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Abstract

We investigate which planar point sets allow simultaneous straight-line
embeddings of all planar graphs on a fixed number of vertices. We first
show that at least (1.293 − o(1))n points are required to find a straight-
line drawing of each n-vertex planar graph (vertices are drawn as the
given points); this improves the previous best constant 1.235 by Kurowski
(2004).

Our second main result is based on exhaustive computer search: We
show that no set of 11 points exists, on which all planar 11-vertex graphs
can be simultaneously drawn plane straight-line. This strengthens the
result by Cardinal, Hoffmann, and Kusters (2015), that all planar graphs
on n ≤ 10 vertices can be simultaneously drawn on particular n-universal
sets of n points while there are no n-universal sets of size n for n ≥ 15. We
also provide 49 planar 11-vertex graphs which cannot be simultaneously
drawn on any set of 11 points. This, in fact, is another step towards a
(negative) answer of the question, whether every two planar graphs can
be drawn simultaneously – a question raised by Brass, Cenek, Duncan,
Efrat, Erten, Ismailescu, Kobourov, Lubiw, and Mitchell (2007).
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1 Introduction

A point set S in the Euclidean plane is called n-universal for a family G of planar
n-vertex graphs if every graph G from G admits a plane straight-line embedding
such that the vertices are drawn as points from S. A point set, which is n-
universal for the family of all planar graphs, is simply called n-universal. We
denote by fp(n) the size of a minimal n-universal set (for planar graphs), and
by fs(n) the size of a minimal n-universal set for stacked triangulations, where
stacked triangulations (a.k.a. planar 3-trees) are defined as follows:

Definition 1 (Stacked Triangulations) Starting from a triangle, one may
obtain any stacked triangulation by repeatedly inserting a new vertex inside a
face (including the outer face) of the current triangulation and making it adja-
cent to all the three vertices contained in the face.

An example of a stacked triangulation is shown in Figure 1.
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Figure 1: A (labeled) stacked triangulation on 11 vertices in which every face is
incident to a degree-3-vertex.

De Fraysseix, Pach, and Pollack [16] showed that every planar n-vertex
graph admits a straight-line embedding on a (2n − 4) × (n − 2) grid – even
if the combinatorial embedding (including the choice of the outer face) is pre-
scribed. Moreover, the graphs are only embedded on a triangular subset of the
grid. Hence, fp(n) ≤ n2 − O(n). This bound was further improved to the cur-

rently best known bound fp(n) ≤ n2

4 − O(n) [7] (see also [32, 8]). Also various
subclasses of planar graphs have been studied intensively: Any stacked triangu-
lation on n vertices (with a fixed outer face) can be drawn on a particular set of
fs(n) ≤ O(n3/2 log n) points [20]. For outerplanar graphs, it is known that any
set of n points in general position is n-universal [27, 13]. An upper bound of
O(n log n) is known for 2-outerplanar graphs and for simply nested graphs, and
an O(n · polylog(n)) bound is known for graphs of bounded pathwidth [5, 7].



JGAA, 24(3) 247–267 (2020) 249

Concerning the lower bound on fp(n) and fs(n), respectively, the obvious
relation n ≤ fs(n) ≤ fp(n) holds for any n ∈ N. The first non-trivial lower
bound on the size of n-universal sets was also given by de Fraysseix, Pach, and
Pollack [16], who showed a lower bound of fp(n) ≥ n+ (1− o(1))

√
n. Chrobak

and Karloff [15] further improved the lower bound to (1.098 − o(1))n, and the
multiplicative constant was later on improved to 1.235 by Kurowski [23]. In
fact, Kurowski’s lower bound even applies to fs(n).

Cardinal, Hoffmann, and Kusters [12] showed that n-universal sets of size
n exist for every n ≤ 10, whereas for n ≥ 15 no such set exists – not even
for stacked triangulations. Hence fp(n) = fs(n) = n for n ≤ 10 and fp(n) ≥
fs(n) > n for n ≥ 15. Moreover, they found a collection of 7,393 planar graphs
on n = 35 vertices which cannot be simultaneously drawn straight-line on a
common set of 35 points. We call such a collection of graphs a conflict collection.
This was a first big step towards an answer to the question by Brass and others
[9]:

Question 1 ([9]) Is there a conflict collection of size 2?

2 Outline

Our first result is the following theorem, which further improves the lower bound
on fs(n). We present its proof in Section 3.

Theorem 1 It holds that fs(n) ≥ (α−o(1))n, where α = 1.293 . . . is the unique
real-valued solution of the equation αα · (α− 1)1−α = 2.

In Section 4 we present our second result, which is another step towards a
(negative) answer of Question 1 and strengthens the results from [12]. Its proof
is based on exhaustive computer search.

Theorem 2 (Computer-assisted) There is a conflict collection consisting of
49 stacked triangulations on 11 vertices. Furthermore, there is no conflict col-
lection consisting of 36 triangulations on 11 vertices.

Corollary 3 There is no 11-universal set of size 11 – even for stacked trian-
gulations. Hence, fp(11) = fs(11) = 12.

The equality in Corollary 3 is witnessed by an 11-universal sets of 12 points (cf.
Listing 1).

[ ( 2 1 4 , 0 ) , ( 0 , 13 ) , ( 2 , 16 ) , ( 9 , 26 ) , (124 ,12 ) , (133 ,11 ) , ( 148 , 9 )
, ( 213 , 1 ) , ( 211 , 4 ) , ( 210 , 6 ) , (116 ,179) , (122 ,197) ]

Listing 1: An 11-universal set of 12 points.

Last but not least, since all known proofs for lower bounds make use of sepa-
rating triangles, we also started the investigation of 4-connected triangulations.
In Section 5 we present some n-universal sets of size n for 4-connected planar
graphs for all n ≤ 17.

The edge list of the 49 stacked triangulations of the conflict collection can
be found in Section 6.
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3 Proof of Theorem 1

To prove the theorem, we use a refined counting argument based on a construc-
tion of a set of labeled stacked triangulations that was already introduced in
[12]. There it was used to disprove the existence of n-universal sets of n ≥ 15
points for the family of stacked triangulations.

Definition 2 (Labeled Stacked Triangulations, cf. [12, Sect. 3])
For every integer n ≥ 4, we define the family Tn of labeled stacked triangulations
on the set of vertices Vn := {v1, ..., vn} inductively as follows:

• T4 consists only of the complete graph K4 with labels v1, . . . , v4.

• If T is a labeled graph in Tn−1 with n ≥ 5, and vivjvk defines a face of
T , then the graph obtained from T by stacking the new vertex vn to vivjvk
(i.e., connecting it to vi, vj, and vk) is a member of Tn.

It is important to notice that, when speaking of Tn, we distinguish between
elements if they are distinct as labeled graphs, even if their underlying graphs
are isomorphic. The essential ingredient we will need from [12] is the following.

Lemma 1 (cf. [12, Lemmas 1 and 2])

(i) For any n ≥ 4, the family Tn contains exactly 2n−4(n− 3)! labeled stacked
triangulations.

(ii) Let Pn = {p1, . . . , pn} be a set of n ≥ 4 labeled points in the plane. Then
for any bijection π : Vn → Pn, there is at most one T ∈ Tn such that
the embedding of T , which maps each vertex vi to point π(vi), defines a
straight-line-embedding of T .

We need the following simple consequence of the above:

Corollary 4 Let P = {p1, . . . , pm} be a set of m ≥ n ≥ 4 labeled points in the
plane. Then for any injection π : Vn → P , there is at most one T ∈ Tn such
that the embedding of T , which maps each vertex vi to point π(vi), defines a
straight-line-embedding of T .

Proof: Let T1, T2 ∈ Tn be two stacked triangulations such that π describes a
plane straight-line embedding of both. Since π is an injection, this means that π
defines a straight-line embedding of both T1, T2 on the sub-point set Q := π(Vn)
of P of size n. Applying Lemma 1(ii) to the bijection π : Vn → Q and T1, T2,
we deduce T1 = T2. This proves the claim. �

We are now ready to prove Theorem 1.

Proof: [Proof of Theorem 1.] Let n ≥ 4 be arbitrary and m := fs(n) ≥ n.
There exists an n-universal point set P = {p1, . . . , pm} for all stacked trian-
gulations, hence for every T ∈ Tn there exists a straight-line embedding of T
on P , with (injective) vertex-mapping π : Vn → P . By Corollary 4, we know
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that no two stacked triangulations from Tn (each of which has the same vertex
set) yield the same injection π. Consequently, we have |Tn| ≤ |Inj(Vn, P )|. By
Lemma 1(i), we conclude

2n−4(n− 3)! ≤ m!

(m− n)!
,

which means
1

16n(n− 1)(n− 2)
2n ≤

(
m

n

)
=

(
fs(n)

n

)
.

Let β(n) := fs(n)
n . Using the fact that (Stirling-approximation)

(
fs(n)

n

)
∼

√
fs(n)

2πn(fs(n)− n)︸ ︷︷ ︸
≤1

fs(n)fs(n)

nn(fs(n)− n)fs(n)−n
≤
(

β(n)β(n)

(β(n)− 1)β(n)−1

)n
,

we deduce (taking logarithms) that:

(1− o(1))n ≤ log2

(
β(n)β(n)

(β(n)− 1)β(n)−1

)
n⇐⇒ 2− o(1) ≤ β(n)β(n)

(β(n)− 1)β(n)−1
.

Consequently, β(n) ≥ (1− o(1))α, where α is the unique solution to αα

(α−1)α−1 =

2. This proves fs(n) = n · β(n) ≥ (1− o(1))αn, which is the claim. �

4 Proof of Theorem 2 and Corollary 3

In the following, we outline the strategy which we have used to find a conflict
collection of 49 stacked 11-vertex triangulations. We refer the reader who is
mainly interested in verifying our computational results directly to Section 4.5.

One fundamental observation is the following: if an n-universal point set
has collinear points, then by perturbation one can obtain another n-universal
point set in general position, i.e., with no collinear points. Moreover, if two
point sets are combinatorially equivalent, i.e., there is a bijection such that the
corresponding triples of points induce the same orientations, then both sets
allow precisely the same plane straight-line drawings. Hence, in the following
we restrict our considerations to non-degenerated order types, i.e., the set of
equivalence classes of point sets in general position.

4.1 Enumeration of Order Types

The database of all (abstract) order types of up to n = 11 points was developed
by Aurenhammer, Aichholzer, and Krasser [3, 4] (see also Krasser’s dissertation
[22]). For a formal definition of abstract order types, we refer the reader to these
sources. The file for all order types of up to n = 10 points (each represented by
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a point set) is available online, while the file for n = 11 requires almost 100GB
of storage and is available on demand [2]. The algorithm by Aurenhammer et al.
starts with an abstract order type on k−1 points (which only encodes the triple
orientations of a point set), computes its dual pseudoline arrangement, and
inserts a k-th pseudoline in all possible ways. Due to geometrical constraints,
there are in fact abstract order types enumerated which do not have a realization
as a point set. However, since every order type is in fact also an abstract
order type, it is sufficient for our purposes to test all abstract order types –
independent from realizability.

For means of redundancy and to provide a fully checkable and autonomous
proof, we have implemented an alternative algorithm to enumerate all abstract
order types based on the following idea: Given a set of points s1, . . . , sn with
si = (xi, yi) sorted left to right1, and let

χijk := sgn det

 1 1 1
xi xj xk
yi yj yk

 ∈ {−1, 0,+1}

denote the induced triple orientations, then the signotope axioms assert that,
for every 4-tuple si, sj , sk, sl with i < j < k < l, the sequence

χijk, χijl, χikl, χjkl

(index-triples in lexicographic order) changes its sign at most once. For more
information on the signotope axioms we refer to Felsner and Weil [19] (see
also [6]).

Given an abstract order type on n − 1 points, we insert a n-th point in all
possible ways, such that the signotope axioms are preserved. With our C++
implementation, we managed to verify the numbers of abstract order types from
[3, 4, 22]. In fact, the enumeration of all 2,343,203,071 abstract order types of
up to n = 11 points (cf. OEIS/A6247) can be done within about 20 CPU hours.

4.2 Enumeration of Planar Graphs

To enumerate all non-isomorphic maximal planar graphs on 11 vertices (i.e,
triangulations), we have used the plantri graph generator (version 4.5) [10]. We
remark that also the nauty graph generator [24] can be used for the enumeration
because the number of all (not necessarily planar) graphs on 11 vertices is not
too large and the database can be filtered for planar graphs in reasonable time –
negligible compared to the CPU time which we have used for later computations.
For various computations on graphs, such as filtering stacked triangulations or
to produce graphs for this paper, we have used SageMath [33]2.

1in the dual line arrangement the lines are sorted by increasing slope
2We recommend the Sage Reference Manual on Graph Theory [34] and its collection of

excellent examples.

http://oeis.org/A6247
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4.3 Deciding Universality using a SAT Solver

For a given point set S and a planar graph G = (V,E) we model a propositional
formula in conjunctive normal form (CNF) which has a solution if and only if G
can be embedded on S – in fact, the variables encode a straight-line drawing.3

To model the CNF, we have used the variables Mvp to describe whether
vertex v is mapped to point p, and the variables Apq to describe whether the
straight-line segment pq between the two points p and q is “active” in a drawing.

It is not hard to use a CNF to assert that such a vertex-to-point mapping
is bijective. Also it is easy to assert that, if two adjacent vertices u and v are
mapped to points p and q, then the straight-line segment pq is active. For each
pair of crossing straight-line segments pq and rs (dependent on the order type
of the point set) at least one of the two segments is not allowed to be active.

Implementation detail: We have implemented a C++ routine which, given
a point set and a graph as input, creates an instance of the above described
model and then uses the solver MiniSat 2.2.0 [17] to decide whether the graph
admits a straight-line embedding.

4.4 Finding Conflict Collections – A Quantitive Approach

Before we actually tested whether a set of 11 points is 11-universal or not, we
discovered a few necessary criteria for the point set, which can be checked much
more efficiently. These considerations allowed a significant reduction of the total
computation times.

Phase 1: There are various properties that a universal point set has to fulfill:
Property 1: The planar graph depicted in Figure 2 asserts an 11-universal

set S – if one exists – to have a certain structure. If the embedding is as on
the left of Figure 2, then one of the two degree 3 vertices is drawn as extremal
point of S, i.e., lies on the boundary of the convex hull conv(S) of S. After the
removal of this particular point, the remaining 10 points have 4 convex layers of
sizes 3, 3, 3, and 1, respectively. If the embedding is as on the right of Figure 2,
then either one or two points of the blue triangle are drawn as extremal points
of S (recall the triangular convex hull of S). And again, the points inside the
blue triangle and outside the blue triangle have convex layers of sizes 3, 3, 1,
and 3, 1, respectively. As we will see later, the graph from Figure 2 occurs
as subgraph of some stacked triangulations. Hence, even point sets that are
universal for stacked triangulations must have this particular structure.

Property 2: There exists a stacked triangulation on 11 points in which every
face is incident to a degree-3-vertex; see Figure 1. In every embedding of this

3In retrospective, one could also implemented the polynomial time embedding-algorithm
from [26] or [25] to verify the statements for stacked triangulations. However, since decid-
ing embeddability is NP-complete in general [11] (Cabello’s reduction constructs 2-connected
graphs), the SAT based approach currently seems to be the best option to verify the results
for general triangulations.
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Figure 2: The two embeddings of a graph, which forces the point set to have
a certain structure. Each of the vertices of the blue triangle connects to one of
the vertices of the two copies of K4.

graph there is a degree-3-vertex on the outer face. Hence, all inner points lie
inside a triangle spanned by an interior point and two extremal points. In
particular, such a point set must have a triangular convex hull.

Altogether, only 262,386,428 of the 2,343,203,071 abstract order types on 11
points fulfill Properties 1 and 2. (The computation time was about 10 CPU
hours.)

Phase 2: For each of the 262,386,428 abstract order types on 11 points which
fulfill the conditions above, we have tested the embeddability of all maximal
planar graphs on n vertices separately using a SAT-solver based approach. In
fact, as soon as one graph was not embeddable, the remaining graphs did not
need to be checked. To speed up the computations we have used a priority
queue: a graph which does not admit an embedding gets increased priority for
other point sets to be tested first.

To keep the conflict collection as small as possible, we first filtered out all
point sets which do not allow a simultaneous embedding of all planar graphs
on 11 vertices with maximum degree exactly 10. There are 82 maximal planar
graphs on 11 vertices with maximum degree 10 (cf. OEIS/A207), and each of
these graphs is a stacked triangulation. Only 287,871 of the 262,386,428 abstract
order types remained (computation time about 100 CPU days).

At this point one can check with about 10 CPU hours that the remaining
287,871 abstract order types are not universal for stacked triangulation on 11
vertices. Moreover, since some stacked triangulations on 11 vertices (e.g. G12

from Listing 3) contain the graph from Figure 2 as a subgraph, the family of
all 434 stacked triangulations on 11 vertices (cf. OEIS/A27610) is a conflict
collection, and Corollary 3 follows directly.

Phase 3: To find a smaller conflict collection, we tested for each of the 434
stacked triangulations and each of the 287,871 remaining abstract order types,
whether an embedding is possible (additional 35 CPU days). We used this bi-
nary information to formulate an integer program searching for a minimal set of
triangulations, without simultaneous embedding. Using the Gurobi solver (ver-

http://oeis.org/A207
http://oeis.org/A27610
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sion 8.0.0) [21], we managed to find a collection G of 27 stacked triangulations
which cannot be embedded simultaneously; see Listing 3 in Section 6.

Since we asserted in Phases 1 and 2 that

(1) the graph in Figure 2,

(2) a triangulation where every face is incident to a vertex of degree 3, and

(3) all 82 triangulations with maximum degree 10

occur in the conflict collection, this yields a conflict collection of size 111 =
1 + 1 + 82 + 27. In fact, since this subset of 27 stacked triangulations contains
triangulations fulfilling properties (1) and (2) (see, e.g., graphs G12 und G10 in
Listing 3), we indeed have a conflict collection of size 109.

We have also ran the computations for the collection of all 1,249 triangula-
tions (cf. OEIS/A109), and the Gurobi solver showed that any conflict collection
of (arbitrary) 11-vertex triangulations has size at least 26.

Phase 4: Recall that a minimal conflict collection not necessarily needs to
fulfill the properties (1)–(3). Hence we again repeat the strategy from Phase 2,
except that we test for the embeddability of the 27 stacked triangulations from
the collection G obtained in Phase 3 instead of the 82 maximal planar graphs
on 11 vertices with maximum degree 10.

After another 230 days of CPU time, our program had filtered out 2,194
of the 262,386,428 abstract order types (obtained in Phase 1) which allow a
simultaneous embedding of the 27 stacked triangulations from G.

Phase 5: As the reader might already guess, we proceed as in Phase 3: we
tested for each of the 434 stacked triangulations and each of the 2,194 order
types from Phase 4, whether an embedding is possible (only some CPU hours).
Using the Gurobi solver, we managed to find a collection H of 22 stacked trian-
gulations, which cannot be simultaneously embedded on those order types; see
Listing 4 in Section 6.

Together with the 27 stacked triangulations from G we obtain a conflict
collection of size 49, and the first part of Theorem 2 follows.

Phase 6: To further improve the lower bound, we have repeated our com-
putations for the union of the two sets of point sets obtained in Phase 3 and
Phase 5, respectively. Using Gurobi, we obtained that

• any conflict collection of stacked triangulations has size at least 40, and

• any conflict collection of (arbitrary) triangulations has size at least 37.

For means of redundancy, we have verified all lower bounds obtained by
Gurobi also using CPLEX (version 12.8.0.0) [1], which performed similar to
Gurobi.

This completes the proof of the second part of Theorem 2.

http://oeis.org/A109
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4.5 How to Verify our Results?

To verify the computational results which are essential for the proof of the first
part of Theorem 2, one can enumerate all order types on 11 points and test the
conflict collection of 49 triangulations. Starting with the unique order type on 3
points, it takes about 1 CPU day to enumerate all order types on 11 points. By
falsifying simultaneous embeddability of the 49 graphs (this computation takes
about 200 CPU days, but can be run parallelized), the first part of Theorem 2
is then verified.

For the second part of the Theorem 2, one can filter the order types, which
allow a simultaneous embedding of the triangulations from Phase 2 and 4, and
then – using CPLEX or Gurobi – compute the minimum size of a conflict-
ing collection among all 11-vertex triangulations and 11-vertex stacked trian-
gulations, respectively. To save some computation time, we provide the fil-
tered list in the files data/triangulations/n11_after_phase2.bin.zip and
n11_after_phase4.bin.zip. The list of all (stacked) triangulations is provided
in the files n11_all_triangulations.txt and
n11_all_stacked_triangulations.txt.

A more detailed description, the source codes of our programs, and relevant
data are available as additional material to this article and on the companion
website [28].

5 Universal Sets for 4-Connected Graphs

For n ≤ 10, examples of n-universal sets of n points for planar n-vertex graphs
were already given in [12]. To provide n-universal sets for 4-connected planar
graphs for n = 11, . . . , 17, we slightly adapted our framework. Again, we enu-
merated 4-connected planar triangulations using the plantri graph generator,
and using our C++ implementation, tested for universality. Our idea to find
the proposed point sets for n = 11, . . . , 17 was to start with an (n−1)-universal
set of n−1 points and insert an n-th point in all possible ways (cf. Section 4.1).
The abstract order types obtained in this way – if they turned out to be uni-
versal – were then realized as point sets using our framework pyotlib4. The
obtained sets are given in Listing 2.

[ ( 6 1 2 , 6 6 6 ) , (754 ,635) , (415 ,709) , (884 ,597) , (596 ,695) , (890 ,977)
, (384 ,716) , (834 ,609) , (424 ,707) , (974 , 10) , (890 ,962)
, (306 ,805) , (301 ,810) , ( 4 , 736 ) , ( 0 , 735 ) , ( 975 , 6 ) , ( 980 , 0 ) ]

Listing 2: A set {p1, . . . , p17} of 17 points such that {p1, . . . , pk} is universal for
4-connected planar k-vertex graphs for all k ∈ {11, . . . , 17}.

4The “python order type library” was initiated during the Bachelor’s studies of the first
author [29] and provides many features to work with (abstract) order types such as local search
techniques, realization or proving non-realizability of abstract order types, coordinate mini-
mization and “beautification” for nicer visualizations. For more information, please consult
the author.



JGAA, 24(3) 247–267 (2020) 257

The numbers of 4-connected triangulations for n = 11, . . . , 20 are 25; 87; 313;
1,357; 6,244; 30,926; 158,428; 836,749; 4,504,607; 24,649,284 (cf. OEIS/A7021).
Hence, even if a universal point set is known, it is getting more and more time-
consuming to verify n-universality as n gets larger (at least using our SAT solver
approach).

6 The Conflict Collection

G 1 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 5 ) , ( 2 , 6 ) , ( 2 , 7 ) , ( 2 , 9 )
, ( 2 , 10 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 10 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 10 ) , ( 6 , 7 )
, ( 7 , 8 ) , ( 7 , 9 ) ]

G 2 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 6 ) , ( 2 , 7 ) , ( 2 , 9 ) , ( 3 , 4 )
, ( 3 , 5 ) , ( 3 , 6 ) , ( 3 , 10 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 6 , 10 )
, ( 7 , 8 ) , ( 7 , 9 ) ]

G 3 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 2 , 3 ) , ( 2 , 6 ) , ( 2 , 7 ) , ( 2 , 9 ) , ( 2 , 10 )
, ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 3 , 10 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 6 , 9 )
, ( 6 , 10 ) , ( 7 , 8 ) , ( 7 , 9 ) ]

G 4 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 1 , 2 ) , ( 1 , 7 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 6 ) , ( 2 , 7 ) , ( 2 , 10 )
, ( 3 , 4 ) , ( 3 , 6 ) , ( 4 , 5 ) , ( 4 , 6 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 6 , 10 ) , ( 7 , 8 )
, ( 7 , 9 ) , ( 7 , 10 ) , ( 8 , 9 ) ]

G 5 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 1 , 10 ) , ( 2 , 3 ) , ( 3 , 4 )
, ( 4 , 5 ) , ( 4 , 8 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 5 , 8 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 7 , 8 )
, ( 8 , 9 ) , ( 8 , 10 ) , ( 9 , 10 ) ]

G 6 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 8 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 2 , 8 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 )
, ( 5 , 8 ) , ( 5 , 9 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 6 , 9 ) , ( 6 , 10 ) , ( 7 , 8 ) , ( 8 , 9 )
, ( 8 , 10 ) , ( 9 , 10 ) ]

G 7 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 5 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 1 , 10 ) , ( 2 , 3 )
, ( 2 , 4 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 5 , 10 ) , ( 6 , 7 )
, ( 7 , 8 ) , ( 7 , 9 ) , ( 8 , 9 ) ]

G 8 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 5 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 3 , 4 )
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, ( 4 , 5 ) , ( 4 , 9 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 5 , 9 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 6 , 10 )
, ( 7 , 8 ) , ( 7 , 10 ) ]

G 9 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 5 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 9 ) , ( 3 , 4 )
, ( 3 , 5 ) , ( 3 , 9 ) , ( 3 , 10 ) , ( 4 , 5 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 5 , 10 )
, ( 6 , 7 ) , ( 7 , 8 ) ]

G 10 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 5 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 1 , 10 ) , ( 2 , 3 )
, ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 10 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 5 , 9 ) , ( 5 , 10 )
, ( 6 , 7 ) , ( 7 , 8 ) , ( 7 , 9 ) ]

G 11 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 3 , 4 ) , ( 4 , 5 )
, ( 4 , 6 ) , ( 4 , 7 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 7 , 8 ) , ( 7 , 9 ) , ( 7 , 10 ) , ( 8 , 9 )
, ( 8 , 10 ) , ( 9 , 10 ) ]

G 12 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 5 ) , ( 1 , 6 ) , ( 1 , 8 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 9 ) , ( 3 , 4 )
, ( 3 , 9 ) , ( 4 , 5 ) , ( 4 , 9 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 6 , 10 ) , ( 7 , 8 )
, ( 7 , 10 ) , ( 8 , 10 ) ]

G 13 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 5 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 9 )
, ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 8 ) , ( 5 , 9 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 6 , 10 )
, ( 7 , 8 ) , ( 8 , 10 ) ]

G 14 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 5 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 4 )
, ( 2 , 10 ) , ( 3 , 4 ) , ( 3 , 10 ) , ( 4 , 5 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 5 , 9 )
, ( 6 , 7 ) , ( 7 , 8 ) , ( 7 , 9 ) ]

G 15 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 1 , 2 )
, ( 1 , 5 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 )
, ( 5 , 7 ) , ( 5 , 8 ) , ( 5 , 9 ) , ( 6 , 7 ) , ( 7 , 8 ) , ( 7 , 9 ) , ( 7 , 10 ) , ( 8 , 9 )
, ( 8 , 10 ) , ( 9 , 10 ) ]

G 16 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 1 , 2 ) , ( 1 , 6 )
, ( 2 , 3 ) , ( 2 , 6 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 3 , 7 ) , ( 4 , 5 ) , ( 4 , 7 ) , ( 4 , 8 )
, ( 4 , 9 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 5 , 8 ) , ( 5 , 9 ) , ( 5 , 10 ) , ( 7 , 8 )
, ( 8 , 9 ) , ( 9 , 10 ) ]

G 17 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 5 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 3 , 4 ) , ( 3 , 5 )
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, ( 3 , 10 ) , ( 4 , 5 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 7 , 8 )
, ( 7 , 9 ) , ( 8 , 9 ) ]

G 18 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 1 , 2 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 8 ) , ( 3 , 4 ) , ( 3 , 8 ) , ( 4 , 5 )
, ( 4 , 8 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 5 , 8 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 7 , 8 ) , ( 7 , 10 )
, ( 8 , 9 ) , ( 8 , 10 ) ]

G 19 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 1 , 2 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 2 , 8 )
, ( 2 , 10 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 5 , 8 ) , ( 5 , 10 ) , ( 6 , 7 )
, ( 7 , 8 ) , ( 8 , 9 ) , ( 8 , 10 ) ]

G 20 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 1 , 2 )
, ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 2 , 3 ) , ( 2 , 8 ) , ( 2 , 9 ) , ( 3 , 4 ) , ( 3 , 8 )
, ( 3 , 9 ) , ( 3 , 10 ) , ( 4 , 5 ) , ( 4 , 7 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 6 , 7 ) , ( 8 , 9 )
, ( 8 , 10 ) , ( 9 , 10 ) ]

G 21 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 1 , 2 ) , ( 1 , 6 )
, ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 6 ) , ( 2 , 7 ) , ( 2 , 9 ) , ( 2 , 10 )
, ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 7 , 8 ) , ( 7 , 9 )
, ( 7 , 10 ) , ( 8 , 9 ) , ( 9 , 10 ) ]

G 22 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 6 ) , ( 1 , 8 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 2 , 6 ) , ( 2 , 9 )
, ( 2 , 10 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 6 , 9 )
, ( 6 , 10 ) , ( 7 , 8 ) , ( 9 , 10 ) ]

G 23 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 8 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 2 , 8 ) , ( 2 , 9 ) , ( 2 , 10 )
, ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 8 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 7 , 8 )
, ( 8 , 9 ) , ( 8 , 10 ) , ( 9 , 10 ) ]

G 24 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 1 , 2 ) , ( 1 , 6 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 1 , 10 ) , ( 2 , 3 ) , ( 2 , 4 )
, ( 2 , 6 ) , ( 2 , 10 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 4 , 6 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 6 , 8 )
, ( 6 , 10 ) , ( 7 , 8 ) , ( 8 , 9 ) ]

G 25 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 ) , ( 2 , 8 ) , ( 2 , 9 )
, ( 2 , 10 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 8 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 6 , 8 )
, ( 7 , 8 ) , ( 8 , 9 ) , ( 8 , 10 ) ]

G 26 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 4 , 6 )
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, ( 4 , 7 ) , ( 4 , 9 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 7 , 8 ) , ( 7 , 9 ) , ( 7 , 10 )
, ( 8 , 9 ) , ( 9 , 10 ) ]

G 27 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 4 , 6 )
, ( 4 , 7 ) , ( 4 , 8 ) , ( 4 , 9 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 7 , 8 ) , ( 8 , 9 )
, ( 8 , 10 ) , ( 9 , 10 ) ]

Listing 3: Edge-lists of the 27 stacked triangulations from collection G obtained
in Phase 3.

H 1 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 1 , 2 ) , ( 1 , 6 ) , ( 1 , 9 ) , ( 1 , 10 ) , ( 2 , 3 ) , ( 2 , 6 ) , ( 2 , 10 )
, ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 6 , 9 ) , ( 6 , 10 )
, ( 7 , 8 ) , ( 7 , 9 ) , ( 8 , 9 ) ]

H 2 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 1 , 2 )
, ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 5 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 2 , 3 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 )
, ( 5 , 7 ) , ( 5 , 8 ) , ( 5 , 9 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 6 , 10 ) , ( 7 , 8 ) , ( 7 , 9 )
, ( 7 , 10 ) , ( 8 , 9 ) ]

H 3 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 8 ) , ( 1 , 10 ) , ( 2 , 3 ) , ( 3 , 4 )
, ( 3 , 5 ) , ( 3 , 8 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 8 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 7 , 8 ) , ( 8 , 9 )
, ( 8 , 10 ) , ( 9 , 10 ) ]

H 4 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 10 ) , ( 2 , 3 ) , ( 3 , 4 )
, ( 4 , 5 ) , ( 4 , 7 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 6 , 7 ) , ( 7 , 8 ) , ( 7 , 9 )
, ( 7 , 10 ) , ( 8 , 9 ) , ( 9 , 10 ) ]

H 5 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 6 ) , ( 1 , 7 ) , ( 1 , 9 ) , ( 1 , 10 ) , ( 2 , 3 )
, ( 2 , 4 ) , ( 2 , 6 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 4 , 6 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 7 , 8 ) , ( 7 , 9 )
, ( 8 , 9 ) , ( 9 , 10 ) ]

H 6 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 9 ) , ( 1 , 10 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 3 , 4 )
, ( 4 , 5 ) , ( 4 , 6 ) , ( 4 , 7 ) , ( 4 , 9 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 7 , 8 )
, ( 7 , 9 ) , ( 8 , 9 ) , ( 9 , 10 ) ]

H 7 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 6 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 10 ) , ( 2 , 3 )
, ( 2 , 6 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 7 , 8 ) , ( 8 , 9 )
, ( 8 , 10 ) , ( 9 , 10 ) ]
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H 8 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 10 ) , ( 2 , 3 ) , ( 3 , 4 ) , ( 3 , 5 )
, ( 3 , 6 ) , ( 3 , 7 ) , ( 3 , 8 ) , ( 3 , 9 ) , ( 3 , 10 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 6 , 7 )
, ( 7 , 8 ) , ( 8 , 9 ) , ( 9 , 10 ) ]

H 9 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 5 ) , ( 1 , 6 ) , ( 1 , 10 ) , ( 2 , 3 ) , ( 2 , 4 )
, ( 2 , 5 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 6 , 9 ) , ( 6 , 10 ) , ( 7 , 8 )
, ( 7 , 9 ) , ( 8 , 9 ) , ( 9 , 10 ) ]

H 10 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 9 ) , ( 1 , 10 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 )
, ( 2 , 8 ) , ( 2 , 9 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 8 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 7 , 8 )
, ( 8 , 9 ) , ( 9 , 10 ) ]

H 11 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 5 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 1 , 10 ) , ( 2 , 3 )
, ( 2 , 4 ) , ( 2 , 5 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 8 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 7 , 8 )
, ( 8 , 9 ) , ( 9 , 10 ) ]

H 12 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 5 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 4 )
, ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 6 , 10 ) , ( 7 , 8 )
, ( 7 , 10 ) , ( 8 , 9 ) ]

H 13 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 2 , 3 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 4 , 6 )
, ( 4 , 7 ) , ( 4 , 9 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 6 , 9 ) , ( 6 , 10 )
, ( 7 , 8 ) , ( 7 , 9 ) ]

H 14 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 5 ) , ( 1 , 7 ) , ( 1 , 9 ) , ( 1 , 10 )
, ( 2 , 3 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 6 , 7 ) , ( 7 , 8 ) , ( 7 , 9 )
, ( 8 , 9 ) , ( 9 , 10 ) ]

H 15 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 10 ) , ( 2 , 3 ) , ( 2 , 10 ) , ( 3 , 4 ) , ( 3 , 5 )
, ( 3 , 10 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 7 ) , ( 5 , 8 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 7 , 8 )
, ( 8 , 9 ) , ( 8 , 10 ) , ( 9 , 10 ) ]

H 16 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 10 ) , ( 2 , 3 ) , ( 2 , 10 ) , ( 3 , 4 ) , ( 3 , 6 )
, ( 3 , 10 ) , ( 4 , 5 ) , ( 4 , 6 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 6 , 10 ) , ( 7 , 8 )
, ( 8 , 9 ) , ( 8 , 10 ) , ( 9 , 10 ) ]
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H 17 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 4 ) , ( 1 , 5 ) , ( 1 , 6 ) , ( 1 , 10 )
, ( 2 , 3 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 6 , 9 ) , ( 6 , 10 )
, ( 7 , 8 ) , ( 8 , 9 ) , ( 9 , 10 ) ]

H 18 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 3 ) , ( 1 , 6 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 3 , 4 ) , ( 3 , 5 ) , ( 3 , 6 )
, ( 3 , 9 ) , ( 3 , 10 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 5 , 10 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 6 , 9 )
, ( 6 , 10 ) , ( 7 , 8 ) ]

H 19 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 5 ) , ( 1 , 6 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 )
, ( 3 , 4 ) , ( 4 , 5 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 7 , 8 ) , ( 7 , 9 ) , ( 7 , 10 ) , ( 8 , 9 )
, ( 8 , 10 ) , ( 9 , 10 ) ]

H 20 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 0 , 9 ) , ( 0 , 10 ) , ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 6 ) , ( 1 , 8 ) , ( 1 , 10 ) , ( 2 , 3 )
, ( 2 , 4 ) , ( 3 , 4 ) , ( 4 , 5 ) , ( 4 , 6 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 6 , 8 ) , ( 7 , 8 ) , ( 8 , 9 )
, ( 8 , 10 ) , ( 9 , 10 ) ]

H 21 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 5 ) , ( 1 , 6 ) , ( 1 , 8 ) , ( 1 , 9 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 5 )
, ( 2 , 10 ) , ( 3 , 4 ) , ( 3 , 10 ) , ( 4 , 5 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 6 , 7 ) , ( 6 , 8 )
, ( 6 , 9 ) , ( 7 , 8 ) , ( 8 , 9 ) ]

H 22 = [ ( 0 , 1 ) , ( 0 , 2 ) , ( 0 , 3 ) , ( 0 , 4 ) , ( 0 , 5 ) , ( 0 , 6 ) , ( 0 , 7 ) , ( 0 , 8 )
, ( 1 , 2 ) , ( 1 , 4 ) , ( 1 , 5 ) , ( 1 , 7 ) , ( 1 , 8 ) , ( 2 , 3 ) , ( 2 , 4 ) , ( 2 , 9 )
, ( 2 , 10 ) , ( 3 , 4 ) , ( 3 , 10 ) , ( 4 , 5 ) , ( 4 , 9 ) , ( 4 , 10 ) , ( 5 , 6 ) , ( 5 , 7 )
, ( 6 , 7 ) , ( 7 , 8 ) , ( 9 , 10 ) ]

Listing 4: Edge-lists of the 22 stacked triangulations from collection H obtained
in Phase 5.
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7 Discussion

In Section 3, we provided an improved lower bound for fp(n) and fs(n). How-
ever, the best known general upper bounds remain far from linear.

In Section 4, we have applied the ideas from Phases 2 and 3 twice (cf.
Phases 4 and 5) to reduce the size of a conflict collection. One could further
proceed with this strategy to find even smaller conflict collections (if such exist).
Also one could simply test whether all elements from the conflict collection are
indeed necessary, or whether certain elements can be removed. We remark that,
to compute a minimal conflict collection for n = 11, one could theoretically check
which graphs admit an embedding on which point set and then find a minimal
set cover as described in Phase 3 (Section 4). In practice, however, formulating
such a minimal set cover instance (as integer program) is not reasonable be-
cause testing the embeddability of every graph in every point set would be an
extremely time-consuming task. (Recall that we used a priority queue to speed
up our computation, so only a few pairs were actually tested. Also recall that,
to generate the set cover instances, we only looked at a comparatively small
number of order types.) And even if such an instance was formulated, due to
its size, the IP/set cover might not be solvable optimally in reasonable time.

Besides the computations for n = 11 points, we also adapted our program
to find all n-universal order types on n points for every n ≤ 10, and hence could
verify the results from [12, Table 1]. To be precise, we found 5,956 9-universal
abstract order types on n = 9 points, whereas only 5,955 are realizable as point
sets. It is worth noting that there is exactly one non-realizable abstract order
type on 9 points in the projective plane, which is dual to the simple non-Pappus
arrangement, and that all abstract order types on n ≤ 8 points are realizable.
Besides the already known 2,072 realizable order types on 10 points, no further
non-realizable 10-universal abstract order types were found. For more details
on realizability see for example [22] or [18].

Unfortunately, we do not have an argument for subsets/supersets of n-
universal point sets, and thus the question for n = 12, 13, 14 remains open.
However, based on computational evidence (see also [12, Table 1]), we strongly
conjecture that no n-universal set of n points exists for n ≥ 11.

As mentioned in the introduction of this paper, various graph classes have
been studied for this problem. Even though our contribution on 4-connected
planar graphs in Section 5 is rather small, it gives some evidence that com-
parably fewer points are needed to embed 4-connected planar graphs. In fact,
we would not be surprised if n-universal sets of n points exist for 4-connected
planar graphs.

Last but not least, we want to mention that universal sets indeed must have
a very special structure: It is known that for embedding nested triangulations on
a grid, at least Ω(n)×Ω(n) points are required. Quite recently, this bound was
generalized to “random” point sets (points chosen uniformly and independently
at random from the unit-square) [14]. Therefore the probabilistic method in its
basic form will not succeed in proving subquadratic upper bounds on fp(n).
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7.1 The Certifying SAT Model and the Bug

When we started investigating universal point sets, we first formulated a SAT
instance to find an abstract order type on n points which is n-universal (cf.
sat_test.sage). For n ≤ 10, the solver almost instantly found an n-universal
set of n points, however, for n = 11 the program did not terminate. Therefore,
we had to come up with a slightly more complicated procedure involving some
C++ code (cf. Section 4.4).

When preparing this full version, we modified the original SAT instance to
only test the “conflict set” of 23 stacked triangulations from earlier versions of
this paper [30, 31], so that we have an independent computer-proof verifying
the correctness. However, the SAT solver almost instantly found an abstract
order type which was universal for that “conflict set”.

We located and fixed a small bug in the C++ source, and after re-running
all computations, we ended up with the conflict set of 49 stacked triangulations.
An independent SAT model to verify this result provides good evidence, as it
did not manage to produce a solution to the SAT instance within a reasonable
amount of time (we had the program running for several weeks).



JGAA, 24(3) 247–267 (2020) 265

References

[1] IBM ILOG CPLEX Optimization Studio, 2018.
http://www.ibm.com/products/ilog-cplex-optimization-studio/.

[2] O. Aichholzer. Enumerating Order Types for Small Point Sets with
Applications.
http://www.ist.tugraz.at/aichholzer/research/rp/

triangulations/ordertypes/.

[3] O. Aichholzer, F. Aurenhammer, and H. Krasser. Enumerating Order
Types for Small Point Sets with Applications. Order, 19(3):265–281, 2002.
doi:10.1023/A:1021231927255.

[4] O. Aichholzer and H. Krasser. Abstract Order Type Extension and New
Results on the Rectilinear Crossing Number. Computational Geometry:
Theory and Applications, 36(1):2–15, 2006. doi:10.1016/j.comgeo.2005.
07.005.

[5] P. Angelini, T. Bruckdorfer, G. Di Battista, M. Kaufmann, T. Mchedlidze,
V. Roselli, and C. Squarcella. Small universal point sets for k-outerplanar
graphs. Discrete & Computational Geometry, pages 1–41, 2018. doi:

10.1007/s00454-018-0009-x.
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[20] R. Fulek and C. D. Tóth. Universal point sets for planar three-trees. Journal
of Discrete Algorithms, 30:101–112, 2015. doi:10.1016/j.jda.2014.12.

005.

[21] Gurobi Optimization, LLC. Gurobi Optimizer, 2018.
http://www.gurobi.com.

[22] H. Krasser. Order Types of Point Sets in the Plane. PhD thesis, Institute
for Theoretical Computer Science, Graz University of Technology, Austria,
2003.

[23] M. Kurowski. A 1.235n lower bound on the number of points needed to
draw all n-vertex planar graphs. Information Processing Letters, 92(2):95–
98, 2004. doi:10.1016/j.ipl.2004.06.009.

[24] B. D. McKay and A. Piperno. Practical graph isomorphism, II. Journal of
Symbolic Computation, 60:94–112, 2014. doi:10.1016/j.jsc.2013.09.

003.

https://doi.org/10.7155/jgaa.00374
http://www.cccg.ca/proceedings/1996/cccg1996_0052.pdf
http://arXiv.org/abs/1908.07097
https://doi.org/10.1145/74074.74088
https://doi.org/10.1145/74074.74088
https://doi.org/10.1007/BF02122694
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1201/9781315119601
https://doi.org/10.1016/S0166-218X(00)00232-8
https://doi.org/10.1016/S0166-218X(00)00232-8
https://doi.org/10.1016/j.jda.2014.12.005
https://doi.org/10.1016/j.jda.2014.12.005
http://www.gurobi.com
https://doi.org/10.1016/j.ipl.2004.06.009
https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/10.1016/j.jsc.2013.09.003


JGAA, 24(3) 247–267 (2020) 267

[25] T. M. Moosa and M. Sohel Rahman. Improved algorithms for the point-set
embeddability problem for plane 3-trees. In Computing and Combinatorics,
pages 204–212, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-22685-4_18.

[26] R. I. Nishat, D. Mondal, and M. S. Rahman. Point-set embeddings of plane
3-trees. In Graph Drawing, volume 6502 of LNCS, pages 317–328. Springer,
2011. doi:10.1007/978-3-642-18469-7_29.

[27] J. Pach, P. Gritzmann, B. Mohar, and R. Pollack. Embedding a planar
triangulation with vertices at specified points. American Mathematical
Monthly, 98:165–166, 1991. doi:10.2307/2323956.

[28] M. Scheucher. Webpage: Source Codes and Data for Universal Point Sets.
http://page.math.tu-berlin.de/~scheuch/supplemental/

universal_sets.

[29] M. Scheucher. On Order Types, Projective Classes, and Realizations.
Bachelor’s thesis, Graz University of Technology, Austria, 2014.
http://www.math.tu-berlin.de/~scheuch/publ/bachelors_thesis_

tm_2014.pdf.

[30] M. Scheucher, H. Schrezenmaier, and R. Steiner. A Note On Univer-
sal Point Sets for Planar Graphs. In Proc. 35th European Workshop
on Computational Geometry (EuroCG’19), pages 21:1–21:9, 2019. URL:
http://www.eurocg2019.uu.nl/papers/21.pdf.

[31] M. Scheucher, H. Schrezenmaier, and R. Steiner. A Note On Univer-
sal Point Sets for Planar Graphs. In Graph Drawing and Network Vi-
sualization, volume 11904 of LNCS, pages 350–362. Springer, 2019. doi:

10.1007/978-3-030-35802-0_27.

[32] W. Schnyder. Embedding Planar Graphs on the Grid. In Proceedings of
the First Annual ACM-SIAM Symposium on Discrete Algorithms, pages
138–148. Society for Industrial and Applied Mathematics, 1990.

[33] W. A. Stein et al. Sage Mathematics Software (Version 8.1). The Sage
Development Team, 2018. http://www.sagemath.org.

[34] W. A. Stein et al. Sage Reference Manual: Graph Theory (Release 8.1),
2018.
http://doc.sagemath.org/pdf/en/reference/number_fields/

number_fields.pdf.

https://doi.org/10.1007/978-3-642-22685-4_18
https://doi.org/10.1007/978-3-642-22685-4_18
https://doi.org/10.1007/978-3-642-18469-7_29
https://doi.org/10.2307/2323956
http://page.math.tu-berlin.de/~scheuch/supplemental/universal_sets
http://page.math.tu-berlin.de/~scheuch/supplemental/universal_sets
http://www.math.tu-berlin.de/~scheuch/publ/bachelors_thesis_tm_2014.pdf
http://www.math.tu-berlin.de/~scheuch/publ/bachelors_thesis_tm_2014.pdf
http://www.eurocg2019.uu.nl/papers/21.pdf
https://doi.org/10.1007/978-3-030-35802-0_27
https://doi.org/10.1007/978-3-030-35802-0_27
http://www.sagemath.org
http://doc.sagemath.org/pdf/en/reference/number_fields/number_fields.pdf
http://doc.sagemath.org/pdf/en/reference/number_fields/number_fields.pdf

	Introduction
	Outline
	Proof of Theorem 1
	Proof of Theorem 2 and Corollary 3
	Enumeration of Order Types
	Enumeration of Planar Graphs
	Deciding Universality using a SAT Solver
	Finding Conflict Collections – A Quantitive Approach
	How to Verify our Results?

	Universal Sets for 4-Connected Graphs
	The Conflict Collection
	Discussion
	The Certifying SAT Model and the Bug


