Geometry and Symmetry in Physics

MOTION OF CHARGED PARTICLES IN TWO-STEP NILPOTENT LIE GROUPS

OSAMU IKAWA

Communicated by Charles-Michel Marle

We formulate the equation of motion of a charged particle in a Riemannian manifold with a closed two form. Since a two-step nilpotent Lie group has natural left-invariant closed two forms, it is natural to consider the motion of a charged particle in a simply connected two-step nilpotent Lie groups with a left invariant metric. We study the behavior of the motion of a charged particle in the above spaces.

1. Introduction

Let Ω be a closed two-form on a connected Riemannian manifold (M, \langle , \rangle) , where \langle , \rangle is a Riemannian metric on M. We denote by $\bigwedge^m(M)$ the space of m-forms on M. We denote by $\iota(X): \bigwedge^m(M) \to \bigwedge^{m-1}(M)$ the interior product operator induced from a vector field X on M, and by $\mathcal{L}: T(M) \to T^*(M)$, the Legendre transformation from the tangent bundle T(M) over M onto the cotangent bundle $T^*(M)$ over M, which is defined by

$$\mathcal{L}: T(M) \to T^*(M), \quad u \mapsto \mathcal{L}(u), \quad \mathcal{L}(u)(v) = \langle u, v \rangle, \quad u, v \in T(M).$$
 (1)

A curve x(t) in M is referred as a motion of a charged particle under electromagnetic field Ω , if it satisfies the following second order differential equation

$$\nabla_{\dot{x}}\dot{x} = -\mathcal{L}^{-1}(\iota(\dot{x})\Omega) \tag{2}$$

where ∇ is the Levi-Civita connection of M. Here $\nabla_{\dot{x}}\dot{x}$ means the acceleration of the charged particle. Since $-\mathcal{L}^{-1}(\iota(\dot{x})\Omega)$ is perpendicular to the direction \dot{x} of the movement, $-\mathcal{L}^{-1}(\iota(\dot{x})\Omega)$ means the *Lorentz force*. The speed $|\dot{x}|$ is a conservative constant for a charged particle. When $\Omega = 0$, then the motion of a charged particle is nothing but a geodesic. The equation (2) originated in the theory of relativity (see [2] for details).

In this paper, we deal with the motion of a charged particles in a simply connected two-step nilpotent Lie group N with a left invariant Riemannian metric.