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Abstract

In the context of graph layout, many algorithms have been designed to
remove node overlapping, and many quality criteria and associated met-
rics have been proposed to evaluate those algorithms. Unfortunately, a
complete comparison of the algorithms based on some metrics that eval-
uate their quality has never been provided and it is thus difficult for a
visualisation designer to select the algorithm that best suits their needs.
In this paper, we review 22 metrics available in the literature, classify
them according to the quality criteria they try to capture, and select a
representative one for each class. Based on the selected metrics,we com-
pare 9 node overlap removal algorithms. Our experiment involves 854
synthetic and real-world graphs. Finally, we propose a JavaScript library
containing both the algorithms and the criteria, and we provide a Web
platform, AGORA, in which one can upload graphs, apply the algorithms
and compare/download the results.
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1 Introduction

Graph-drawing algorithms are good at creating rich expressive graph layouts
but often consider nodes as points with no dimensions. After changing the size
of nodes in the case of annotation or evolving weighted graphs, it causes node
overlap which hides information. Post-processing algorithms, named layout ad-
justment [21], have been proposed to remove node overlap.

The objective of these algorithms is, given an initial positioning of the nodes
and a size for each one, to provide a new embedding so that there are no
overlapping nodes any more. A classical zoom-in function maintaining the sizes
of the nodes (i.e., uniform scaling) provides such an embedding, but it expands
the visualisation, resulting in large areas without any objects. Therefore, a node
overlap removal algorithm must take into account the area of the drawing, and
try to minimise it. Positioning the nodes evenly on a grid meets this objective
but will result in the loss of the user’s mental picture1 of the original embedding.
Thus, it is also important to minimise the change on the layout.

Since a preliminary work in 1995 [21], many algorithms have been designed
to reach these goals, and many quality criteria have been proposed to evaluate
them. Unfortunately, a complete comparison of the algorithms based on the
different criteria has never been provided and it is thus difficult for a visualisation
designer to select the one that best suits his needs.

In this paper, our contribution comes in three forms: (1) We propose a clas-
sification of 22 quality metrics, grouping them according to the quality criterion
they try to capture. We also discuss their relevance and we select a represen-
tative one for each class. (2) We compare state-of-the-art node overlap removal
approaches in regards to the previously selected metrics. Experiments involve
854 graphs, including synthetic ones (random, tree, scale-free, small-world) and
real-world ones. (3) We present a JavaScript library2, that contains all the al-
gorithms described in this paper, and a Web platform, AGORA3 (Automatic
Graph Overlap Removal Algorithms), in which one can upload a set of graphs,
apply the node overlap removal algorithms and download the results and the
values of the quality criteria4.

The paper is organised as follows: after a brief reminder in Section 2 of the
definitions and the notations used in this paper, we present and discuss the
quality criteria and the metrics in Section 3. Then we compare the algorithms
in Section 4. We discuss threats of validity and future research directions in
Section 5. Finally we describe the Web platform in Section 6 and we conclude
in Section 7.

1An interesting discussion about the concept of mental map preservation is available in [1].
2https://github.com/agorajs/agorajs.github.io (accessed: 2020-03)
3https://agorajs.github.io/ (accessed: 2020-03)
4A preliminary version of this work has been published in the proceedings of the Symposium

on Graph Drawing and Network Visualisation 2019 [3]. This new version includes further
details on some criteria, a new node overlap removal algorithm (Diamond [20]), a more detailed
analysis of the results, a discussion on the threats to validity and the directions for future work,
the library and the Web platform.

https://github.com/agorajs/agorajs.github.io
https://agorajs.github.io/
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2 Preliminaries

In this paper, we use the following definitions and notations.
G = (V,E) denotes a graph where V is a set of nodes and E a set of edges.

The number of nodes |V | is denoted by n and the number of edges |E| by m.
We consider each node as a rectangle. Thus, for a node v ∈ V , its width and its
height are denoted by the couple (wv, hv) which is not changed by the layout
adjustment.

The initial embedding is defined as an injection EG: V → R2 such that
∀v ∈ V , EG(v) = (xv, yv) where (xv, yv) are the coordinates of the center of
the node v. The overlapping-free embedding is denoted by E ′G. To simplify
notations, we denote v = (xv, yv) instead of EG(v), and v′ = (x′v, y

′
v) instead of

E ′G(v). Remark that two nodes (u, v) ∈ V 2 are overlapping when:

|xv − xu| <
wv + wu

2
and |yv − yu| <

hv + hu
2

The bounding box bb of an embedding EG is defined as the smallest rectangle
containing all the nodes of G; wbb (resp. hbb) denotes the width (resp. the
height) of the initial embedding, w′bb (resp. h′bb) denotes the width (resp. the
height) of the overlapping-free one. They are determined as follows:

wbb =

∣∣∣∣max
v∈V

(
xv +

wv
2

)
−min
u∈V

(
xu −

wu
2

)∣∣∣∣ (1)

hbb =

∣∣∣∣max
v∈V

(
yv +

hv
2

)
−min
u∈V

(
yu −

hu
2

)∣∣∣∣ (2)

The position of the center of the bounding box is denoted by cbb = (xbb, ybb)
in the initial embedding, and c′bb = (x′bb, y

′
bb) in the overlapping-free embedding.

The convex hull of an embedding EG is defined as the smallest convex region
containing all the nodes of G. Note that it is computed by using the 4 corners of
the nodes, and not only their center, in a way that the rectangles representing
the nodes are fully included into it. In the following, ch denotes the convex hull
of the original embedding, ch′ the convex hull of the free-overlapping one, cch
the center of mass of ch, c′ch the center of mass of ch′.

3 Quality criteria

Many criteria have been proposed in the literature to evaluate the quality of the
embeddings resulting from adjustment algorithms. Unfortunately, the experi-
ments provided by the authors of the different approaches are not always based
on the same metrics. In order to provide a uniform protocol of experiment and
a complete comparison of the algorithms, we need to review the quality criteria
and the metrics used to evaluate them. We also need to select a representative
metric for each criterion.



686 Chen et al. Node Overlap Removal Algorithms

We identified 5 classes of metrics: Orthogonal Ordering preservation (oo),
Spread minimisation (sp), Global Shape preservation (gs), Node Movement min-
imisation (nm) and Edge Length preservation (el). Each of them depicts a qual-
ity criterion. Table 1 shows the metrics assigned to the classes. The formulas
are given in the discussion below. The abbreviations of the classes are used as
prefix for the metrics.

The following subsections contain the metrics of a specific class. In each of
them, we select one representative metric, based on the corresponding quality
criterion and the properties that the metrics aim at capturing. Our discussion
also sometimes involves the coefficient of correlation of two metrics run following
the protocol described in the comparison section, Section 4.

3.1 Orthogonal Ordering preservation

The orthogonal ordering class groups the metrics which try to quantify how
much an adjustment algorithm preserves the initial orthogonal ordering, i.e.,
the following conditions: 

xu < xv ⇔ x′u < x′v
yu < yv ⇔ y′u < y′v
xu = xv ⇔ x′u = x′v
yu = yv ⇔ y′u = y′v

The first metric of this class introduced in [21], called here oo o, is equal
to 1 if the overlapping-free graph embedding preserves the initial orthogonal
ordering, 0 otherwise. Also, if only one couple of nodes does not satisfy those
conditions, the value of oo o is the same as when many ones do not satisfy it.

To overcome this issue, Huang et al. [16] proposed a metric based on the
Kendall’s Tau distance (oo kt). For each couple of nodes, they first compute
an inversion number inv(u, v) corresponding to 0 if the orthogonal ordering
is preserved between them, 1 otherwise. The metric is then defined as the
normalised sum of the inversion numbers:

oo kt =

∑
u6=v

inv(u, v)

n(n− 1)

Strobelt et al. [26] introduced the number of inversions:

oo ni =
∑

(u,v)∈V 2

xu>xv

{
1 if x′u < x′v
0 otherwise

+
∑

(u,v)∈V 2

yu>yv

{
1 if y′u < y′v
0 otherwise



JGAA, 24(4) 683–706 (2020) 687

Table 1: List of metrics classified by the quality criterion they try to capture:
selected metrics appear in bold italics. The abbreviations are based on some
initials of the names, e.g. sp bb a means that the metric is in the class Spread
minimisation, it uses the embedding Bounding Box to quantify the Area spread-
ing. The Range column contains the set of values that the metric can take. The
Tgt column refers to the target value to meet the corresponding criterion.

Abbrev. Name Range Tgt

Orthogonal Ordering preservation
oo o Original [21] {0, 1} 1
oo kt Kendall’s Tau Distance [16] [0, 1] 0
oo ni Number of Inversions [26] [0, n(n− 1)] 0
oo nni Normalised Number

of Inversions [0, 1] 0

Spread minimisation
sp bb l1ml Bounding Box L1 Metric Length [17] [1,+∞[ 1
sp bb a Bounding Box Area [21] [1,+∞[ 1
sp bb na Bounding Box Normalised Area [16] [0, 1[ 0
sp ch a Convex Hull Area [26] [1,+∞[ 1

Global Shape preservation
gs bb ar Bounding Box Aspect Ratio [17] ]0,+∞[ 1
gs bb iar Bounding Box

Improved Aspect Ratio [1,+∞[ 1
gs ch sd Convex Hull Standard Deviation [26] [0,+∞[ 0

Node Movement minimisation
nm mn Moved Nodes [16] [0, 1] 0

nm dm me Distance Moved
Mean Euclidean [26] [0,+∞[ 0

nm dm ne Distance Moved
normalised Euclidean [18] [0, 1] 0

nm dm h Distance Moved Hamiltonian [15, 16] [0,+∞[ 0
nm dm se Distance Moved

Squared Euclidean [19] [0,+∞[ 0
nm dm imse Distance Moved Improved

Mean Squared Euclidean [0,+∞] 0
nm d Displacement [8] ]0,+∞[ 0
nm knn K-Nearest Neighbours [22] [0,+∞[ 0

Edge Length preservation
el r Ratio [17] [1,+∞[ 1

el rsdd Relative Standard
Deviation Delaunay [8] [0,+∞] 0

el rsd Relative Standard Deviation [0,+∞] 0
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This metric has the drawback of providing non-normalised values. However,
it holds the benefit of penalizing inversions occurring on each axis independently
(x− and y−axis), instead of penalizing in the same manner an inversion occur-
ring in only one axis and an inversion occurring in the two axes. Thus, in our
study, we combine the two metrics by using a normalised version of the latter:

oo nni =
oo ni

n(n− 1)

3.2 Spread minimisation

A classical zoom-in function maintaining the sizes of the nodes (i.e. uniform
scaling) provides an overlapping-free embedding, but it expands the visualisa-
tion, resulting in large areas without any objects. To avoid this issue, quality
metrics have been introduced to quantify embedding spreading. Their purpose
is to favour algorithms inducing low spreading.

The L1 metric length [17] is the ratio:

sp bb l1ml =
max(w′bb, h

′
bb)

max(wbb, hbb)

The drawback of this technique is to consider only one dimension of the
embedding, width or height. For instance, considering an example where wbb =
4, hbb = 2, w′bb = 4, h′bb = 4, the value of the L1 metric length is 1 (which is
the target value), whereas the area of the overlapping-free embedding is twice
as large as in the initial embedding. The ratio between the bounding box areas
of the two embeddings [21] overcomes this issue:

sp bb a =
w′bb × h′bb
wbb × hbb

While the result gives an unbounded value greater than 1, Huang et al. [16]
proposes a normalised version producing values in the interval [0, 1[:

sp bb na = 1− wbb × hbb
w′bb × h′bb

Unfortunately, this criterion is rather unintuive and it is hard to figure out
what the values represent.

In our comparison, we selected another version of the ratio of areas involving
convex hulls [26], as it better captures the concrete area of the drawing:

sp ch a =
area(ch′)

area(ch)

3.3 Global Shape preservation

This class contains metrics that try to capture the ability of the algorithms to
preserve the global shape of the initial embedding. The first one was proposed
by Li et al. [17]:
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gs bb ar =


w′bb × hbb
h′bb × wbb

if w′bb > h′bb

h′bb × wbb
w′bb × hbb

otherwise

The underlying idea is to capture the variation of the aspect ratio (wbb/hbb)
between the initial and the overlapping-free embedding. For instance, let us
consider an example where wbb = 3, hbb = 2, w′bb = 6, h′bb = 4 (see grey and
green rectangles below). In this case, the overlapping-free embedding is twice as
large as the initial one but the aspect ratio remains the same 3/2. The gs bb ar
is 1, which is the target value. Now let us consider another example where
wbb = 3, hbb = 2, w′bb = 4, h′bb = 6 (blue rectangle below). In this case, the
initial aspect ratio is 3/2 whereas the overlapping-free one is 2/3. The gs bb ar
is now 2.25, which is not the target value; it reveals a distortion of the initial
embedding during the overlap removal process.

5

6

gs bb ar = 0.8

gs bb iar = 1.25

4

6

gs bb ar = 1

gs bb iar = 1

2

4

gs bb ar = 1.33

gs bb iar = 1.33

6

4

gs bb ar = 2.25

gs bb iar = 2.25

2

3

The main drawback of this metric is that it can reach values in the interval
]0,+∞[ while the target value is 1. For instance, wbb = 3, hbb = 2, w′bb = 6 and
h′bb = 5 induce a gs bb ar equals to 0.8 (purple rectangle above), while wbb = 3,
hbb = 2, w′bb = 4 and h′bb = 2 induce a gs bb ar equals to 1.33 (yellow rectangle
above). In this case, it is hard to decide which algorithm is the best between
two of them if the first one obtains the purple bounding box and the second one
obtains the yellow one, because we have no clue to compare 0.8 and 1.33 when
1 is the target value. To overcome this issue, we propose to refine it as follows:

gs bb iar = max

(
w′bb × hbb
h′bb × wbb

,
h′bb × wbb
w′bb × hbb

)
In this case, the target value is 1 and the metric cannot reach values below

it (see the values below the rectangles). This criterion is the one we selected for
our study.

An alternative to this approach based on the convex hull has been proposed
by Strobelt et al. [26]. The idea is to evaluate the distortion of the convex hull
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by comparing, between both embeddings, the distances of convex hull points to
their center. Let `θ (resp. `′θ) be the Euclidean distance between the center of
mass cch (resp. c′ch) of the convex hull ch (resp. ch′) and the intersection of
the convex hull with the line going through cch (resp. c′ch) and with an angle θ
(θ varying from 0◦ to 350◦ in 10◦ steps). Then, the difference is defined as the
ratio dθ = `′θ/`θ. The metric is the standard deviation of the 36 measures of dθ:

gs ch sd =

√√√√ 1

36

∑
θ=10k

k=0,··· ,35

(dθ − d)2

where d =
1

36

∑
θ=10k

k=0,··· ,35

dθ is the mean value

Based on the experiments presented below in Section 4, we observed that
gs bb iar and gs ch sd have a correlation coefficient of 0.77, showing that they
both tend to capture similar aspects of the adjustment process. We selected the
former for its simplicity and its ease of interpretation.

3.4 Node Movement minimisation

This class contains the metrics quantifying the changes in node positions after
running an adjustment algorithm. The underlying intuition is that an algorithm
involving high node movements will provide an overlapping-free configuration
different from the original one, and thus may result in a substantial loss of the
mental model.

The simplest metric of this class was presented by Huang et al. [16]:

nm mn =
nb

n

Here, nb represents the number of nodes which have moved between the initial
and the overlapping-free embedding. The main drawback of this approach is
that a node overlap removal algorithm may induce very small changes in most
nodes, which does not affect the mental model preservation, while inducing a
very bad result. To tackle this problem and add more granularity over the
evaluation of node movements, a series of metrics have been proposed, based on
the same underlying quality function:

nm dm = f(n)×
∑
v∈V

dist(v, v′)

where f is a normalising function of n = |V | and dist is a distance between v
and v′. Table 2 sums up the ones used in the literature.

The function f comes in three different forms. Marriott et al. [19] and
Huang et al. [15] do not include any f , which is similar to having f(n) = 1. The
drawback is that the resulting value highly depends on the number of nodes
in the graph. That is why Strobelt et al. [26] proposed to use the mean of
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Table 2: Functions used to tune the distance moved metric (with references to
the first papers mentioning the use of these functions in the context of node
overlap removal)

.

dist(v, v′) \ f(n) 1 1/n 1
k
√
2×n

‖v′ − v‖ nm dm me [26] nm dm ne [18]

‖v′ − v‖2 nm dm se [19] nm dm imse
|x′v − xv|+ |y′v − yv| nm dm h [15]

the distances, which corresponds to f(n) = 1/n. Finally, Lyons et al. [18]
proposed f(n) = 1/(k

√
2 × n), where k is the maximum between w′bb and h′bb.

In this case, k
√

2 is the diagonal of a square containing the embedding, thus
a maximum distance available for a node. Unfortunately, this normalisation
generates very small values and is harder to interpret than f(n) = 1/n. That is
why we preferred the latter for our study.

Three dist functions have been proposed in the literature. The most intu-
itive one is the Euclidean distance ‖v′ − v‖ [26, 18]. The squared Euclidean

distance ‖v′ − v‖2 [19] avoids the square root computation and discriminates
high changes better. It is the one we selected for our study. The Manhattan
distance |x′v − xv|+ |y′v − yv| has also been used [15], but it is less intuitive and
has close results (nm dm se and nm dm h have a correlation coefficient of 0.9).

Let us consider an adjustment algorithm that pushes nodes on the x-axis.
The preservation of the global shape is not optimal but the preservation of the
configuration should reach a good score, as a node on right-top in the initial em-
bedding would remain on right-top in the overlapping-free embedding. In order
to better capture the relative movement of a node between the two embeddings,
a shift function can be applied to align the center of the initial bounding box
with the center of the final one, and a scale function to align the size of the
initial bounding box to the size of the final one:

shift(v) = (xv + x′bb − xbb, yv + y′bb − ybb)

scale(v) =(xv ×
w′bb
wbb

, yv ×
h′bb
hbb

)

Considering this, we selected the following node movement metric:

nm dm imse =
1

n
×
∑
v∈V
‖v′ − scale(shift(v))‖2

nm d [8] (the complete formula is available in the paper) is also based on the
idea that the metric should be based on modified initial positions to better cap-
ture the relative movement of the nodes between the two embeddings. Besides
including the shift and the scale functions, it also rotates the initial embedding
with an angle θ that minimises the distances between the nodes of the initial
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embedding and the ones of the overlapping-free embedding:

rotation(v) = (xv cos θ − yv sin θ, xv sin θ + yv cos θ)

We have not included the rotation in our experiment as we consider that it
can induce a loss of the mental model (think about the recognition of a map
turned upside down).

An alternative to quantify how much an overlapping-free configuration may
result in a substantial loss of the mental model is to look at the neighbourhoods
at the nodes and compare them before and after the adjustment. Based on a
k-NN approach, Nachmanson et al. [22] proposed the following metric:

nm knn(k) =
∑
v∈V

(k − |Nk(v) ∩Nk(v′)|)2

where Nk(v) (resp. Nk(v′)) denotes the k nearest neighbours of v (resp. v′), in
terms of Euclidean distance, in the initial (resp. overlapping-free) embedding.
We did not select this metric because, unlike the other metrics of the class, it
requires to fix a parameter (k).

3.5 Edge Length preservation

This class contains the two metrics based on edge lengths. The set of edges can
be E or can be another set derived from the graph.

Standard force-based layout algorithms tend to produce uniform lengths of
edges. Indeed, the first metric of this class captures whether the edge lengths
of a graph remain uniform or not after applying an adjustment algorithm [17]:

el r =
max(u,v)∈E ‖u′ − v′‖
min(u,v)∈E ‖u′ − v′‖

As many layout algorithms are not designed to produce uniform edge lengths,
mental map preservation is not necessarily captured by such kind of metrics.
Hence we decided to consider alternatives.

The first alternative is based on the edges of a graph derived from the initial
embedding, via a Delaunay triangulation. Let Edt be the set of edges of a
Delaunay triangulation performed on the nodes of the initial embedding. The
second metric of this class, el rsdd, is based on computing the coefficient of
variation, also known as the relative standard deviation, of the edge lengths
ratio as follows [8]:

ruv =
||u′ − v′||
||u− v||

, (u, v) ∈ Edt

r =
1

|Edt|
∑

(u,v)∈Edt

ruv

el rsdd =

√
1
|Edt|

∑
(u,v)∈Edt

(ruv − r)2

r
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The main drawback of this metric is that it is based on a derived set of edges,
instead of the real one. As a consequence, it only partially captures whether an
algorithm preserves edge lengths or not. In our study, we use the coefficient of
variation of edge lengths ratio, el rsd (same equations as el rsdd replacing Edt
by E).

4 Algorithms comparison

In this section, we compare 9 algorithms of the literature in terms of quality
and running time: uniform Scaling, PFS [21], PFS’ [13], FTA [16], VPSC [5],
PRISM [8], RWordle-L [26], GTREE [22], and Diamond [20]. The quality of an
overlapping-free embedding is evaluated with the metrics identified in the last
section, by following a 3 steps procedure:

1. Datasets. We generate 840 synthetic graphs containing 10 to 1,000 nodes.
These graphs are provided by 4 generation models available on the OGDF
library [4]: random graphs [6], random trees, small world graphs [28], and
scale-free graphs [2]. We also use 14 real-world graphs selected from the
Graphviz test suite5 [9], previously used by the authors of PRISM [8] and
GTREE [22]. All the graphs are available online6 as GML files including
the initial embedding.

2. Overlapping-free embedding computation. Synthetic graphs result-
ing from the first step are initially positioned by the FM3 layout algo-
rithm [11]. Then, we apply the 9 node overlap removal algorithms, thus
providing a set of 7.560 overlapping-free graph embeddings. Graphviz test
suite graphs are initially positioned by the SFDP layout algorithm [14] to
follow the same baseline embedding as Gansner et al. [8]. We then apply
the 9 node overlap removal algorithms thus providing 126 overlapping-free
graph embeddings.

3. Metrics computation. We finally compute the values of the 5 selected
metrics on the 7.686 overlapping-free synthetic and real-world graph em-
beddings. We also measure the computation time of the algorithms.

The values of the metrics discussed in this comparison are measured from
the results of the implemented algorithms that are available in our library (see
Section 6), and thus might differ from our original paper [3] in terms of running
time. All the algorithms are coded in JavaScript. We implemented PFS, PFS’,
FTA and Diamond ourselves from the algorithms provided by the authors in
their seminal papers. As Diamond is based on a linear optimization, we used
the jsLPSolver7. For VPSC, we directly used the JavaScript program provided
by the authors8. PRISM and GTREE have been adapted from the Microsoft

5https://gitlab.com/graphviz/graphviz/blob/master/rtest/graphs/ (accessed: 2020-
03)

6https://github.com/agorajs/agora-dataset(accessed: 2020-03)
7https://github.com/JWally/jsLPSolver (accessed: 2020-03)
8https://github.com/tgdwyer/WebCola (accessed: 2020-03)

https://gitlab.com/graphviz/graphviz/blob/master/rtest/graphs/
https://github.com/agorajs/agora-dataset
https://github.com/JWally/jsLPSolver
https://github.com/tgdwyer/WebCola
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Table 3: Aggregated values of the selected metrics on the synthetic graphs: first
quartile, median and third quartile.

Automatic Graph Layout library9 and converted into JavaScript with Sharp-
Kit10. Finally, we were inspired by the Java program of RWordle-L11 provided
by the authors of [26].

4.1 Quality

Figure 1a shows a random graph containing 100 nodes and 400 edges, positioned
by the FM3 layout algorithm [11]. This initial embedding contains 274 overlaps.
Figures 1b-1j show the overlapping-free embeddings obtained after applying the
algorithms mentioned above. The sizes of the figures reflect the spread of the
embeddings.

Figure 2 shows another example with a real-world graphs from the Graphviz
test suite, mode. It contains 213 nodes, 269 edges and 1105 overlaps. Figures 2b-
2j shows the overlapping-free embeddings. In this case, we did not maintain the
relative size for Scaling and PFS, as the drawing was too large. The actual
embeddings are twice as large as they appear in the figure.

Table 3 shows the aggregated metrics values obtained on the synthetic graphs:
for each of the five selected metrics and for each algorithm, the first quartile, the
median and the third quartile of the values are given. Table 4 shows the metric
values on the real-world graphs. In these figures and the next ones, the colour of
the cases represents the quality of the algorithm on the criterion: green for high
quality, orange for intermediate and red for poor. The ranges are defined by
comparing the values lying on a single row, i.e. the values of a single criterion
obtained on the different algorithms.

9https://github.com/microsoft/automatic-graph-layout (accessed: 2020-03)
10https://github.com/SharpKit (accessed: 2020-03)
11https://github.com/HendrikStrobelt/ditop_server/blob/master/src/main/java/de/

hs8/graphics/RWordle.java (accessed: 2020-03)

https://github.com/microsoft/automatic-graph-layout
https://github.com/SharpKit
https://github.com/HendrikStrobelt/ditop_server/blob/master/src/main/java/de/hs8/graphics/RWordle.java
https://github.com/HendrikStrobelt/ditop_server/blob/master/src/main/java/de/hs8/graphics/RWordle.java
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(a) Initial (b) Scaling

(c) PFS (d) PFS’

(e) FTA (f) VPSC (g) PRISM

(h) RWordle-L (i) GTREE (j) Diamond

Figure 1: Overlapping-free embeddings obtained after applying the algorithms
on the initial embedding (a) of a random graph containing 274 overlaps.
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(a) Initial (b) Scaling

(c) PFS (d) PFS’

(e) FTA (f) VPSC (g) PRISM

(h) RWordle-L (i) GTREE (j) Diamond

Figure 2: Overlapping-free embeddings obtained after applying the algorithms
on the initial embedding (a) of a real-world graph containing 1105 overlaps.
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Table 4: Mean values of the selected metrics on the real-world graphs.

Orthogonal Ordering preservation Unsurprisingly, Scaling, PFS and PFS’
obtain the best scores at oo nni as it is proved that they maintain the original
orthogonal ordering. Though, all the algorithms tested got good results for this
criterion.

Spread minimisation As shown in Figure 1b, Scaling highly increases the
size of the embedding, which induces a bad score for sp ch a. PFS also obtains
a bad score for this criterion. VPSC and RWordle-L produce the most compact
embeddings, while the other algorithms give intermediary results. However,
looking at Figures 1f, 1h, 2f and 2h, we can observe that the embeddings result-
ing from these two algorithms are so compact that they do not allow to visualise
the edges nor the structures of the graph (e.g. communities or clusters). De-
pending on the task one wants to perform on the overlapping-free embedding,
this observation illustrates a possible limitation of the criterion when it is con-
sidered independently from the other ones.

Global Shape preservation Surprisingly, the global shape preservation score
(gs bb iar) is not exactly 1 for Scaling because of the size of the nodes that re-
mains the same between the initial and the overlapping-free embeddings. Nev-
ertheless, it preserves the initial global shape. PFS is the worst algorithm on
this criterion. The other algorithms obtained good median scores on synthetic
graphs, but the third quartile scores show that FTA and VPSC can produce
a certain amount of distorted embeddings. This is confirmed by the tests on
real-world graphs, where they obtain worse results, and on the Figures 1e, 1f
and 2f, where we can observe that they spread the layout along only one of the
axis (x-axis for FTA and y-axis for VPSC ).

Node Movement minimisation Scaling obtains the best results for the
node movement minimisation criterion, followed by VPSC and RWordle-L. FTA
also obtained a good median score on synthetic graphs, but its third quartile
value shows that it can generate a certain amount of embeddings with high
changes, as also illustrated by the bad score obtained on the real-world graphs.
PFS’ and PRISM obtained intermediary results. GTREE had bad results
on the synthetic graphs, while it obtained pretty good ones on the real-world
graphs. Finally, PFS and Diamond obtained bad results on both synthetic and
real-world graphs.



698 Chen et al. Node Overlap Removal Algorithms

Edge Length preservation Scaling preserves relative edge lengths. Dia-
mond obtains the worst scores on synthetic graphs but this phenomenon is not
confirmed on real-world ones, for which it obtains pretty good scores. All the
other algorithms obtained a median score between 0.08 and 0.36 on synthetic
graphs. The third quartile shows that FTA generates a certain amount of em-
beddings with higher edge length variations. This observation is confirmed by
the results on the real-world graphs, for which it obtains the worst score.

4.2 Computation time

Tables 5 and 6 show the aggregated running time values in milliseconds on the
synthetic graphs (first quartile, median and third quartile) and the running
time values on the real-world ones, measured on our implementation of the
algorithms.

We can observe on the synthetic graphs that Scaling, PFS, PFS’ and VPSC
require lower running time than the other algorithms. FTA is a little bit slower,
especially when looking at the third quartile, indicating a certain amount of time
consuming embedding computations (more than 1 second for graphs containing
more than 500 nodes). This observation is confirmed on the real-world graphs.

RWordle-L, PRISM and GTREE induce intermediate running times on the
synthetic graphs: less than 1 second for graphs containing up to 200 nodes, a few
seconds for graphs of 500 nodes, and tens of seconds for graphs of 1000 nodes.
PRISM and GTREE are significantly slower than RWordle-L on small graphs
(number of nodes below or equal to 100) but it seems to be unimportant as the
values remain very low. The real-world graphs confirm these observations, but
also highlight that PRISM is sometimes significantly slower than GTREE, even
if it only happens on graphs requiring a low time computation.

Diamond is often the most time consuming algorithm on both synthetic and
real-world graphs. However, it is based on a linear optimization so the running
time depends on the solver used (see introduction of this section). This might
explain the differences between our results and the ones given in the paper [20].

4.3 Summary

As a conclusion, even if Scaling optimises 4 out of 5 criteria and is very fast
to compute on the graphs of our datasets, it does not represent a satisfying
solution as it increases the size of the embedding too much. PFS is also not
satisfying as it got poor results on 3 criteria. In particular, it also considerably
increases the size of the embedding, which is obvious in Figures 1c and 2c.

FTA obtained intermediate results over all the criteria, which is less good
than all its remaining competitors. In particular, as mentioned before, it spreads
the embedding along only one axis, highly distorting the original configuration
(see the Global Shape Preservation criterion gs bb iar in Table 3, as well as the
distortion illustrated by Figure 1e).

VPSC also holds this property. Looking at Table 3, we can observe that
RWordle-L is better than VPSC on Global Shape Preservation, while obtaining
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Table 5: Aggregated running times in milliseconds on the synthetic graphs,
function of number of nodes (10 to 1,000): first quartile, median and third
quartile.

Table 6: Running times in milliseconds on the real-world graphs.
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comparable results on the other criteria. It is because they create the most
compact embeddings, inducing a low spread and short node movements. We
can also notice on Tables 5 and 6 that RWordle-L can be time consuming for
graphs with more than 500 nodes, which is not the case of VPSC. Thus, if the
compactness of the embedding is one’s priority, RWordle-L should be chosen on
small graphs and VPSC on larger ones.

High compactness of the embeddings resulting from RWordle-L and VPSC
avoids visualising the edges and the graph structures. Therefore, if one’s priority
is to provide an embedding highlighting the paths and the groups of nodes in the
graph, the remaining options (PFS’, PRISM, GTREE and Diamond) should
be favoured. Among them, Diamond is the slowest one with respect to the
solver we used (see the introduction of this section). Diamond also obtains
bad scores for Node Movement minimisation and Edge Length preservation on
synthetic graphs (see Table 3 nm dm imse and eb rsdd). GTREE also induces
a lot of node movement, but it outperforms Diamond in terms of Edge Length
preservation and running time. PFS’ and PRISM obtained comparable results,
outperforming GTREE and Diamond on Node Movement minimisation, even if
PRISM is slightly better (see Tables 3 and 4, nm dm imse). Figures 1d and 1g
illustrate their similarity while Figures 2d and 2g illustrate the ability of PRISM
to induce less node movements on a real-world graph. PFS’ should be favoured
against PRISM for large graphs as its computation time is substantially lower
(see Tables 5 and 6).

5 Discussion

In this section, we discuss threats to validity and future research directions.

5.1 Threats to validity

Nodes aspect ratio The aspect ratio of the synthetic graphs of the above
study is 2:1 whereas the aspect ratios of the real-world graphs vary with respect
to the initial datasets. The fixed aspect ratio of synthetic graphs could be
considered as a limitation of our study: what happens in terms of result quality
among the different algorithms when the aspect ratio varies, and in particular
when the width of the nodes increases to display long text labels? A clue for
answering this question is available in Table 7, which shows the results for the
graph of the Figure 1 with an aspect ratio of 2:1, and the same graph with
an aspect ratio of 5:1. In this example, the metrics mostly highlight the same
properties for both aspect ratios. The main differences appear on the global
aspect ratio (gs bb iar) for PFS, FTA and VPSC. As illustrated by Figure 3,
the drawback of spreading the embedding along one dimension is accentuated
when the width of the nodes increases for PFS and VPSC. Conversely, this
phenomena is attenuated for FTA. However, as we can see in the figure, this is
due to the high movement of a bunch of nodes along the vertical axis on the
right part of the embedding, which is not a sign of the output quality.
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Table 7: Values of the selected metrics on the graph of Figure 1 with two nodes
aspect ratios: 2:1 and 5:1.

(a) PFS 2:1 (b) PFS 5:1 (c) FTA 2:1 (d) FTA 5:1 (e) VPSC 2:1 (f) VPSC 5:1

Figure 3: Overlapping-free embeddings obtained after applying PFS, FTA and
VPSC on a graph with different nodes aspect ratios.

Number of overlaps Another factor that could limit the results is the num-
ber of overlaps of the initial embedding: are some algorithms fitted to obtain
better quality measures for few or many overlaps? Table 8 shows the results
obtained on the graph of Figure 1 with different sizes for the nodes, but with the
same aspect ratio. The initial size, 20× 10, produces 274 overlaps on the initial
embedding, while the other one, 40 × 20, produces 1136 overlaps. Here again,
the different measures mostly rank the algorithms in the same order for the two
graphs. The main differences are on the aspect ratio generated by FTA and
VPSC, but not by PFS this time. Indeed, increasing the number of overlaps
accentuate the spreading along one dimension for FTA but not for PFS. VPSC
shows the same behaviour as when we changed the aspect ratio.

5.2 Directions for future work

Further algorithms Our study focuses on algorithms explicitly designed to
remove node overlaps of graph embeddings. However, a future direction could
be to consider further algorithms dedicated to related problems. For instance,
van Garderen et al. [27] propose a heuristic to remove overlaps of geo-referenced
rectangles. Their objective is to minimize the displacement of the nodes while
preserving the orthogonal ordering. Another example is provided by Nickel et
al. [23] in which the authors propose a method to maintain stability among
Demers time-varying cartograms, and thus provide a kind of rectangle overlap
removal algorithm.
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Table 8: Values of the selected metrics on the graph of Figure 1 with 274 and
1136 overlaps.

Further criteria In Section 3, we described 22 metrics, classified them into
5 classes according to the properties they aim to capture and selected one of
them for each class. Among the 22 metrics, 18 came from the literature on node
overlap removal algorithms, the other ones were minor improvements of the
previous ones based on some drawbacks highlighted in the discussions. However,
we did not propose any radically different metric nor we presented how metrics
coming from other applications could be adapted to meet the problem covered
here. This could be an interesting future research direction but it is beyond
the scope of the present work. For instance, Fadloun et al. [7] proposed criteria
to evaluate the quality of 1D node overlap removal algorithms and it would be
interesting to investigate how they could be tailored to the 2D case. Sondag et
al. [25] proposed a refined metric to quantify the change of the relative positions
of rectangles in the context of stable treemap layout algorithms. Another source
of inspiration could come from geographic data visualisation. For instance,
Guo and Gahegan [10] proposed several approaches to encode spatial proximity
between elements and Haunert and Sering [12] quantify local distortions of road
networks.

Embedding quality This study compares algorithms in regards of their abil-
ity to preserve some properties of the initial embedding. As a result, we consid-
ered only metrics that quantify how much the algorithms preserve the mental
map between an initial embedding and the corresponding overlapping-free one.
This approach induces a limitation that would worth future investigations be-
yond the scope of this paper. Indeed, there are many approaches to measure
the different aspects of an embedding quality per se (see for instance [24]) and
an interesting research direction would be to evaluate how much a node over-
lap removal algorithm degrades the quality of an initial embedding. Such a
study is not trivial, as there are many layout algorithms that aim at optimizing
different quality criteria, and it should be important to test embedding degra-
dation in regards of these algorithms. For instance, consider a layout algorithm
A1 producing better results on a criterion c than another algorithm A2, but a
worse degradation of c when removing overlaps. If we want to select the best
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node-overlap removal algorithm to preserve c, we need to test the competitors
for several initial embeddings of the same graphs resulting from different layout
algorithms, and eventually select different node-overlap removal algorithms in
regards of the initial layout technique employed.

6 AGORA

All the node overlap removal algorithms as well as the criteria described in the
paper are available in a JavaScript library12. The implementations are those
used for the experiments described in the previous section.

A Web platform, AGORA13 (Automatic Graph Overlap Removal Algo-
rithms) is also available online. The user can select one or several real-world
graphs used for the experiments, or upload his/her own graphs in the GML
format. The graphs must contain the nodes coordinates, x and y, and their
width and height, w and h. Then he/she can select one or several node overlap
removal algorithms among the nine proposed on the interface (corresponding to
the ones of the experiments of the previous section). Finally, he/she can select
the criteria among the 22 described above. By default, the five most relevant
criteria are selected. Once these parameters have been chosen, the user can
generate the overlapping-free embeddings. An embedding is provided for each
graph and each algorithm, and it is shown as a thumbnail image. The user can
download it as a JSON or a GML file. In this case, even if they don’t appear in
the thumbnail images, the node and edge properties of the original files are kept
and available in the output file, just the x and y values are changed. The user
can also download a thumbnail as a SVG file. Finally, a table with the values
of the selected criteria for each embedding is provided.

7 Conclusion

Finding a suitable node overlap removal algorithm is difficult for a visualisation
designer because even if many algorithms exist, no complete comparison based
on the same criteria has been provided. In this paper we first highlighted the five
main classes of existing criteria and proposed a selection of one representative
criterion for each class. Using a large number of experiments carried out with
synthetic and real-world graphs, we compared 9 algorithms from the state-of-
the-art according to both criteria and running time. By analyzing the results,
we then showed advantages, disadvantages and limitations of the algorithms,
which can be very useful for the designer. Finally we proposed a Javascript
library containing all node overlap removal algorithms and criteria as well as a
Web platform, AGORA, that allows the end user to upload his/her own graphs
and get the embeddings according to the selected algorithms.

12https://github.com/agorajs/agorajs.github.io (accessed: 2020-03)
13https://agorajs.github.io/ (accessed: 2020-03)

https://github.com/agorajs/agorajs.github.io
https://agorajs.github.io/
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