JIPAM logo: Home Link
 
Home Editors Submissions Reviews Volumes RGMIA About Us
 

   
  Volume 9, Issue 4, Article 103
 
$L_p$ Inequalities for the Polar Derivative of a Polynomial

    Authors: Nisar A. Rather,  
    Keywords: $L_p$ inequalities, Polar derivatives, Polynomials.  
    Date Received: 04/05/07  
    Date Accepted: 30/07/08  
    Subject Codes:

26D10, 41A17.

 
    Editors: Sever S. Dragomir,  
 
    Abstract:

Let $ D_{lpha}P(z)$ denote the polar derivative of a polynomial $ P(z)$ of degree $ n$ with respect to real or complex number $ lpha$. If $ P(z)$ does not vanish in $ ert zert< k, kgeq1$, then it has been proved that for $ ertlphaertgeq1$ and $ p> 0$,

$displaystyle leftVert D_{lpha}PightVert _{p}leqleft( frac{leftert... ...leftVert k+zightVert _{p}}ight) leftVert PightVert _{p}smallskip .$    

An analogous result for the class of polynomials having no zero in $ leftert zightert>k,kleq1$ is also obtained.

         
       
  Download Screen PDF
  Download Print PDF
  Send this article to a friend
  Print this page
 

      search [advanced search] copyright 2003 terms and conditions login