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1. Introduction

The name of Georg Bohlmann (1869–1928) is known to few probabilists. Yet, it appears that he
was the first to give the formal definition of independence of n events now used in all probability
books. He took significant and original steps towards Kolmogorov’s axioms. Moreover, Bohlmann
gave the now universally accepted formal definition of conditional probabilities. Another very
interesting contribution of Bohlmann is a method of smoothing time series, presumably the first
method making use of a penalty term. It resembles the Hodrick–Prescott–filter.

The purpose of this work is to unearth these parts of his mathematical work, and to report
on his life. Wilhelm Lorey wrote an obituary [53] soon after Bohlmann’s death. It appeared in
German in a German actuarial journal, and it does not give due credit to the work presented here
because Lorey relied on the opinion of von Mises, who preferred his own approach to the axioms
of probability.

2. Vita

Georg Bohlmann was born in Berlin on April 22, 1869. His father Otto Bohlmann was a lawyer
who carried the honorary title “Justizrat”. Eventually, he was a lawyer for the Supreme Court.
Georg Bohlmann’s mother Ottilia had the maiden name Brix. Georg Bohlmann was a Lutheran.
He went to school in Berlin and Leipzig, and got his “Abitur” (final high school examination)
in 1888 from the Wilhelms-Gymnasium in Berlin, a grammar school. His languages were Latin,
Greek, and French. By a recommendation of a doctor, he was exempt from sports.
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Bohlmann studied mathematics in Berlin. His main teachers were Dr. Kötter (Analysis, Syn-
thetic Geometry), Prof. Kronecker (Theory of Integrals, Arithmetic, Determinants, Algebraic
Equations, Number Theory, Concept of Number), Prof. Fuchs (Differential Equations, Abel Func-
tions, Special Functions, Complex Variables, Analytic Mechanics, Elliptic Functions). He also
attended lectures in physics (Prof. Kundt, Prof. Planck), philosophy (Prof. Zeller, Prof. Dilthey)
and psychology (Prof. Paulsen). It seems that Bohlmann started to work on his own on a problem
on complex variables. It required the determination of all functions satisfying an algebraic addition
theorem. It had already been solved by Weierstraß with complex variable tools, but Bohlmann
noticed a connection with the theory of transformation groups. He gave a new solution making
heavy use of Lie groups. Lorey [53] reports that this topic was not so fashionable in Berlin, and,
hence, Bohlmann decided to complete his doctoral dissertation in Halle. He asked Prof. Albert
Wangerin (1844–1933) to be his advisor. Wangerin was a highly respected professor mainly known
for his work on spherical functions. (Later, he was even elected President of the Leopoldina, the
famous Halle Academy.) Bohlmann obtained his doctoral degree in July 1892, see [73]. The title
of his doctoral thesis was “Ueber eine gewisse Klasse continuierlicher Gruppen und ihren Zusam-
menhang mit den Additionstheoremen” (On a certain class of continous groups and their relation
to the addition theorems).

Bohlmann then worked as an assistant in the Institute of Meteorology in Berlin. Probably,
this was his first encounter with problems in Applied Mathematics. He participated in seminars
given by Fuchs, Schwarz, and Frobenius. At the same time, he worked on problems on differential
equations, and wrote two papers for the Crelle Journal für Reine und Angewandte Mathematik.
He got the support of Felix Klein and went to Göttingen. Klein asked his colleague Heinrich Weber
(1842–1913) to write an expert’s report about Bohlmann’s work [2], [3]. Weber was a professor
in Göttingen between 1892 and 1895, and he had done important work on differential equations,
see [57]. When this report turned out favourable, Georg Bohlmann obtained the Habilitation
(permission to teach) in August 1894.

Klein had good use for Bohlmann. In 1893, Klein had attended the Congress of Mathematicians
organized in Chicago during the World Fair. He was a main speaker. His call “Mathematicians
of the World, Unite!” was an important incentive for organizing the first World Congress of
Mathematicians in Zurich in 1897. During the Chicago Congress, Klein established contacts to
the New York Mutual Life Insurance Company. After returning to Göttingen, he held a seminar
on actuarial science, and he contacted his friend Ludwig Kiepert (1846–1934) who was professor
of mathematics in Hannover and held a subsidiary office as director of the “Preussischer Beamten-
Verein”, a forerunner of the present Hannover Life Insurance Company.

On September 5, 1895, Klein and Kiepert met with Friedrich Althoff (1839–1908), a ministerial
director, who was in charge of all matters pertaining to universities in Prussia, and with Ernst
Höpfner (1836–1915), trustee (Kurator) of the university of Göttingen. They decided to found a
“Seminar für Versicherungswissenschaft” (seminar for actuarial science). It was inaugurated on
October 1, 1895, and Wilhelm Lexis (1837–1914) was asked to serve as its first director. The
seminar had two branches, a “mathematical class” and an “administrative class”. Lexis was
professor of Political Economy and taught courses for the administrative class, e.g. economy.
Victor Ehrenberg (1851–1929) gave courses on law. Bohlmann was asked to teach the courses for
the mathematical class, see Koch [45].

W.Lorey, in his obituary, mentioned that he was a student in the first course given by Bohlmann
on actuarial mathematics. He liked the lecture a lot. He also mentioned that, in the very first
session, Bohlmann explained how to work with a calculating machine, a “Brunsviga”. He guessed
that this was the first time a calculating machine was used in a lecture in Germany.

During these years, Bohlmann did not have a paid position in Göttingen. Klein complained
about this in Berlin, and his efforts resulted at least in a stipend given to Bohlmann. In 1897,
he was given 1200 Marks, and in 1899 the stipend was increased to 1600 Marks for the whole
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year. Of course, Bohlmann’s father had to provide additional support. (This was not unusual for
a “Privatdozent” in Germany at that time.)

Bohlmann was also asked to do other work for the mathematical community. He wrote a report
for the German Mathematical Society (DMV) on the development of calculus books from the
time of Euler (when the presentation still lacked rigour) to the end of the nineteenth century. By
that time the influence of Weierstrass had helped a lot to increase the mathematical standards of
rigour. Bohlmann also was the editor of the second edition of the book of Serret–Harnack, and he
translated and revised an Italian textbook of Genocchi–Peano jointly with A. Schepp, see [6], [7].

Below, we shall discuss the contributions of Bohlmann to the axiomatic foundation of probability
theory. A first version of the Bohlmann axioms appeared in 1900 in his extensive and impressive
article “Lebensversicherungsmathematik” [11] in the “Enzyclopädie der Mathematischen Wissen-
schaften”, a project initiated by Felix Klein. A second greatly improved version [18] was presented
on the occasion of the World Congress of Mathematicians in Rome in 1908. (This will be explained
below.)

Within a short time, Georg Bohlmann had established himself as a leading expert for the
mathematics of life insurance. In 1899, the Ministery of the Interior of Prussia approached Prof.
Lexis and Dr. Bohlmann asking them to write an expert’s opinion about renewing the license of
the New York Mutual Life Insurance Company (MONY) in Berlin. Actually, this company had
opened a branch in Berlin in 1885, but the Prussian Government had stopped the selling of new
contracts after they began to suspect that the MONY sold contracts of the Tonti–type. (That was
illegal in Germany.) Lexis and Bohlmann were to investigate this reproach, which may have been
a move by the competitors. The handwritten version of this expert’s opinion (virtually totally
in the handwriting of Bohlmann) can be found in the “Handschriftenabteilung” of the university
library of Göttingen. It is a huge document [78]. Apparently, Bohlmann studied many details quite
carefully. The conclusion was that the reproach was unfounded, and the licence of the MONY was
renewed.

In 1899, Klein proposed to the ministry in Berlin that Bohlmann should be granted the title
of extraordinary professor. This application was accepted in 1901. (Extraordinary professors are
allowed to carry the title “Prof.”, but do not have a payed professorship.)

In 1902, the MONY made a very attractive financial offer to Bohlmann. He accepted it in 1903
after consulting Klein [79]. Bohlmann had hoped to get a paid professorship in Germany or even in
Göttingen, but this seemed unlikely. After some time, Bohlmann became Chief Mathematician of
the Berlin branch of the MONY and their Chief Representative for the German Board of Control.

Yet, he continued to do research in mathematics, to publish papers, and to correspond with
Bortkiewicz, Chuprov, and others, see Sheynin [66]. In 1981, H.Cramér [34] regarded Lexis,
Bortkiewicz, Chuprov, Markov and Bohlmann as originators of the Continental School of Sta-
tistics.

In 1904, Bohlmann married Ellida Brix (possibly a cousin), a daughter of a high naval officer.
They had a son who studied law.

Little is known about the later part of Bohlmann’s life. His wife died in 1919, and in the years
thereafter Bohlmann became seriously ill. He had considerable problems with his eyes and was
almost unable to read. Bohlmann died in Berlin on April 25, 1928. The MONY informed me that
their archives do not contain material on Bohlmann. Here, material from Lorey [53] and from [73],
[76], [77] has been used.

3. Axioms for probability theory

In the winter term 1898–1899, David Hilbert taught a course on the elements of geometry. He
emphasized that the essential point was the relation of the considered objects to each other. He
explained: “One must be able to replace the words points, straight lines and planes, by the words
tables, chairs, and beer mugs. Then, if the tables, chairs, and beer mugs satisfy the axioms, the
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assertions of the theory hold for them, too. It is not important to say what a straight line is”
(See [41], [62],p. 57). This point of view contrasted with the traditional opinion that axioms were
apparently true statements from which other statements could be derived.

At about this time, Bohlmann was working on his article “Lebensversicherungs–Mathematik”.
In its beginning he stated his conviction that the mathematical foundations of insurance math-
ematics had to be built on the theory of probability. (He mentioned that this view was not
commonly accepted. He quoted a recent book of K. Wagner [69] on life insurance in which the au-
thor asserted: “Wahrscheinlichkeitsrechnung und Versicherung haben innerlich nichts miteinander
zu tun.” (Probability and insurance have basically nothing to do with each other.)

In his article [11], Bohlmann introduced probability in an axiomatic way in 1900. This was
clearly inspired by Hilbert’s approach to geometry. Bohlmann gave the following definitions and
axioms:

Definition1: The probability of the happening of an event E is a positive proper fraction p(E)
associated to E.

Definition 2: Two events E1 and E2 are called incompatible if the probability that both of them
happen is 0.

Axiom 1: If E is certain, then p(E) = 1, if E is impossible, then p(E) = 0.
Axiom 2: If two events E1 and E2 are incompatible, the probability of the event E that E1 or

E2 happen is p(E1) + p(E2).
Axiom 3: If p′2 is the probability that E2 happens, provided it is known that E1 happens, then

the probability of the event E∗ that E1 and E2 happen is

p(E∗) = p(E1)p
′
2.

Definition 3: E1 and E2 are called independent if

p(E∗) = p(E1)p(E2).

These definitions and axioms had obvious deficiencies. The concept “event” remained undefined.
The requirement that p(E) be rational may have been an outdated concession to the definition
given by Laplace. As p′2 remained undefined, axiom 3 really is a definition of p′2, and not an axiom.

But what is more important: For the first time, probabilities were defined as functions of
events, functions with certain properties. What a difference to Laplace’s definition! Von Plato [58]
, uncharacteristically, belittles this idea: He writes that Bohlmann “does not do much more than
call some of the basic properties of probability calculus by the name of axioms”. He seems to have
little feeling for the magnitude of this step, which is even more evident if one thinks about the
long time it took for this idea to be accepted. Bohlmann mentioned the book of Poincaré [59] as a
reference. In [59], the finite additivity is a theorem derived from properties of relative frequencies
and not an axiom.

It is frequently taken for granted that the axiomatic approach to probabilty was initiated by
Hilbert with his talk on the occasion of the Second International Congress of Mathematicians in
Paris, on August 8, 1900. In his sixth problem he had asked for the axiomatization some “subjects
of physics”: “In view of our studies of the foundations of geometry, we are led to the problem of
treating those subjects of physics axiomatically, in which mathematics already plays an important
part now. We name in the first place probability theory and mechanics. With respect to the
axioms of probability theory it seems desirable to combine their logical study with a satisfactory
treatment of the method of mean values in mathematical physics, in particular in the kinetic theory
of gases.”

As a footnote to his sixth problem, Hilbert quoted the paper [10] of Bohlmann. This paper
reproduced some talks which Bohlmann had given during the Easter vacations of 1900 to a group
of high school teachers. In it, he had already announced the axiomatics of probability theory, which
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was to appear in [11]. On the other hand, C.Reid [62], p. 70 reports from the correspondence of
Hilbert with Hurwitz that by the end of of March 1900, Hilbert had not determined the subject of
his Paris talk yet. By June, he had not produced a lecture, and the program for the Paris Congress
was mailed without the title of Hilbert’s talk being listed.

To my knowledge, Hilbert had not shown interest in probability theory prior to his Paris talk.
But he had always been interested in physics. Therefore, it seems that the physics aspects of the
sixth problem are genuinely due to Hilbert. But Bohlmann was the first to suggest that probability
theory could be made rigorous by using an axiomatic approach. Hilbert included this in his sixth
problem. It seems nearly certain to me that the problem of axiomatization of probabilty was
proposed to Hilbert by his colleague Bohlmann. Hilbert made no secret about the fact that he had
solicited various problems by talking to other mathematicians.

Hilbert felt that the key ideas of Bohlmann were basically sound in spite of the deficiencies
mentioned above. Leo Corry [33], in a profound study of the work done on the axiomatics of
physics, quotes lectures of Hilbert [40],[75] given in 1905 on “Logical principles of mathematical
thinking”. In these lectures, Hilbert introduced probability theory in the Bohlmann way except
for a change of notation. (Hilbert used vertical bars for conditional probabilities.) His only mild
criticism was that “at this stage of the development it is not clear yet which statements are
definitions and which statements are axioms.” Apparently, Hilbert thought that Bohlmann had
understood his general ideas about axiomatics.

In a subsequent note in this journal, a scan of [75], and the interesting story connected with it
shall be presented.

We mention that G. Boole [29],p. 288, had already made a remark in favour of the axiomatization
of probability in 1854. He wrote “The claim to rank among the pure sciences must rest upon the
degree in which it (the theory of probability) satisfies the following conditions: 1st :That the
principles upon which its methods are founded should be of an axiomatic nature.” (He listed two
other general scientific conditions.) But in spite of his voluminous writings on probability, he did
not try to formulate any axioms himself. On p. 244, he wrote “The probability of an event is the
reason we have to believe that it has taken place or that it will take place.” On p. 255, he listed
some “principles which have been applied to the solution of questions of probability”, among them
the finite additivity. But he did not connect this with the axiomatic approach. Thus, his above
remark remained rather vague.

Hilbert remained interested in a more complete treatment of the subject. His student Ugo
Broggi completed a thesis [31] with the title “Die Axiome der Wahrscheinlichkeitsrechnung” in
1907. Broggi started to use set theory to describe events. He also introduced σ–additivity. But he
claimed that σ–additivity was implied by additivity. Later, Steinhaus showed that this was false,
see [68]. Broggi made use of Lebesgue measure, and restricted his attention to measurable sets.
“Es sind die messbaren Mengen die einzigen, die wir in Betracht ziehen wollen.” (The measurable
sets are the only sets which we want to consider.) But Broggi did not include these notions into
his system of axioms. His main interest was in considerations about independence, completeness,
and consistency of his set of axioms.

(Broggi was born on December 29, 1880, in Como, Italy. He studied in Milano, Berlin, and
Göttingen. Later, he taught for many years in Argentina and Italy, mainly on mathematical
economics and actuarial problems. He was among the founding members of the Argentine Math-
ematical Society. He died on November 23, 1965, in Milano. An obituary was written by G.Ricci
[63]. More detail can be found in the internet in an article by Manuel Fernándo López of the
University of Buenos Aires, see [52].)

Let us now look at the Bohlmann axioms as formulated in the Rome paper [18]. He wrote:

We postulate that the events which we consider have a probability which is expressed by a
number with the following properties:

Axiom 1: The probability that an event E happens, in short: the probability of E, is a positive
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number p(E).

Axiom 2: If the event E is certain, we have p(E) = 1.

Axiom 3: If it is impossible that both E1 and E2 happen, and if E is the event that E1 or E2

happen, then p(E) = p(E1) + p(E2).

He concluded right away that p(non−E)+p(E) = 1, that finite additivity holds, that 0 ≤ p(E) ≤
1, and that p(E) = 0 if E is impossible. Apparently, by positive Bohlmann means nonnegative.

Bohlmann stated explicitly, that a study about the concept “event” was missing in his presen-
tation.

He explained that he wanted to get away from the scheme of defining probabilities by distin-
guishing favorable and possible cases.

He then studied the situation with m mutually exclusive events E1, E2, . . . , Em, and stated
that for him the words “gleich möglich” (equally possible) simply meant the assumption p(E1) =
p(E2) = . . . = p(Em). (Note that there had been unending discussions about this concept.)

At that time, it was controversial, in which cases the assumption “equally possible” was justified.
In a report for the DMV, Czuber [35] discussed a controversy between Karl Stumpf and Johann
von Kries. The latter insisted in 1886 that the assumption of equal probabilities required objective
knowledge. The former stated in 1892 that the assumption was only satisfied if we know absolutely
nothing about the outcome. Even Markov felt that the lack of knowledge supported the assumption
of equal probabilities. In Markov’s textbook [54],p. 5–6 he gave an example of an urn containing
balls with four different colors. He said that if we know nothing about the numbers a, b, c, d with
which the colors occur, each color is equally likely. But if we know a < b < c < d we cannot say
anything about the probabilities. He did not distinguish the uncertainty connected with the lack of
knowledge of the numbers from the uncertainty connected with the random drawing from the urn.
Today, we know that Markov would have needed a statistical model with different probabilities.

After deriving some consequences of the above three axioms, Bohlmann states a fourth axiom
as follows:

Axiom 4: Let p(E andF ) denote the probability that E and F happen. The ratio p(E andF )/
p(F ) denotes the probability p(E|F ) that E happens if it is known that F happens. Then the 4th
axiom is expressed by p(E andF ) = p(F )p(E|F ).

Actually, Bohlmann used the notation p(E wF ) instead of p(E|F ). The letter “w” abreviated
the word “wenn” (if).

The last sentence in axiom 4 is redundant. What really is interesting is the beginning. Here,
Bohlmann gives the presently universally accepted definition of conditional probabilities.

We remark that in 1901 Hausdorff [37] had discussed the concepts of conditional probability
and independence (of two events) in the context of experiments with finitely many equally likely
outcomes. For example, he pointed out, that the consideration of p(E|F ) may make sense if E
happens prior to F , and if there is no causal relation. He defined the conditional probability of E
given F , say p(E|F ), as the ratio of the cardinality of E ∩ F and the cardinality of F . Then he
called E and F independent if p(E|F ) = p(E| non−F ).

W. Purkert [61] has given detailed comments on Hausdorff’s paper [37]. In these comments he
reports the state of the historical development of the concept “conditional probability” in 1901. He
concludes that Hausdorff (in the special case considered by him) has been the first to realize the
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which formerly had been stated as results as definitions and therefore gave vague concepts a precise
meaning.

To my knowledge, the only reference discussing the Rome axioms is the unpublished thesis of
H. Bernhardt [25],p. 46 on the von Mises Theory. She pointed out that the axioms 1–3 correspond
to Kolmogorov’s axioms III–V, [46]. Of course, Kolmogorov not only had sound set theoretic
foundations, but he also succeded in deriving a tremendously fruitful theory.

Kolmogorov [46] started his exposition with a section on finite probability spaces. And he could
have just stated that for this it was sufficient to adopt the Bohlmann axioms and to say that
an event was a subset of the set of numbers 1, . . . ,m. But apparently the paper of Bohlmann
had escaped his attention in spite of the fact that he visited Göttingen a short time before he
wrote his book, and the Proceedings of the Rome Congress could not be called an obscure journal.
(In his book, Kolmogorov mentioned only three previous systems of axioms, those given by von
Mises, by S. Bernstein [26] and by �Lomnicki [51].) Kolmogorov has repeatedly quoted the work of
Lebesgue, Fréchet, Carathéodory, and the book [38] of Hausdorff, but it would be futile to speculate
if Bohlmann would have given a different system of axioms, had these works been available to him.

A detailed study of the “Sources of Kolmogorov’s Grundbegriffe” is due to Shafer and Vovk [65].
It also contains an overview of several other attempts at finding axioms for probability theory, like
those of Laemmel [49], �Lomnicki [51], Bernstein [26] and others. As they have little to do with the
work of Bohlmann, we refer the reader to [65]. Also Ivo Schneider [64] provided a discussion of
this area. His book also contains very useful excerpts of some of these references.

Perhaps the axioms of Bohlmann appeared too simple. Erich Kamke gave a survey for the DMV
on different attempts at an axiomatization of probability in 1933, [44]. In this survey he mentioned
a joke which he had heard in Göttingen during his student days (between 1909 and 1913). “A
probability is a number between 0 and 1 about which nothing else is known.” It appears that
this aimed at ridiculing Bohlmann. He had been the only one defining probabilities as numbers
between 0 and 1 with some properties, and his Rome paper had just been published.

The discussion about the axiomatization of probability soon was dominated by the approach of
von Mises [55] and subsequent work by many authors. A short summary of these topics has been
given in my article [47] written on the occasion of the 100th anniversary of the foundation of the
DMV. A thorough discussion of the work of von Mises and Tornier has been given by Hochkirchen
[42]. There are still claims that the approach of von Mises (in spite of its logical flaws) is closer
to applications than the axioms of Kolmogorov. But no example illustrating this claim is known
to me. It is incredible how much effort has to be used in the von Mises setting to describe even a
single toss of a coin. I agree with the opinion that von Mises tried to give a model which contains
an abstraction of a way of determining probabilities. But the Euclidean geometric axioms do not
say anything about measuring angles either. Such descriptions seem not to be appropriate within
axioms.

4. Independence

While the system of axioms described by Bohlmann was incomplete due to the lack of a math-
ematical definition of the concept “event”, there is no question that the priority for the rigorous
mathematical formulation of the concept “independence” belongs to him. Of course, probabilists
had multiplied the probabilities of independent events for centuries, but there was no formal def-
inition. Two events E1 and E2 were called independent “if the occurence of one of them does
not affect the probability of the occurence of the other one.” The meaning of this sentence was
not explained. For example, Boole [28],p.255, gave the following definition: “Two events are said
to be independent, when the probability of the happening of either one of them is uneffected by
our expectation of the occurence or failure of the other.” Many books on probability contained
a “multiplication theorem” of probability theory. This sounded as if one can prove the product
formula.
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Kolmogorov, in his “Grundbegriffe” [46] attributed the rigorous formulation of the definition of
independence to a book of S. Bernstein [27], written in 1927 in Russian.

In 1901, Bohlmann stated the following formal definition: Two events E1 and E2 are called
independent, if the probability p that both E1 and E2 happen is the product of p(E1) and p(E2).
This was only a beginning.

In the Rome paper [18],§3 a more systematic study was given. Consider m events E1, E2,
. . . , Em. Let E′

i denote the event that Ei does not happen. For ai = 0 or = 1 let p(a1, . . . , am)
denote the probability of the event that E1 happens a1 times, E2 happens a2 times ... etc. For
example, p(0, 1, 1, 0) is the probability of the event that E1 does not happen, E2 does happen,
E3 does happen, and E4 does not happen. Let pi = P (Ei) and qi = 1 − pi. Then qi = p(E′

i).
Bohlmann called E1, E2, . . . , Em independent if, for all a = (a1, a2, . . . , am), the identity

p(a) = p(a1, a2, . . . , am) =
m∏
i=1

pai
i q1−ai

i

is valid. In other words, the product formula must hold for all events defining the numbers
p(a1, . . . , am).

For m = 3, Bohlmann gave an example showing that pairwise independence does not imply
independence, [18],p. 257. (This, too, was attributed to S. Bernstein by Kolmogorov.) Bohlmann’s
example was complicated: Assume, an urn contains 16 indistinguishable capsules. Each capsule
contains 3 balls, numbered 1, 2, 3, which can be white or black. Let us say that a capsule has
characteristic (0, 1, 1) if the first ball is black, the second is white, and the third is white. Assume
that there are 3 capsules of characteristic (1, 1, 1), (0, 1, 0), (0, 0, 1), and (1, 0, 0) each, and one
capsule of characteristic (0, 1, 1), (1, 1, 0), (1, 0, 1), (0, 0, 0) each. Let Ai be the event that in a
capsule drawn at random, the i–th ball is white. Bohlmann checked that these events are pairwise
independent but not independent.

For general m ≥ 3, Bohlmann showed that the following set of conditions is necessary and
sufficient for independence:
(1) Any two of the events are independent;
(2) Any event Ei is independent of any event “Ej and Ek”, that Ej and Ek happen, for i �= j �=
k �= i.
(3) Any fourth event is independent of the happening of three different events, ..
etc.
In other words: The product formula must hold for the conjunction of any subset of the m events.

Bohlmann also discussed the relation to conditional probabilities. He showed that E1 and E2

are independent if and only if p(E2|E1) = p(E2|E′
1).

Another observation stated by Bohlmann is the assertion : The events E1, . . . , Em are indepen-
dent if and only if the generating functions satisfy

∑
a

p(a)xa1
1 · · ·xam

m =

m∏
i=1

(qi + pixi)

In other words: The generating function for the compound experiment of observing all Ei’s is the
product of the generating functions of the separate experiments.

Bohlmann then studied the expectation and the variance of the number T =
∑m

i=1 IEi
of i’s

with 1 ≤ i ≤ m for which the event Ei happened. This was done both in the independent and in
the dependent case.

For example he showed

Var(T ) =

m∑
i=1

piqi +
∑
i�=k

(pik − pipk),
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where pik = p(Ei ∩ Ek).
This “Bohlmann formula” is mentioned several times in the correspondence of Chuprov with

Markov, see [56], [64]. Bohlmann’s work influenced Chuprov’s work on dispersion theory, see
Chuprov [32]. Markov used Var(T ) for dependent summands somewhat earlier than Bohlmann.
As he had been skeptic of the axiomatic approach he was surprised that it led Bohlmann to
his “nice” formula. When the German translation [54] of Markov’s book on Probability Theory
appeared Bohlmann wrote a very positive four page review [23] explaining the novel features.

Bohlmann was also interested in empirical methods of checking independence, see [18],p. 250.
To decide if E1 and E2 were independent, he looked at the determinant D of the 2 × 2 matrix
with elements p(j, k). He checked that the events E1 and E2 are independent if and only if D = 0.
Then he considered an experiment consisting of n independent repetitions of the basic experiment.
Let n(1, 1) be the number of experiments in which E1 and E2 happen, n(1, 0) the number of
experiments in which E1 and E′

2 happen, n(0, 1) the number of times when E′
1 and E2 happen,

and n(0, 0) the number of times when E′
1 and E′

2 happen. Clearly, n = n(1, 1)+n(1, 0)+n(0, 1)+
n(0, 0). It is clear that n(j, k)/n is an estimate for p(j, k). Therefore it is natural to look at
Y = n(0, 0)n(1, 1) − n(0, 1)n(1, 0). Bohlmann computed the expectation and variance of Y . The
expectation is E(Y ) = n(n− 1)D. Using the Bienaymé–Chebychev inequality, Bohlmann showed
that Y/n(n − 1) tends stochastically to D. He concluded that the hypothesis of independence of
E1 and E2 can be accepted if Y/n(n− 1) does not deviate from 0 by more than can be expected
by looking at the value of the variance. He did not try to find the distribution of Y , which would
have been needed to perform a statistical test. (Apparently, he did not know that Karl Pearson
had proposed a chi–square test for testing independence in 1900.)

In the remaining part of the paper, Bohlmann studied applications to actuarial problems.

5. Time series and limit theorems

Actuarial work led Bohlmann to the consideration of the following problem on the smoothing
of time series:

A polygon is given by equidistant abscissae 1, 2, . . . , n and corresponding ordinates y1, y2,
. . . , yn. The problem is to replace the original polygon by a smoothed polygon with ordinates
z1, z2, . . . , zn. The deviation of the two polygons from each other is measured by A =

∑n
i=1(yi −

zi)
2, and the oscillation of the smoothed polygon is measured by B =

∑n−1
i=1 (zi+1 − zi)

2. We fix
a strictly positive number w, called the weight. The problem is to find the “smoothed” polygon
which minimizes A+wB. Bohlmann showed that this problem has a unique solution, and showed
how to compute it. He illustrated it by an example, and he gave graphical methods. His work was
presented to the Göttingen Academy in 1899, see [8]. Today with the use of computers, it should
not matter that the computations are more involved than the commonly used moving averages.
It must be admitted, though, that the method has the disadvantage that the smoothed polygon
usually has a smaller slope than the original one. By applying the smoothing repeatedly, one gets
a limit which is a horizontal line. Perhaps, one should introduce the boundary conditions y1 = z1
and yn = zn to avoid that. The method of Bohlmann resembles a tool now frequently used in
macroeconomics to separate a trend component and a cyclical component of a time series. In this
method, called Hodrick–Prescott–filter, the term B of Bohlmann is replaced by the new “penalty
term”

n−1∑
i=2

(zi+1 − 2zi + zi−1)
2

In other words, the sum of squares of the differences is replaced by the sum of squares of the second
differences. This method was first proposed by C.E.V. Leser [50] in 1961, but it became widely
known after the publication of a study of Hodrick and Prescott [43] in 1997. Leser refered to an
older publication of E.T. Whittaker [70] which appeared in 1923. Whittaker measured smoothness
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by using the third differences, and derived his result by a maximum likelihood argument. In his
method, B is replaced by the sum of squares of the third differences. None of these papers refer
to Bohlmann. Of course, Bohlmann had no applications to macroeconomics in mind.

Bohlmann also sketched a continuous time version of the smoothing method. Following a sug-
gestion of E.Zermelo, he applied it to the famous Weierstrass function which is continuous and
nowhere differentiable. In contrast to the discrete time case, he obtained a smooth curve which
was independent of the considered time interval. It was twice differentiable, but the third deriv-
ative did not exist anywhere. For a probabilist, it seems interesting to know what can be said
about the Bohlmann–smoothing of a Brownian motion. Surely, the ideas in this paper deserve
further attention, and interesting work remains to be done. Perhaps, this paper demonstrates the
considerable analytic power of Bohlmann better than his axiomatic work.

It is not surprising that, after 1903, the papers of Bohlmann are mainly devoted to problems in
actuarial mathematics. But in 1913, he wrote yet another long paper in probability. It appeared
in the Mathematische Annalen [20]. It is of a rather technical character. Some colleagues had been
making use of some rules of thumb without specifying the mathematical conditions, and without
providing proofs. He acquired the respect of certain probabilists like Bortkiewicz and Chuprov by
treating these subjects in a rigorous manner.

In essence, he considered the following problem: Let X1, X2, . . . be a sequence of random
variables converging in an appropriate sense to a common expectation x0.

Let f be a suitable real valued function (Bohlmann looked at algebraic functions.) Then, for
large n, E(f(Xn)) can be approximated by f(x0). The analogous question can be asked for the
standard deviation. Under suitable conditions, σ(f(Xn)) can be approximated by |f ′(x0)|σ(Xn).

Bohlmann studied this problem by looking at the Taylor expansion of f at the point x0.
Bohlmann’s conditions and formulations were complicated. Today we have much better machinery
to study this problem.

6. Some Acturial Mathematics

We now discuss some of Bohlmann’s work on actuarial mathematics. It would be nice if some-
body more at home in this field would study the actuarial work not considered here. We partly
follow Purkert [60] and Lorey [53].

In his article [11] for the encyclopedia, Bohlmann stated two “axioms” for survival probabilities.
Axiom 4 : If (x) is a person having age x the probability p(x, x +m) that (x) survives to age

x+m is a function of x and m. There is a bound w such that nobody survives to age w.
Axiom 5 : If (x) and (y) are different persons of age x and y, the events that (x) survives to

age x+m and (y) survives to age y + n are independent.
Bohlmann considered populations with identical risk. This means that the probabilities depend

only on the age of the persons and not on the persons. In this work, the term “axiom” really is a
misnomer. The “axioms” describe assumptions about the considered group of persons. Thus, they
describe a mathematical model of the considered reality.

The notation with (x) describing a person and x her age is not suitable since different persons
can have the same age.

Under the stated assumptions, Bohlmann developed the main methods of actuarial mathematics
of that time. The article [11] was successful, so that a second updated and translated article
appeared in French [12] in the French edition of the encyclopedia. The editors of the French edition
emphasized that the articles were written in very close cooperation of a French mathematician with
the author of the German article. In Bohlmann’s case, the French coauthor was H. Poterin du
Motel. The article is substantially revised. (For example, the definition of independence given in
Rome, appears here, too.) A comparison of the German and French version appears in [24],p. 13.

We now turn to a nice example of Bohlmann’s research on actuarial mathematics. Assume
we want to fix the price for insuring a risk described by a random variable Z, taking the values
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z1, z2, . . . , zn with positive probabilities p1, . . . , pn. This risk would be turned into a fair game,
if the insurance company B0 would ask for a premium E(Z). The fair game is described by
X = Z −E(Z), taking the values xi with positive probabilities pi, i = 1, . . . , n. But the insurance
company wants to add a charge for the administrative cost and a charge for carrying the risk. This
second added charge may be a multiple either of the “mean risk” M , which coincides with the
standard deviation of X or of the “average risk”

D = E(max(X, 0)) =

n∑
i=1,xi>0

pixi

which is the expectation of the potential losses of B0. (This terminology seems to be due to
Hausdorff [36], who advocated using M because of the additivity of the variances for independent
risks. At that time it was more common to use D.)

Wittstein [71], [72] gave the following interpretation of D: D is the expectation of the potential
losses of B0, and hence it is the “fair part” of the cost for B0 if B0 wants to buy reinsurance from
a company B1. Let D0 = D, and let D1 denote the average risk of the reinsurance contract. If
B1 again wants to buy reinsurance from a company B2, let D2 denote the average risk of this re-
reinsurance contract, etc. The idea of iterating reinsurance was proposed by Wittstein. Hausdorff
has computed D0, D1, D2, and D3 for the normal distribution. Bohlmann [13] studied this more
systematically. He proved: The sequence D0, D1, D2, . . . is decreasing with limit 0, and the sum
of these numbers is Max(xi, i = 1, ..., n).
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10. Über Versicherungsmathematik, In: F.Klein und E.Riecke (Hrsg.) : Über Angewandte Mathematik und Physik
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z1, z2, . . . , zn with positive probabilities p1, . . . , pn. This risk would be turned into a fair game,
if the insurance company B0 would ask for a premium E(Z). The fair game is described by
X = Z −E(Z), taking the values xi with positive probabilities pi, i = 1, . . . , n. But the insurance
company wants to add a charge for the administrative cost and a charge for carrying the risk. This
second added charge may be a multiple either of the “mean risk” M , which coincides with the
standard deviation of X or of the “average risk”

D = E(max(X, 0)) =

n∑
i=1,xi>0

pixi

which is the expectation of the potential losses of B0. (This terminology seems to be due to
Hausdorff [36], who advocated using M because of the additivity of the variances for independent
risks. At that time it was more common to use D.)

Wittstein [71], [72] gave the following interpretation of D: D is the expectation of the potential
losses of B0, and hence it is the “fair part” of the cost for B0 if B0 wants to buy reinsurance from
a company B1. Let D0 = D, and let D1 denote the average risk of the reinsurance contract. If
B1 again wants to buy reinsurance from a company B2, let D2 denote the average risk of this re-
reinsurance contract, etc. The idea of iterating reinsurance was proposed by Wittstein. Hausdorff
has computed D0, D1, D2, and D3 for the normal distribution. Bohlmann [13] studied this more
systematically. He proved: The sequence D0, D1, D2, . . . is decreasing with limit 0, and the sum
of these numbers is Max(xi, i = 1, ..., n).
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