JIPAM logo: Home Link
 
Home Editors Submissions Reviews Volumes RGMIA About Us
 

   
  Volume 4, Issue 1, Article 2
 
Note on the Carleman's Inequality for a Negative Power Number

    Authors: Thanh Long Nguyen, Vu Duy Linh Nguyen, Thi Thu Van Nguyen,  
    Keywords: Carleman's inequality.  
    Date Received: 30/10/02  
    Date Accepted: 25/11/02  
    Subject Codes:

26D15

 
    Editors: Hüseyin Bor,  
 
    Abstract:

By the method of indeterminate coefficients we prove the inequality

$displaystyle sum_{n=1}^{infty }frac{n}{frac{1}{a_{1}}+frac{1}{a {2}}+...+frac{1}{%%  a_{n}}}$

$displaystyle leq 2sum_{n=1}^{infty }left( 1-frac{1}{3n+1}%%  -4n^{2}sum_{k=n}^{infty }frac{1}{k(k+1)^{2}(3k+1)(3k+4)}right) a_{n}, $

where $ a_{n}>0, n=1,2,... sum_{n=1}^{infty }a_{n}<infty .$

         
       
  Download Screen PDF
  Download Print PDF
  Send this article to a friend
  Print this page
 

      search [advanced search] copyright 2003 terms and conditions login