JIPAM logo: Home Link
 
Home Editors Submissions Reviews Volumes RGMIA About Us
 

   
  Volume 6, Issue 2, Article 51
 
Generalized Integral Operator and Multivalent Functions

    Authors: Khalida Inayat Noor,  
    Keywords: Convolution (Hadamard product), Integral operator, Functions with positive real part, Convex functions.  
    Date Received: 20/02/05  
    Date Accepted: 02/03/05  
    Subject Codes:

Primary 30C45, 30C50.

 
    Editors: Themistocles M. Rassias,  
 
    Abstract:

Let $ mathcal{A}(p) $ be the class of functions $ f: f(z) = z^p + sum _{j=1}^{infty }a_j z^{p+j} $ analytic in the open unit disc $ E.$ Let, for any integer $ n> -p, quad f_{n+p-1}(z) = frac{z^{p}}{(1-z)^{n+p}}. $ We define $ f^{(-1)}_{n+p-1}(z) $ by using convolution $ star $ as $ f_{n+p-1}(z) star f_{n+p-1}^{(-1)}(z) = frac{z^{P}}{(1-z)^{n+p} }. $ A function $ p, $ analytic in $ E $ with $ p(0) = 1, $ is in the class $ P_{k}(rho ) $ if $ int _{0}^{2pi }leftvert frac{Re p(z) -rho }{p-rho }rightvert dtheta leq kpi, $ where $ z = re^{ i theta }, k geq 2 $ and $ 0 leq rho  p. $ We use the class $ P_{k}(rho ) $ to introduce a new class of multivalent analytic functions and define an integral operator $ quad I_{n+p-1}(f) = f^{(-1)}_{n+p-1} star f(z) $ for $ f(z) $ belonging to this class. We derive some interesting properties of this generalized integral operator which include inclusion results and radius problems.

         
       
  Download Screen PDF
  Download Print PDF
  Send this article to a friend
  Print this page
 

      search [advanced search] copyright 2003 terms and conditions login