JIPAM

Coefficient Inequality For A Function Whose Derivative Has A Positive Real Part  
 
  Authors: Aini Janteng, Suzeini Abdul Halim, Maslina Darus,  
  Keywords: Fekete-Szegö functional, Hankel determinant, Convex and starlike functions, Positive real functions.  
  Date Received: 07/03/05  
  Date Accepted: 09/03/06  
  Subject Codes:

Primary 30C45.

 
  Editors: Anthony Sofo,  
 
  Abstract:

Let $mathcal{R}$ denote the subclass of normalised analytic univalent functions $f$ defined by $f(z)=z+{sum_{n=2}^{infty}}{a_n}{z^n}$ and satisfy

begin{displaymath}  mbox{Re}{f^{prime}(z)}>0 end{displaymath}

where $fin mathcal{R}$, we give sharp upper bound for $vert a_{2}a_{4}-a_{3}^{2}vert$.;



This article was printed from JIPAM
http://jipam.vu.edu.au

The URL for this article is:
http://jipam.vu.edu.au/article.php?sid=667