tanaka was visiting McKean at MIT and he sent a
letter to his friends in Japan communicating a nice and much simpler proof
of Trotter’s theorem. His idea is to use Itô’s calculus, particularly Itô’s
stochastic integral, in an essential way. Tanaka’s proof was reproduced in
McKean’s book ([Mc]) and then spread widely.

An essential point in Tanaka’s proof was an extension of Itô’s formula.
Itô’s formula is concerned with a transformation of a semimartingale by C2-
functions: If f(x) is a C2-function and X(t) is a continuous semimartingale,
then f(X(t)) is also a continuous semimartingale and Itô’s formula describes
its semimartingale decomposition precisely. If f(x) now is only a convex
function, or a difference of two convex functions, it is still true that f(X(t))
is a continuous semimartingale. In its semimartingale decomposition, the
continuous martingale part has the same form as in the case of f(x) being
a C2-function; it is given by the stochastic integral

 t
0 f

(X(s))dMX(s) with
respect to the continuous martingale part MX of X. Then all terms in this
semimartingale decomposition except the part of the process of bounded
variation can be known explicitly, so that this part has a representation as
a difference of other terms which are known explicitly. Brownian local time
at a ∈ R is obtained in this way when X(t) is a one-dimensional Wiener
process and f(x) is the convex function given by f(x) = max{x−a, 0}. This
formula representing Brownian local time is called Tanaka’s formula.

In a similar way, we can define the local time for every continuous semi-
martingale. This notion was established around the last half of the seventies
by members of the French school, including Meyer, Azema, and Yor (cf.
e.g. [RY], [RW]). Le Gall ([L]) obtained a nice application of this theory to
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the pathwise uniqueness problem for one-dimensional stochastic differential
equations. Itô’s formula for continuous semimartingales on C2-functions can
be extended to functions that are differences of two convex functions in which
the part of process of bounded variation can be expressed by an integral of
local times. Such a formula is often called an Itô-Tanaka formula. Thus, we
may say that the theory of local times for semimartingales is an important
French contribution motivated by a Japanese contribution.
An important idea for extending Itô’s formula beyond the Itô-Tanaka

formula was given by M. Fukushima in his theory of Dirichlet forms and
symmetric Markov processes associated with them ([FOT]). He introduced
a class of stochastic processes with zero energy and extended Itô’s formula
using this notion. The notions of semimartigales and semimartingale de-
composition, in this case, are thereby extended; the decomposition is now
known as the Fukushima decomposition and is playing an important role in
path-theoretic studies in symmetric Markov processes. In the case of a one-
dimensional Wiener process, as such an important process as Brownian local
time is defined by the Itô-Tanaka formula, many new important processes
can be obtained through the Fukushima decomposition: a typical example is
the Cauchy principal value of Brownian local time, introduced and studied
by T. Yamada ([T]) and M. Yor ([Yo]), among others.

3.3 Problems concerning filtrations

The martingale theory is usually developed by fixing a filtration to which the
martingale property is referred. So it is very important to see how changing
the filtration affects the theory. Among many important problems of this
kind, Th. Jeulin and M. Yor, among others, established a theory concerning
an enlargement of filtrations ([JY]). This is certainly a French contribution,
but as Yor has often pointed out, his original motivation for this study was
work by K. Itô ([I 8]). In this paper, Itô discussed how to give meaning to a
class of stochastic integrals by a Wiener process in which the integrands are
not adapted to the natural filtration of the Wiener process.
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[I 8] K. Itô, Extension of stochastic integrals, Proc. Int. Symp. Stochastic
Differential Equations, Kyoto, Kinokuniya (1976), 95–109
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[It-W] K. Itô and S. Watanabe, Transformation of Markov processes by
multiplicative functionals, Ann. Inst. Fourier Grenoble 15 (1965),
13–30

[JS] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Pro-
cesses, Springer, 1987

[JY] Th. Jeulin et M. Yor [eds], Grossissments de filtrations: exemples
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