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Abstract

Right Angle Crossing (RAC) drawings are polyline drawings where
each crossing forms four right angles. RAC drawings have been intro-
duced because cognitive experiments provided evidence that increasing
the number of crossings does not decrease the readability of a drawing if
edges cross at right angles. We investigate to what extent RAC drawings
can help in overcoming the limitations of widely adopted planar graph
drawing conventions, providing both positive and negative results.

First, we prove that there exist acyclic planar digraphs not admitting
any straight-line upward RAC drawing and that the corresponding deci-
sion problem is NP-hard. Also, we show digraphs whose straight-line up-
ward RAC drawings require exponential area. Exploiting the techniques
introduced for studying straight-line upward RAC drawings, we also show
that there exist planar undirected graphs requiring quadratic area in any
straight-line RAC drawing.

Second, we study whether RAC drawings allow us to draw bounded-
degree graphs with lower curve complexity than the one required by more
constrained drawing conventions. We prove that every graph with vertex-
degree at most six (at most three) admits a RAC drawing with curve
complexity two (resp. one) and with quadratic area.

Third, we consider a natural non-planar generalization of planar em-
bedded graphs. Here we give bounds for curve complexity and area dif-
ferent from the ones known for planar embeddings.

1 Introduction

In graph drawing, it is commonly accepted that crossings and bends can make
the layout difficult to read and experimental results show that the human per-
formance in path-tracing tasks is negatively correlated to the number of edge
crossings and to the number of bends along the edges [20, 21, 23]. However,
further cognitive experiments in graph visualization show that increasing the
number of crossings does not decrease the readability of the drawing if the
edges cross at right angles [14, 15]. These results provide evidence for the ef-
fectiveness of orthogonal drawings (in which edges are chains of horizontal and
vertical segments) with few bends [5, 16] and motivate the study of a new class
of drawings, called Right Angle Crossing drawings (RAC drawings), introduced
by Didimo, Eades, and Liotta [9]. A RAC drawing of a graph G is a polyline
drawing Γ of G such that any two crossing segments are orthogonal. Figure 1
shows a RAC drawing with curve complexity two, where the curve complex-
ity of Γ is the maximum number of bends along an edge of Γ. If Γ has curve
complexity zero, then Γ is a straight-line RAC drawing.

This paper investigates RAC drawings with low curve complexity for both
directed and undirected graphs.

For directed graphs, also called digraphs, a widely studied drawing standard
is the upward drawing convention, where edges are monotone in the vertical
direction. A digraph has an upward planar drawing if and only if it has a
straight-line upward planar drawing [6]. However, not all planar digraphs have
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Figure 1: A RAC drawing with curve complexity two.

an upward planar drawing and straight-line upward planar drawings require
exponential area for some families of digraphs [7].

We investigate straight-line upward RAC drawings, i.e. straight-line upward
drawings with right angle crossings. In particular, it is natural to ask if every
planar acyclic digraph admits an upward RAC drawing and if every digraph
with an upward RAC drawing admits one with polynomial area. Both these
questions have a negative answer:

• We prove that there exist acyclic planar digraphs that do not admit
any straight-line upward RAC drawing and that the problem of decid-
ing whether an acyclic planar digraph admits such a drawing is NP-hard;

• we show that there exist upward planar digraphs whose straight-line up-
ward RAC drawings require exponential area.

Exploiting the techniques introduced for proving that straight-line upward
RAC drawings of upward planar digraphs may require exponential area, we also
show that there exist planar undirected graphs requiring quadratic area in any
straight-line RAC drawing.

It is known [9] that any n-vertex straight-line RAC drawing of an undirected
graph has at most 4n − 10 edges, for every n ≥ 4, and this bound is tight.
Further, every graph admits a RAC drawing with at most three bends per
edge, and this curve complexity is required in infinitely many cases [9]. Indeed,
RAC drawings with curve complexity one and two have at most 21n and 150n
edges, respectively, as shown by Arikushi and Tóth [1], who improved previous
sub-quadratic area bounds by Didimo et al. [9]. Hence, we investigate families
of graphs that can be drawn with curve complexity one or two, proving the
following results:

• Every degree-6 graph admits a RAC drawing with curve complexity two;

• every degree-3 graph admits a RAC drawing with curve complexity one.

In both cases, the drawings can be computed in linear time and require
quadratic area. Observe that degree-4 graphs, with the exception of the octa-
hedron [12], admit planar orthogonal drawings with curve complexity two [18],
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while there exist degree-3 graphs, as for example K4, that require two bends on
one edge in any planar orthogonal drawing.

In a fixed embedding setting, the input graph G is given with a (non-planar)
embedding, i.e., a circular ordering of the edges incident to each vertex and an
ordering of the crossings along each edge. A RAC drawing algorithm can not
change the embedding of G. For such a setting it has been proved [9] that any
n-vertex graph admits a RAC drawing with O(kn2) bends per edge, where k
is the maximum number of crossings between any two edges. Also, there exist
graphs whose RAC drawings require Ω(n2) bends along some edges. We study
the fixed embedding setting, namely we study non-planar graphs obtained by
augmenting a plane triangulation with edges inside pairs of adjacent faces; we
call these graphs kite-triangulations :

• We prove that one bend per edge is always sufficient and sometimes nec-
essary for a RAC drawing of a kite-triangulation;

• we show that there exist kite-triangulations requiring cubic area in any
straight-line RAC drawing. Recall that every embedded planar graph
admits a planar drawing with quadratic area [4, 22].

The rest of the paper is organized as follows. In Sect. 2 we introduce some
definitions and preliminaries; in Sect. 3 we study straight-line upward RAC
drawings of planar acyclic digraphs; in Sect. 4 we study RAC drawings of
bounded-degree graphs; in Sect. 5 we study RAC drawings of kite-triangulations;
finally, in Sect. 6, we conclude the paper with some open problems.

2 Preliminaries

We assume familiarity with graph drawing and planarity [5, 16]. In the following,
unless otherwise specified, all considered graphs are simple.

The degree of a vertex is the number of edges incident to it. The degree of a
graph is the maximum among the degrees of its vertices. A graph is regular if
all its vertices have the same degree.

A drawing of a graph is a mapping of each vertex to a distinct point of the
plane and of each edge to a Jordan curve between its endpoints. A straight-line
drawing is such that all edges are straight-line segments. A polyline drawing
is such that all edges are sequences of straight-line segments, where any point
shared by consecutive segments of different slopes is a bend. The curve com-
plexity of a drawing Γ is the maximum number of bends along an edge in Γ. A
grid drawing of a graph is such that each vertex has integer coordinates. The
area of a grid drawing is the area of the smallest rectangle with sides parallel
to the axes completely enclosing the drawing. A planar drawing is such that no
two edges intersect except, possibly, at common endpoints. A planar drawing
of a graph determines a circular ordering of the edges incident to each vertex.
Two drawings of the same graph are equivalent if they determine the same cir-
cular ordering around each vertex. A planar embedding is an equivalence class
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of planar drawings. A planar drawing partitions the plane into topologically
connected regions, called faces. The unbounded face is the external face. A
graph together with a planar embedding and a choice for its external face is
called plane graph. A plane graph is a triangulation when all its faces are tri-
angles. When dealing with non-planar graphs, an embedding of such a graph is
a circular ordering of the edges incident to each vertex and a linear order of the
edges crossing each edge. An upward drawing of a digraph is such that all edges
are curves monotonically increasing in the upward direction. An upward planar
drawing of a digraph G is a drawing of G that is both upward and planar. If G
admits an upward planar drawing, then G is an upward planar digraph.

A Right Angle Crossing drawing (RAC drawing) of a graph G is a polyline
drawing Γ of G such that any two crossing segments in Γ are orthogonal. If
a RAC drawing Γ has curve complexity zero, then Γ is a straight-line RAC
drawing. An upward RAC drawing of a digraph is a RAC drawing that is also
upward. A fan in a drawing Γ is a pair of edge segments incident to the same
vertex. Two segments s1 and s2 crossing the same segment in Γ are parallel.
This leads to the following properties, illustrated in Fig. 2(a) and 2(b), and
proved in [9] and [10].

(a)

zu b c

v

a

(b)

Figure 2: Illustrations for (a) Property 1 and for (b) Property 2.

Property 1 In a straight-line RAC drawing no edge can cross a fan.

Property 2 In a straight-line RAC drawing there can not be a triangle △ and
two edges (a, b), (a, c) such that a lies outside △ and b, c lie inside △.

3 Upward RAC Drawings

We now study straight-line upward RAC drawings of directed graphs. In order
to achieve our results on straight-line upward RAC drawings of directed graphs,
we prove some lemmata concerning undirected graphs. ConsiderK4, that is, the
complete graph on four vertices u, v, z, and w. Let E1 and E2 be the embeddings
of K4 shown in Fig. 3(a) and 3(b), respectively.

Lemma 1 In any straight-line drawing of K4, its embedding is one of E1 and
E2, up to a renaming of the vertices.
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Figure 3: (a) E1; (b) E2.

Proof: Consider any straight-line drawing Γ ofK4. Either three or four vertices
are on the convex hull of Γ, as otherwise there would be two overlapping edges.
Observe that, since the drawing is straight-line, the edges delimiting the convex
hull of Γ do not cross any edge of K4. If exactly three vertices of K4 are on the
convex hull of Γ, then the fourth vertex is inside such a convex hull. Since the
drawing is straight-line, the edges incident to the fourth vertex do not cross any
edge of K4. It follows that the embedding of K4 is E1. If exactly four vertices
of K4 are on the convex hull of Γ, then the two edges between non-consecutive
vertices of the convex hull cross. Since the drawing is straight-line, such edges
cross exactly once. It follows that the embedding of K4 is E2. �

Lemma 2 Let G be a graph containing two vertex-disjoint copies K ′

4 and K ′′

4

of K4. Let Γ be any straight-line RAC drawing of G. For any 3-cycle (a′, b′, c′)
of K ′

4, which is represented in Γ by a triangle △′, either all the vertices of K ′′

4

are inside △′ or they are all outside it.

Proof: If at least two vertices a′′ and b′′ of K ′′

4 are inside △′ and at least one
vertex c′′ is outside it, then Property 2 is violated, since vertex c′′ is connected
to both a′′ and b′′.

a’’

b’

c’

d’

b’’

d’’

c’’
a’

a’’a’

b’

c’

d’

b’’

d’’

c’’

(a) (b)

Figure 4: (a) If d′ is placed outside △′′, then Property 2 is violated. (b) If d′ is
placed inside △′′, then Property 2 is violated.
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If exactly one vertex a′′ of K ′′

4 is inside △′, then b′′, c′′, and d′′ are outside
it. Since the drawing is straight-line, if there is a crossing between an edge
of the 3-cycle (b′′, c′′, d′′) of K ′′

4 and an edge of (a′, b′, c′), then such an edge
of (b′′, c′′, d′′) crosses a fan composed of two edges of (a′, b′, c′), thus violating
Property 1. It follows that △′ is contained inside the triangle △′′ representing
(b′′, c′′, d′′) in Γ, with each of the edges (a′′, b′′), (a′′, c′′), and (a′′, d′′) crossing
a distinct edge of △′ with a right-angle crossing. However, in this case every
possible placement of d′ violates Property 2. Namely, if d′ is outside △′′, then
Property 2 is violated since d′ is connected to a′, b′, and c′, which are inside
△′′ (see Fig. 4(a)). Further, if d′ is inside △′′, then it is inside one of the faces
internal to △′′, say the one containing a′; then, Property 2 is violated since d′

and a′ are both connected to b′, which is outside the triangle representing such
a face in Γ (see Fig. 4(b)). �

Lemma 3 Let G be a graph containing two vertex-disjoint copies K ′

4 and K ′′

4

of K4. In any RAC drawing Γ of G, no edge of K ′

4 crosses an edge of K ′′

4 .

Proof: Let Γ∗ be Γ restricted to the edges of K ′

4 and K ′′

4 . We show that in Γ∗

there is no crossing between the edges of K ′

4 and the edges of K ′′

4 . Let u
′, v′, z′,

and w′ be the vertices of K ′

4, and let u′′, v′′, z′′, and w′′ be the vertices of K ′′

4 .

If the embedding of K ′

4 in Γ∗ is E1, then assume, without loss of generality
up to a renaming of the vertices, that (u′, v′, z′) is the 3-cycle delimiting the
external face of K ′

4 in Γ∗ and hence enclosing w′. By Lemma 2, either all the
vertices of K ′′

4 lie outside △′ or they all lie inside it. In the former case, if there
is a crossing between an edge of K ′

4 and an edge of K ′′

4 , then such an edge of K ′′

4

crosses a fan composed of two edges of K ′

4, thus violating Property 1. In the
latter case, the vertices of K ′′

4 lie in the faces of K ′

4 internal to △′. By Lemma 2,
all the vertices of K ′′

4 lie in the same internal face of K ′

4. Hence, in both cases,
no edge of K ′

4 crosses an edge of K ′′

4 .

If the embedding of K ′

4 in Γ∗ is E2, then assume, without loss of generality
up to a renaming of the vertices, that (u′, v′, z′, w′) is the 4-cycle delimiting the
external face of K ′

4 in Γ∗. Thus, the edges of K ′

4 delimit five connected regions
R1, . . . , R5 of the plane, where R1, R2, R3, and R4 are inside (u′, v′, z′, w′), and
R5 is outside (u′, v′, z′, w′). We prove that all the vertices of K ′′

4 are inside
the same region Ri. Suppose that vertices a′′ and b′′ exist such that a′′, b′′ ∈
{u′′, z′′, v′′, w′′} and a′′ is inside Ri and b′′ is inside Rj , with j 6= i. For every
pair of regions Ri and Rj , with j 6= i, a 3-cycle (a′, b′, c′) of K ′

4, with a′, b′, c′ ∈
{u′, z′, v′, w′}, exists containing Ri in its interior and Rj in its exterior, or vice
versa. Then, a′′ is inside the triangle representing (a′, b′, c′) and b′′ is outside
such a triangle, or vice versa. However, by Lemma 2, Γ∗ is not a RAC drawing.
Hence, all the vertices of K ′′

4 are inside the same region Ri. If all the vertices
of K ′′

4 are in the same region Ri, with 1 ≤ i ≤ 4, then no edge of K ′

4 crosses
an edge of K ′′

4 . If all the vertices of K ′′

4 are in R5, then suppose that a crossing
between an edge of K ′

4 and an edge of K ′′

4 exists. However, such an edge of K ′′

4

crosses a fan composed of two edges of K ′

4, thus violating Property 1. �
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v

z

w

u

Figure 5: The upward planar digraph H obtained by acyclically orienting the
edges of K4.

Now we use the previous lemmata to prove the main results of this section.
First, we introduce an upward planar digraph H , shown in Fig. 5, which is
obtained by acyclically orienting the edges of K4. Denote by u and v the only
source and the only sink of H , respectively.

We get the following:

Lemma 4 Consider a planar acyclic digraph K. Replace each edge (a, b) of K
with a copy of H, by identifying vertices a and b of K with vertices u and v of
H, respectively. Let K ′ be the resulting planar digraph. Digraph K is upward
planar if and only if K ′ is straight-line upward RAC drawable.

Proof: Refer to Figs. 6(a) and 6(b).
First, suppose that K admits an upward planar drawing. Then, by the

results of Di Battista and Tamassia [6], K admits a straight-line upward planar
drawing Γ. Consider the drawing Γ′ of K ′ obtained from Γ by drawing each
copy of H that replaces an edge (a, b) in such a way that: (i) The drawing of H
is upward planar; (ii) the drawing of edge (u, v) of H in Γ′ coincides with the
drawing of edge (a, b) of K in Γ; and (iii) the drawing of the other vertices and
edges of H is arbitrarily close to (u, v). Since Γ is a straight-line upward planar
drawing, Γ′ is a straight-line upward planar drawing. Hence, Γ′ is a straight-line
upward RAC drawing of K ′.

Second, suppose that K ′ admits a straight-line upward RAC drawing Γ′.
Consider the straight-line drawing Γ of K obtained by restricting Γ′ to the
edges of K, that is, obtained by removing from Γ′, for every copy of H , all
the vertices of H different from u and v and all the edges of H different from
(u, v). As Γ′ is an upward drawing of K ′, then Γ is an upward drawing of K.
Suppose, for a contradiction, that two edges cross in Γ. If such two edges are
adjacent, then they do not cross, as otherwise they overlap. If such two edges
are not adjacent, then they belong to two distinct copies of H in K ′. However,
by Lemma 3, no two edges belonging to distinct copies of H cross in Γ′, thus
obtaining a contradiction. Hence, Γ is a straight-line upward planar drawing of
K. �

We are ready to prove the first theorem of this section.
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Figure 6: (a) A straight-line upward drawing of an upward planar acyclic di-
graph K. (b) A straight-line upward RAC drawing of the planar acyclic digraph
K ′ obtained by replacing each edge of K with a copy of H .
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Figure 7: (a) A planar acyclic digraph G that is not upward planar. (b) The
planar acyclic digraph G′ obtained by replacing each edge of G with a copy of
H is not straight-line upward RAC drawable.

Theorem 1 There exist acyclic planar digraphs that do not admit any straight-
line upward RAC drawing.

Proof: Consider any planar acyclic digraph G (as the one of Fig. 7(a)) that
is not upward planar. By Lemma 4, the planar acyclic digraph G′ obtained
by replacing each edge of G with a copy of H does not admit any straight-line
upward RAC drawing (see Fig. 7(b)). �

Note that there exist planar digraphs, as the one in Fig. 8, that do not admit
any straight-line upward RAC drawing, that are not constructed using gadget
H , and whose size is smaller than the one of the digraph in Fig. 7(b). However,
proving that they are not straight-line upward RAC drawable could result in a
complex case-analysis.

Motivated by the fact that there exist acyclic planar digraphs that do not
admit any straight-line upward RAC drawing, we study the time complexity of
the corresponding decision problem.

We show that the problem of testing whether a digraph admits a straight-line
upward RAC drawing (Upward RAC Drawability Testing) is NP-hard, by
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Figure 8: An 8-vertex planar digraph that does not admit any straight-line
upward RAC drawing.

means of a reduction from the problem of testing whether a digraph admits a
straight-line upward planar drawing (Upward Planarity Testing), which is
NP-complete [13].

Theorem 2 Upward RAC Drawability Testing is NP-hard.

Proof: We reduce Upward Planarity Testing to Upward RAC Drawa-

bility Testing. Let G be an instance of Upward Planarity Testing.
Replace each edge (a, b) of G with a copy of H , by identifying vertices a and b
of G with vertices u and v of H , respectively. Let G′ be the resulting planar di-
graph. By Lemma 4, G is upward planar if and only if G′ admits a straight-line
upward RAC drawing. �

Next, we show that there exists a class of planar acyclic digraphs that require
exponential area in any straight-line upward RAC drawing.

Consider the class of upward planar digraphs Gn (see Fig.9), defined by Di
Battista et al. [7], which requires Ω(2n) area in any straight-line upward planar
drawing, under any resolution rule. Replace each edge (a, b) of Gn with a copy of
H , by identifying vertices a and b of Gn with vertices u and v of H , respectively.
Let G′

n be the resulting planar digraph. Observe that, assuming that Gn has n
vertices, G′

n has O(n) vertices since, for every edge of Gn, two new vertices are
introduced in G′

n.

Theorem 3 Any straight-line upward RAC drawing of G′

n requires Ω(bn) area,
under any resolution rule, for some constant b > 1.

Proof: Suppose, for a contradiction, that, for every constant b > 1, G′

n admits
a straight-line upward RAC drawing Γ′ with o(bn) area, under some resolution
rule. Consider the straight-line drawing Γ of Gn obtained by restricting Γ′ to
the edges of Gn, that is, obtained by removing from Γ′, for every copy of H , all
the vertices of H different from u and v and all the edges of H different from
(u, v). As Γ′ is an upward drawing of G′

n, then Γ is an upward drawing of Gn.
If two edges of Gn are adjacent, then they do not cross in Γ, as otherwise they
overlap. If two edges of Gn are not adjacent, then they belong to two distinct
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Figure 9: (a) Graph G0. (b) Graph G1. (c) Graph Gn.

copies of H in G′

n. However, by Lemma 3, no two edges belonging to distinct
copies of H cross in Γ′, thus they do not cross in Γ. Hence, Γ is a straight-line
upward planar drawing of Gn. Further, the area of Γ is o(bn), as the area of Γ′

is o(bn), thus obtaining a contradiction and proving the theorem. �

We now turn our attention to straight-line RAC drawings of undirected
graphs. We exploit the techniques introduced for straight-line upward RAC
drawings to get a quadratic lower bound on the area requirements of straight-
line grid RAC drawings of planar graphs.

Consider a nested triangles graph G, that is, a triconnected graph composed
of n

3
3-cycles nested one into the other (see Fig. 10(a)). Graph G is known to

require Ω(n2) area in any straight-line planar drawing [4]. Replace each edge
(a, b) of G with a copy of K4, by identifying vertices a and b of G with vertices u
and v of K4, respectively. Let G

′ be the resulting planar graph (see Fig. 10(b)).
Observe that G′ has O(n) vertices since, for every edge of G, two new vertices
are introduced in G′. We have the following.

Theorem 4 Any straight-line grid RAC drawing of G′ requires Ω(n2) area.

Proof: Consider any straight-line grid RAC drawing Γ′ of G′. Consider the
straight-line drawing Γ of G obtained by restricting Γ′ to the edges of G, that
is, obtained by removing from Γ′, for every copy of K4, all the vertices of K4

different from u and v and all the edges of K4 different from (u, v). If two edges
of G are adjacent, then they do not cross, as otherwise they overlap. If two
edges of G are not adjacent, then they belong to two distinct copies of K4 in G′.
However, by Lemma 3, no two edges belonging to distinct copies of K4 cross in
Γ′, thus they do not cross in Γ. Hence, Γ is a straight-line planar drawing of G.
It follows that the area of Γ is Ω(n2), and the area of Γ′ is Ω(n2), as well. �
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(a) (b)

Figure 10: (a) A nested triangles graph G. (b) The graph G′ obtained by
replacing each edge (a, b) of G with a copy of K4.

4 RAC-Drawings of Bounded-Degree Graphs

In this section, we present algorithms for constructing RAC drawings of graphs
of bounded degree. The algorithms are based on the decomposition of a regular
directed multigraph into directed 2-factors. A 2-factor of an undirected graph
G is a spanning subgraph of G consisting of vertex-disjoint cycles (see also [3,
pp.227]). Analogously, a directed 2-factor of a directed graph is a spanning
subgraph consisting of vertex-disjoint directed cycles. The decomposition of a
regular directed multigraph into directed 2-factors follows from a classical result
for undirected graphs [19] stating that “a regular multigraph of degree 2k has
k edge-disjoint 2-factors”. A constructive proof of the following theorem was
given by Eades et al. [11].

Theorem 5 (Eades,Symvonis,Whitesides [11]) Let G = (V,E) be an n-
vertex undirected graph of degree ∆ and let d = ⌈∆/2⌉. Then, there exists a
directed multi-graph G′ = (V,E′) such that:

1. each vertex of G′ has indegree d and outdegree d;

2. G is a subgraph of the underlying undirected graph of G′; and

3. the edges of G′ can be partitioned into d edge-disjoint directed 2-factors.

Furthermore, the directed graph G′ and its d directed 2-factors can be com-
puted in O(∆2n) time.

Let u be a vertex placed at a grid point. We say that an edge e exiting u uses
the Y -port of u (resp. the −Y -port of u) if it exits u along the +Y direction
(resp. along the −Y direction). In an analogous way, we define the X-port and
the −X-port. We have the following.

Theorem 6 Every n-vertex graph with degree at most six admits a RAC draw-
ing with curve complexity two in O(n2) area. Such a drawing can be computed
in O(n) time.
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Proof: Let G = (V,E) be a graph of degree six. Let G′ = (V,E′) be the
directed multigraph obtained from G as in Theorem 5, and let C1, C2, and C3

be the three edge-disjoint directed 2-factors of G′. We show how to obtain a
RAC drawing of G′. Then, a RAC drawing of G can be obtained by removing
from the drawing all the edges in E′ \ E and by ignoring the direction of the
edges.
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Figure 11: (a) A regular directed multigraph G′ with indegree and outdegree
equal to three and its directed 2-factors C1, C2, and C3. The edges of C1 are
represented by solid thin lines, the edges of C2 are represented by solid thick
lines, and the edges of C3 are represented by dashed lines. (b) The RAC drawing
of G′ with two bends per edge constructed by the algorithm described in the
proof of Theorem 6.

The algorithm places the vertices of V on the main diagonal of anO(n)×O(n)
grid, in an order determined by one of the directed 2-factors, say C1. Most of
the edges of C1 are drawn as straight-line segments along the diagonal while the
edges of C2 and C3 are drawn as 3-segment lines above and below the diagonal,
respectively. Finally, the remaining “closing” edges of C1 (i.e., the edges that
are not drawn on the diagonal) are drawn as 2- or 3-segment lines either above
or below the diagonal.

We first describe how to place the vertices of G′ along the main diagonal.
Arbitrarily name the cycles c1, c2, . . . , ck of C1. Consider each cycle ci, for
1 ≤ i ≤ k.

• If there exist a vertex u ∈ ci and an edge (u, z) ∈ C2 or C3 such that z
belongs to a cycle cj of C1 with j > i, then let u be the topmost vertex of
ci and let the vertex following u in ci be the bottommost vertex of ci.

• Otherwise, if there exist a vertex v ∈ ci and an edge (v, w) ∈ C2 or C3 such
that w belongs to a cycle cj of C1 with j < i, then let v be the bottommost
vertex of ci and let the vertex preceding v in ci be the topmost vertex of
ci.

• Otherwise, all the edges of C2 and C3 exiting vertices of ci are directed
to vertices of ci. In this case, let an arbitrary vertex w of ci be the
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bottommost vertex of ci and let the vertex preceding w in ci be the topmost
vertex of ci.

Figure 11(a) shows a regular directed multigraph G′ of indegree and out-
degree three and its directed 2-factors C1, C2, and C3. C1 consists of cycles
c1 : (5, 1, 2, 3, 4, 5) and c2 : (6, 7, 8, 9, 6). We set 4 as the topmost vertex of c1
since edge (4, 6) of C2 has vertex 6 of c2 as its destination. Analogously, we set
6 as the bottommost vertex of c2 since edge (6, 5) of C2 has vertex 5 of c1 as its
destination. Figure 11(b) shows the RAC drawing of G′ with curve complexity
two constructed by the algorithm described in this proof.

Then, the vertices of G′ are placed on the diagonal so that each vertex of ci
is placed on the diagonal before each vertex of cj , for each i < j, and so that the
vertices of ci are placed on the diagonal in the order defined by ci, starting at
the bottommost vertex of ci and ending at the topmost vertex of ci, for each i.
When the h-th vertex of G′ is placed on the diagonal, it is assigned coordinates
(16(h− 1), 16(h− 1)).

Having placed the vertices on the grid, we turn our attention to drawing the
edges of G′. Each edge is drawn either as a 1-segment line along the diagonal, or
as a 2- or 3-segment line either above or below the diagonal. We draw the edges
so that all the crossing line segments are parallel to the axes and, consequently,
all the crossings are at right angles. In our drawings, every line segment s that
is not parallel to the axes is incident to a vertex vs of the graph; further, such
a segment s is contained in a dedicated region within a square Q(vs) whose
diagonals meet at vs and whose side has length 16 (see Fig. 12(a)).

The edges of C2 are drawn above the diagonal as follows. Consider an edge
(u, v) of C2 and let u and v be placed at grid points (ux, uy) and (vx, vy),
respectively.

• If u is placed below v (i.e., uy < vy), then edge (u, v) is drawn as a 3-
segment line exiting vertex u from the Y -port and being defined by bend-
points (ux, vy − 4) and (vx − 5, vy − 4). Note that the third line segment
of (u, v) is contained in the lightly-shaded region (above the diagonal) of
the south-west quadrant of Q(v) (see Fig. 12(a)).

• If u is placed above v (i.e., uy > vy), then edge (u, v) is drawn as a
3-segment line exiting vertex u from the −X-port and being defined by
bend-points (vx + 3, uy) and (vx + 3, vy + 4). Note that, in this case, the
third line segment of (u, v) is contained in the lightly-shaded region (above
the diagonal) of the north-east quadrant of Q(v) (see Fig. 12(a)).

It is easy to observe that the only line segments that belong to edges of C2

and that cross other line segments are parallel to the axes, hence they cross at
right angles. Namely, all the line segments that are not parallel to the axes are
contained in the lightly-shaded regions shown in Fig. 12(a), and there is at most
one of such line segments per region.

The edges of C3 are drawn below the diagonal in an analogous way.
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Figure 12: (a) The square Q(v) around a vertex v. The shaded regions contain
line segments not parallel to the axes and are used to visualize the absence of
crossings inside Q(v). (b) Drawing the closing edge of a cycle of C1 in Case 3.

Consider now the edges of C1. All such edges, except those closing the cycles
of C1, are drawn as straight-line segments along the diagonal. As all the edges
of C2 (resp. C3) are drawn above (resp. below) the diagonal, the edges of C1

drawn along the diagonal are not involved in any edge crossing. To complete
the drawing of G′, we describe how to draw the edges connecting the topmost
vertex to the bottommost vertex of each cycle of C1. Consider an arbitrary
cycle ci of C1 and let (u, v) be its closing edge. We consider three cases:

Case 1: u was selected to be the topmost vertex of ci due to the existence of
an edge (u, z) of C2 or C3 such that z is above u.

In such a case, after drawing the edges of C2 and C3, vertex u has not used
either its −X-port, or its −Y -port, or both. Namely, u used its −X-port if
there is an edge (u, v) of C2 such that v is below u, and u used its −Y -port if
there is an edge (u, v) of C3, such that v is below u. However, since an edge
(u, z) of C2 or of C3 exists such that z is above u, if u used both its −X-port
and its −Y -port, there would be three edges exiting u in C2 and C3, while there
are exactly two of such edges.

Assume that the −X-port of u is free (the case where the −Y -port of u is
free can be treated analogously). Edge (u, v) is drawn above the diagonal as a
3-segment line exiting vertex u from the −X-port and being defined by bend-
points (vx + 1, uy) and (vx + 1, vy + 7). Note that, in this case, the third line
segment of (u, v) is contained in the dark-shaded region (above the diagonal) of
the north-east quadrant of Q(v) (see Fig. 12(a)).

Case 2: v was selected to be the bottommost vertex of ci due to the existence
of an edge (v, w) of C2 or C3 such that w is below v.

In such a case, after drawing the edges of C2 and C3, vertex v has not used
either its X-port, or its Y -port, or both, which can be proved analogously to



68 Angelini et al. RAC Drawings

Case 1.
Assume that the Y -port of v is free (the case where the X-port of v is free

can be treated analogously). Edge (u, v) is drawn above the diagonal as a 3-
segment line exiting vertex v from the Y -port and being defined by bend-points
(vx, uy − 1) and (ux − 7, uy − 1). Note that, in this case, the first line segment
of (u, v) is contained in the dark-shaded region (above the diagonal) of the
south-west quadrant of Q(u) (see Fig. 12(a)).

Case 3: Neither Case 1 nor Case 2 applies.
In such a case, all the edges of C2 and C3 exiting vertices of cycle ci are

also directed to vertices of ci. Notice that this also implies that all the edges of
C2 and C3 entering vertices of ci are originated from vertices of ci. Namely, if
there were an edge (u, v) such that v is in ci and u is not, then there would be
an edge (w, z) such that w is in ci and z is not. Hence, denoting by u and v
the topmost vertex and the bottommost vertex of ci, respectively, (observe that
the bottommost vertex was chosen arbitrarily) the drawing of the edges of C2

and C3 incident to vertices of ci takes place entirely within the square having
points (vx, vy) and (ux, uy) as opposite corners (the shaded square in Fig. 12(b)).
Hence, the closing edge can be drawn as a 2-segment line connecting u and v
and being defined by bend-point (vx − 1, uy + 1) (see Fig. 12(b)).

Given C1, C2, and C3, it is easy to see that the drawing can be constructed
in linear time. By Theorem 5, C1, C2, and C3 can be also computed in linear
time, resulting in a linear-time algorithm. Also, the produced RAC drawing lies
in an O(n2) size grid. �

We now prove the following:

Theorem 7 Every n-vertex graph with degree at most three admits a RAC
drawing with curve complexity one in O(n2) area. Such a drawing can be com-
puted in O(n) time.

Proof: Let G = (V,E) be a graph of degree three. Let G′ = (V,E′) be the
directed multigraph obtained from G as in Theorem 5. Observe that G′ is a
regular multigraph of degree four. Let C1 and C2 be two edge-disjoint directed
2-factors of G′. We will show how to obtain a RAC drawing of G′ such that
only the edges of E and the edges of E′ \E might partially overlap. Removing
from the constructed drawing the edges of E′ \ E results into a RAC drawing
of G.

We place the vertices of G′ along the main diagonal of an O(n)×O(n) grid
based on their order of appearance along the cycles of C1. Consider an arbitrary
cycle ci of C1.

• If ci contains an edge (u, v) ∈ E′ \ E, then we make vertices u and v be
the topmost and bottommost vertex of ci, respectively.

• Otherwise, if there exist a vertex u ∈ ci and an edge (u, z) ∈ C2 ∩E such
that z belongs to a cycle cj of C1 with j > i, then let u be the topmost
vertex of ci and let the vertex following u in ci be the bottommost vertex
of ci.
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Figure 13: (a) A graph G = (V,E) of degree three. (b) The regular directed
multigraph G′ = (V,E′) with indegree and outdegree equal to two obtained
from G and its directed 2-factors C1 and C2. The edges of C1 are represented
by solid lines and the ones of C2 by dashed lines. Edges not in G are thinner
than the other edges. (c) The RAC drawing of G′ with one bend per edge
constructed by the algorithm described in the proof of Theorem 7.

• Otherwise, if there exist a vertex v ∈ ci and an edge (v, w) ∈ C2 ∩E such
that w belongs to a cycle cj of C1 with j < i, then let v be the bottommost
vertex of ci and let the vertex preceding v in ci be the topmost vertex of
ci.

• Otherwise, all the edges of C2 ∩ E exiting vertices of ci are also directed
to vertices of ci. In this case, let an arbitrary vertex w of ci be the
bottommost vertex of ci and let the vertex preceding w in ci be the topmost
vertex of ci.

Figure 13(a) shows a graph G of degree three. Figure 13(b) shows its cor-
responding directed graph G′ and its directed 2-factors C1 and C2. C1 consists
of cycles c1 : (1, 2, 3, 1) and c2 : (4, 5, 6, 4). We set 3 as the topmost vertex of c1
since edge (3, 5) of C2 has vertex 5 of c2 as its destination. Analogously, we set
4 as the bottommost vertex of c2 since edge (4, 2) of C2 has vertex 2 of c1 as its
destination. Figure 13(c) shows the RAC drawing of G′ with curve complexity
one constructed by the algorithm described in this proof. In such a drawing,
edge overlaps are allowed involving at least one edge in E′ \ E.

Then, the vertices of G′ are placed on the diagonal so that each vertex of ci
is placed on the diagonal before each vertex of cj , for each i < j, and so that the
vertices of ci are placed on the diagonal in the order defined by ci, starting at
the bottommost vertex of ci and ending at the topmost vertex of ci, for each i.
When the h-th vertex of G′ is placed on the diagonal, it is assigned coordinates
(2(h− 1), 2(h− 1)).

Having placed the vertices on the grid, we turn our attention to drawing the
edges of G′. Each edge is drawn either as a 1-segment line along the diagonal,
or as a 2-segment line either above or below the diagonal. We draw the edges
so that all the crossing line segments are parallel to the axes and, consequently,
all the crossings are at right angles.
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We first describe how to draw the edges of C2. Consider an arbitrary edge
(u, v) of C2.

• If u is placed below v (i.e., uy < vy), then edge (u, v) is drawn as a 2-
segment line below the diagonal, exiting vertex u from the X-port and
being defined by bend-point (vx, uy). Such a line enters v from its −Y -
port.

• If u is placed above v (i.e., uy > vy), then edge (u, v) is drawn as a 2-
segment line above the diagonal, exiting vertex u from the −X-port and
being defined by bend-point (vx, uy). Such a line enters vertex v from its
Y -port.

The edges of C2 do not overlap each other. Further, they intersect each
other only at right angles, as every line segment is parallel to the axes.

Consider now the edges of C1. All such edges, except those closing the
cycles of C1, are drawn as straight-line segments along the diagonal. As each
edge of C2 is drawn above or below the diagonal, the edges of C1 drawn along
the diagonal are not involved in any edge crossing. To complete the drawing
of G′, we describe how to draw the closing edge of each cycle of C1. Consider
an arbitrary cycle ci of C1 and let (u, v) be its closing edge. We consider four
cases:

Case 1: Edge (u, v) belongs to E′ \ E.
In this case, (u, v) is not part of G and it is not in the drawing.
Case 2: Edge (u, v) belongs to E and u was selected to be the topmost vertex

of ci due to the existence of an edge (u, z) ∈ C2 ∩ E such that z is above u.
Since both edges of ci incident to u and edge (u, z) belong to G and since

there are at most three edges incident to u in G, both the −X-port and the
−Y -port of u are free. Now observe that, since both edges of ci incident to v
belong to G, then at most one of the two edges of C2 incident to v belongs to
G. Hence, at most one of the Y -port and the X-port of v is used by an edge of
G (the other port might be used by an edge that belongs to G′ but not to G).
Thus, it is always possible to draw edge (u, z) with its only bend either at point
(vx, uy) or at point (ux, vy), so that it overlaps only with an edge of E′ \ E.

Case 3: Edge (u, v) belongs to E and v was selected to be the bottommost
vertex of ci due to the existence of an edge (v, w) ∈ E ∩C2 with vertex w being
placed lower on the diagonal than v.

Analogously to the previous case, both the X-port and the Y -port of v are
free and at most one of the two edges of C2 incident to u belongs to G. Hence,
at most one of the −Y -port and the −X-port of u is used by an edge of G and it
is always possible to draw edge (v, w) with its only bend either at point (vx, uy)
or at point (ux, vy), so that it overlaps only with an edge of E′ \E.

Case 4: None of the above cases applies.
In this case, all the edges of C2 ∩E exiting vertices of ci are also directed to

vertices of ci. Notice that this also implies that all the edges of C2 ∩E entering
vertices of ci are originated from vertices of ci. Hence, denoting by u and v the
topmost vertex and the bottommost vertex of ci, respectively, (observe that the
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bottommost vertex was chosen arbitrarily) the drawing of the edges of C2 ∩ E
incident to vertices of ci takes place entirely within the square having points
(vx, vy) and (ux, uy) as opposite corners. Hence, the closing edge (u, v) of ci
can be drawn as a 2-segment line connecting u and v and being defined by
bend-point (vx − 1, uy + 1).

Given C1 and C2, it is easy to see that the drawing can be constructed in
linear time. By Theorem 5, C1 and C2 can be also computed in linear time,
resulting in a linear-time algorithm. Also, the produced RAC drawing lies in
an O(n2) size grid. �

5 RAC Drawings of Kite-Triangulations

In this section we study the impact of admitting orthogonal crossings on the
drawability of the non-planar graphs obtained by adding edges to maximal pla-
nar graphs inside two adjacent faces, in a fixed embedding scenario. We show
that such graphs always admit RAC drawings with curve complexity one and
that such a curve complexity is sometimes required.

Let G′ be a triangulation and let (u, z, w) and (v, z, w) be two adjacent faces
of G′ sharing edge (z, w). We say that [u, v] is a pair of opposite vertices with
respect to (z, w). Let E+ = {[ui, vi]|i = 1, 2, · · · , k} be a set of pairs of opposite
vertices of G′, where [ui, vi] is a pair of opposite vertices with respect to (zi, wi)
and edge (ui, vi) does not belong to G′. Suppose that, for any 1 ≤ i, j ≤ k and
i 6= j, edges (zi, wi) and (zj , wj) are not incident to the same face of G′. Let G
be the embedded non-planar graph obtained by adding an edge (ui, vi) to G′,
for each pair [ui, vi] in E+, so that edge (ui, vi) crosses edge (zi, wi) and does
not cross any other edge of G. We say that G is a kite-triangulation and that
G′ is its underlying triangulation.

Figure 14 shows a kite-triangulation. We get the following:

Figure 14: A kite-triangulation G. Solid lines represent the edges of the un-
derlying triangulation G′ of G. Dashed lines represent edges between pairs of
opposite vertices.

Theorem 8 Every kite-triangulation admits a RAC drawing with curve com-
plexity one.
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Proof: Consider any kite-triangulation G and its underlying triangulation G′.
Remove from G′ all the edges (zi, wi), for i = 1, . . . , k, obtaining a new planar
graph G′′. Since, by definition, no two edges (zi, wi) and (zj , wj), with 1 ≤
i, j ≤ k and i 6= j, are adjacent to the same face of G′, all the faces of G′′

contain at most four vertices.

Construct any straight-line planar drawing Γ′′ of G′′. We show how to insert
in Γ′′ edges (ui, vi) and (zi, wi), for each i = 1, . . . , k, in order to obtain a RAC
drawing Γ of G. We consider two cases, depending on whether face (ui, wi, vi, zi)
is strictly convex in Γ′′ or not.
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Figure 15: Drawing (ui, vi) and (zi, wi) inside (ui, wi, vi, zi), if (ui, wi, vi, zi)
is strictly convex. (a) ui lies inside S(zi, wi); (b) both ui and vi lie outside
S(zi, wi).

Suppose that (ui, wi, vi, zi) is strictly convex in Γ′′. Consider the straight-
line segment ziwi and consider the lines l(zi) and l(wi) orthogonal to ziwi

and passing through zi and through wi, respectively. Further, consider the
following three regions of the plane: The closed half-plane S(zi) delimited by
l(zi) and not containing wi, the closed half-plane S(wi) delimited by l(wi) and
not containing zi, and the open strip S(zi, wi) delimited by l(zi) and l(wi).
If at least one out of ui and vi, say ui, lies inside S(zi, wi) (see Fig. 15(a)),
then draw edge (zi, wi) as a straight-line segment ziwi. Draw a straight-line
segment uipi starting at ui, orthogonally crossing (zi, wi), and ending at a point
pi arbitrarily close to (zi, wi). Complete a drawing of (ui, vi) by drawing the
straight-line segment pivi. If both ui and vi lie outside S(zi, wi) (see Fig. 15(b)),
by the strict convexity of (ui, wi, vi, zi), ui and vi lie one in S(zi) and one in
S(wi) and segment uivi intersects segment ziwi. Hence, the open strip S(ui, vi)
delimited by the lines l(ui) and l(vi) orthogonal to uivi and passing through ui

and through vi, respectively, contains both wi and zi. Then, draw edge (ui, vi)
as a straight-line segment uivi; draw a straight-line segment wipi starting at
wi, orthogonally crossing (ui, vi), and ending at a point pi arbitrarily close
to (ui, vi); finally, complete a drawing of (wi, zi) by drawing the straight-line
segment pizi.

Suppose that (ui, wi, vi, zi) is not strictly convex (see Fig. 16); more precisely,
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Figure 16: Drawing (ui, vi) and (zi, wi) inside (ui, wi, vi, zi), if (ui, wi, vi, zi) is
strictly convex.

suppose that angle ûizivi ≥ 180◦, the cases in which the angle greater than or
equal to 180◦ is incident to another vertex being analogous. Segment ziwi splits
(ui, wi, vi, zi) into two triangles (ui, zi, wi) and (vi, zi, wi). Since ûizivi ≥ 180◦,
ûiziwi ≥ 90◦ or ŵizivi ≥ 90◦. Suppose that ûiziwi ≥ 90◦, the other case
being analogous. Consider a point pi inside (ui, wi, vi, zi), arbitrarily close to
wi. Draw edge (ui, vi) as a polygonal line composed of segments uipi and
pivi. Since ûiziwi ≥ 90◦, the line through zi orthogonally crossing the line
through ui and wi crosses segment uiwi in an interior point. Hence, if pi is
sufficiently close to wi, a straight-line segment zip′i can be drawn starting at zi,
orthogonally crossing segment uipi, and ending at a point p′i arbitrarily close to
uipi. Complete a drawing of (wi, zi) by drawing the straight-line segment p′iwi.

�

Theorem 9 There exist kite-triangulations that do not admit any straight-line
RAC drawing.

u

v

a

x y
z

Figure 17: An embedded graph that is a subgraph of infinitely many kite-
triangulations with curve complexity one in any RAC drawing.

Proof: Consider an embedded planar graph H defined as follows. Graph H has
external face (u, v, z). Let a be a vertex ofH creating faces (u, v, a) and (a, v, z).
Let x and y be vertices of H creating faces (u, a, x) and (y, a, z), respectively,
in such a way that [v, x] is a pair of opposite vertices with respect to edge (a, u)
and that [v, y] is a pair of opposite vertices with respect to edge (a, z). See
Fig. 17.
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Consider any kite triangulationG containingH as a subgraph and containing
edges (v, x) and (v, y), respectively crossing (a, u) and (a, z). Consider any RAC
drawing Γ of G. Consider the triangle △ representing (a, u, z). Vertex v, which
lies outside △, is connected to vertices x and y, which lie inside △. Hence, by
Property 2, Γ can not be a straight-line RAC-drawing of G. �

Planar graphs are a proper subset of straight-line RAC drawable graphs.
However, while straight-line planar drawings can always be realized on a grid of
quadratic size (see, e.g., [4, 22]), straight-line RAC drawings may require larger
area, as shown in the following.

Theorem 10 There exists an n-vertex kite-triangulation that requires Ω(n3)
area in any straight-line grid RAC drawing.
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Figure 18: (a) A kite triangulation G requiring Ω(n3) area in any straight-line
grid RAC drawing. (b) A straight-line RAC drawing of G.

Proof: Consider a triangulation G′ defined as follows (see Fig. 18(a)). Let
C = (u1, u2, . . . , un−4, un−3) be a simple cycle, for some odd integer n. Insert
a vertex un−2 inside C and connect it to ui, with i = 1, 2, . . . , n− 3. Insert two
vertices un−1 and un outside C. Connect un−1 to ui, with i = 1, 2, . . . , n − 6,
and connect un−1 to un−3; connect un to un−6, un−5, un−4, un−3, and un−1.
Let (un−3, un−1, un) be the external face of G′. Let G be the kite-triangulation
obtained from G′ by adding edges (ui, ui+2), for i = 1, 3, 5, . . . , n − 6, and
edge (u1, un−4), so that (ui, ui+2) crosses edge (ui+1, un−2) of G′, and so that
(u1, un−4) crosses edge (un−3, un−2) of G

′.
In the following we prove that, in any straight-line RAC drawing of G,

cycle C′ = (u1, u3, . . . , un−6, un−4, u1) is a strictly-convex polygon. This claim,
together with the observation that G admits a straight-line RAC drawing (see
Fig. 18(b)), clearly implies the theorem, since any strictly-convex polygon needs
cubic area if its vertices have to be placed on a grid (see, e.g., [2]).

Suppose, for a contradiction, that there exists a straight-line RAC drawing
Γ of G with an angle ̂uiui+2ui+4 ≥ 180◦ inside C′. Then, any two segments
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orthogonally crossing uiui+2 and ui+2ui+4, respectively, meet at a point outside
C′, possibly at infinity, while they should meet at un−2, which is inside C′. Thus,
either un−2ui+1 is not orthogonal to uiui+2 or un−2ui+3 is not orthogonal to
ui+2ui+4, hence contradicting the assumption that Γ is a RAC drawing. �

6 Conclusions and Open Problems

When a graph G does not admit any planar drawing in some desired drawing
convention, requiring that all crossings form right angles can be considered as
an alternative solution for the readability of a drawing of G.

In this direction, this paper has shown negative results for directed graphs
that must be drawn upward with straight-line edges, and positive results for
undirected graphs that must be drawn with edges bending once or twice.

We now list some open problems that are related to the results of this paper.
While recognizing upward planar digraphs is NP-hard, a characterization is

known [6] stating that a digraph is upward planar if and only if it is a subgraph of
a planar st-digraph. As we proved that recognizing straight-line upward RAC-
drawable digraphs is also NP-hard, the following problem naturally arises.

Problem 1 Is it possible to characterize digraphs admitting straight-line up-
ward RAC drawings?

We have proved the existence of infinitely many planar acyclic digraphs not
admitting any straight-line upward RAC drawing. However, we are not aware
of planar acyclic digraphs requiring more than one bend on some edges.

Problem 2 Does every planar acyclic digraph admit an upward RAC drawing
with curve complexity one (with curve complexity two)?

There exist outerplanar digraphs that are not upward planar and that admit
upward straight-line RAC drawings [17]. Studying the upward RAC drawability
of outerplanar digraphs seems to be interesting.

Problem 3 Does every outerplanar acyclic digraph admit a straight-line up-
ward RAC drawing? What is the time complexity of deciding whether an outer-
planar digraph admits a straight-line upward RAC drawing?

Turning our attention to undirected graphs, we have shown that graphs with
degree three and six admit RAC drawings with curve complexity one and two,
respectively. The following is, however, still open.

Problem 4 What are the exact bounds for the curve complexity of RAC draw-
ings of bounded-degree graphs?

While for directed graphs deciding upward straight-line RAC drawability
is a difficult problem, the time complexity of deciding whether an undirected
graph admits a straight-line RAC drawing is not yet known, and constitutes, in
our opinion, the main algorithmic challenge in the area.
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Problem 5 What is the time complexity of deciding whether a graph admits a
straight-line RAC drawing?

We have shown that there exist planar graphs that require quadratic area
in any straight-line RAC drawing. Of course such a bound is tight for planar
graphs, as planar straight-line drawings can be constructed in quadratic area [4,
22]. However, the following two problems are worth studying:

Problem 6 Does every planar graph admit a RAC drawing with curve com-
plexity one or two in sub-quadratic area?

Problem 7 What is the area requirement of straight-line RAC drawings of
straight-line RAC drawable graphs?

Related to the last two problems, we remark that a quadratic-area lower
bound for RAC drawings (possibly with bends) of general graphs has been
proved by Di Giacomo et al. [8], and that Theorem 10 provides a cubic-area lower
bound for straight-line RAC drawings of straight-line RAC drawable embedded
graphs.
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