Journal of Inequalities in Pure and Applied Mathematics

A VARIANT OF JENSEN-STEFFENSEN'S INEQUALITY FOR CONVEX AND SUPERQUADRATIC FUNCTIONS

S. ABRAMOVICH, M. KLARIČIĆ BAKULA, AND S. BANIĆ
Department of Mathematics
University of Haifa
Haifa, 31905, Israel
abramos@math.haifa.ac.il
Department of Mathematics
Faculty of Natural Sciences, Mathematics and Education
University of Split
Teslina 12, 21000 Split
Croatia
milica@pmfst.hr

Faculty of Civil Engineering and Architecture
University of Split
Matice hrvatske 15, 21000 Split
Croatia
Senka.Banic@gradst.hr
Received 03 January, 2006; accepted 20 January, 2006
Communicated by C.P. Niculescu

AbSTRACT. A variant of Jensen-Steffensen's inequality is considered for convex and for superquadratic functions. Consequently, inequalities for power means involving not only positive weights have been established.

Key words and phrases: Jensen-Steffensen's inequality, Monotonicity, Superquadraticity, Power means.
2000 Mathematics Subject Classification 26D15, 26A51.

1. Introduction.

Let I be an interval in \mathbb{R} and $f: I \rightarrow \mathbb{R}$ a convex function on I. If $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{m}\right)$ is any m-tuple in I^{m} and $\boldsymbol{p}=\left(p_{1}, \ldots, p_{m}\right)$ any nonnegative m-tuple such that $\sum_{i=1}^{m} p_{i}>0$, then the well known Jensen's inequality (see for example [7, p. 43])

$$
\begin{equation*}
f\left(\frac{1}{P_{m}} \sum_{i=1}^{m} p_{i} \xi_{i}\right) \leq \frac{1}{P_{m}} \sum_{i=1}^{m} p_{i} f\left(\xi_{i}\right) \tag{1.1}
\end{equation*}
$$

holds, where $P_{m}=\sum_{i=1}^{m} p_{i}$.

If f is strictly convex, then (1.1) is strict unless $\xi_{i}=c$ for all $i \in\left\{j: p_{j}>0\right\}$.
It is well known that the assumption " p is a nonnegative m-tuple" can be relaxed at the expense of more restrictions on the m-tuple $\boldsymbol{\xi}$.

If \boldsymbol{p} is a real m-tuple such that

$$
\begin{equation*}
0 \leq P_{j} \leq P_{m}, j=1, \ldots, m, \quad P_{m}>0 \tag{1.2}
\end{equation*}
$$

where $P_{j}=\sum_{i=1}^{j} p_{i}$, then for any monotonic m-tuple $\boldsymbol{\xi}$ (increasing or decreasing) in I^{m} we get

$$
\bar{\xi}=\frac{1}{P_{m}} \sum_{i=1}^{m} p_{i} \xi_{i} \in I,
$$

and for any function f convex on $I(1.1)$ still holds. Inequality (1.1) considered under conditions (1.2) is known as the Jensen-Steffensen's inequality [7, p. 57] for convex functions.

In his paper [5] A. McD. Mercer considered some monotonicity properties of power means. He proved the following theorem:

Theorem A. Suppose that $0<a<b$ and $a \leq x_{1} \leq x_{2} \leq \cdots \leq x_{n} \leq b$ hold with at least one of the x_{k} satisfying $a<x_{k}<b$. If $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n}\right)$ is a positive n-tuple with $\sum_{i=1}^{n} w_{i}=1$ and $-\infty<r<s<+\infty$, then

$$
a<Q_{r}(a, b ; \boldsymbol{x})<Q_{s}(a, b ; \boldsymbol{x})<b
$$

where

$$
Q_{t}(a, b ; \boldsymbol{x}) \equiv\left(a^{t}+b^{t}-\sum_{i=1}^{n} w_{i} x_{i}^{t}\right)^{\frac{1}{t}}
$$

for all real $t \neq 0$, and

$$
Q_{0}(a, b ; \boldsymbol{x}) \equiv \frac{a b}{G}, \quad G=\prod_{i=1}^{n} x_{i}^{w_{i}} .
$$

In his next paper [6], Mercer gave a variant of Jensen's inequality for which Witkowski presented in [8] a shorter proof. This is stated in the following theorem:
Theorem B. If f is a convex function on an interval containing an n-tuple $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ such that $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ and $\boldsymbol{w}=\left(w_{1}, \ldots, w_{n}\right)$ is a positive n-tuple with $\sum_{i=1}^{n} w_{i}=$ 1 , then

$$
f\left(x_{1}+x_{n}-\sum_{i=1}^{n} w_{i} x_{i}\right) \leq f\left(x_{1}\right)+f\left(x_{n}\right)-\sum_{i=1}^{n} w_{i} f\left(x_{i}\right) .
$$

This theorem is a special case of the following theorem proved in [4] by Abramovich, Klaričić Bakula, Matić and Pečarić:
Theorem C ([4, Th. 2]). Let $f: I \rightarrow \mathbb{R}$, where I is an interval in \mathbb{R} and let $[a, b] \subseteq I, a<b$. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a monotonic n-tuple in $[a, b]^{n}$ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$ a real $n-t$ tuple such that $v_{i} \neq 0, i=1, \ldots, n$, and $0 \leq V_{j} \leq V_{n}, j=1, \ldots, n, V_{n}>0$, where $V_{j}=\sum_{i=1}^{j} v_{i}$. If f is convex on I, then

$$
\begin{equation*}
f\left(a+b-\frac{1}{V_{n}} \sum_{i=1}^{n} v_{i} x_{i}\right) \leq f(a)+f(b)-\frac{1}{V_{n}} \sum_{i=1}^{n} v_{i} f\left(x_{i}\right) . \tag{1.3}
\end{equation*}
$$

In case f is strictly convex, the equality holds in (1.3) iff one of the following two cases occurs:
(1) either $\bar{x}=a$ or $\bar{x}=b$,
(2) there exists $l \in\{2, \ldots, n-1\}$ such that $\bar{x}=x_{1}+x_{n}-x_{l}$ and

$$
\left\{\begin{array}{l}
x_{1}=a, x_{n}=b \text { or } x_{1}=b, x_{n}=a \tag{1.4}\\
\bar{V}_{j}\left(x_{j-1}-x_{j}\right)=0, j=2, \ldots, l \\
V_{j}\left(x_{j}-x_{j+1}\right)=0, j=l, \ldots, n-1,
\end{array}\right.
$$

where $\bar{V}_{j}=\sum_{i=j}^{n} v_{i}, j=1, \ldots, n$ and $\bar{x}=\left(1 / V_{n}\right) \sum_{i=1}^{n} v_{i} x_{i}$.
In the special case where $\boldsymbol{v}>0$ and f is strictly convex, the equality holds in (1.4) iff $x_{i}=a, i=1, \ldots, n$, or $x_{i}=b, i=1, \ldots, n$.

Here, as in the rest of the paper, when we say that an n-tuple $\boldsymbol{\xi}$ is increasing (decreasing) we mean that $\xi_{1} \leq \xi_{2} \leq \cdots \leq \xi_{n}\left(\xi_{1} \geq \xi_{2} \geq \cdots \geq \xi_{n}\right)$. Similarly, when we say that a function $f: I \rightarrow \mathbb{R}$ is increasing (decreasing) on I we mean that for all $u, v \in I$ we have $u<v \Rightarrow f(u) \leq f(v)(u<v \Rightarrow f(u) \geq f(v))$.

In Section 2 we refine Theorems A, B, and C, These refinements are achieved by superquadratic functions which were introduced in [1] and [2].

As Jensen's inequality for convex functions is a generalization of Hölder's inequality for $f(x)=x^{p}, p \geq 1$, so the inequalities satisfied by superquadratic functions are generalizations of the inequalities satisfied by the superquadratic functions $f(x)=x^{p}, p \geq 2$ (see [1], [2]).

First we quote some definitions and state a list of basic properties of superquadratic functions.
Definition 1.1. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is superquadratic provided that for all $x \geq 0$ there exists a constant $C(x) \in \mathbb{R}$ such that

$$
\begin{equation*}
f(y)-f(x)-f(|y-x|) \geq C(x)(y-x) \tag{1.5}
\end{equation*}
$$

for all $y \geq 0$.
Definition 1.2. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is said to be strictly superquadratic if 1.5$]$ is strict for all $x \neq y$ where $x y \neq 0$.

Lemma A ([2], Lemma 2.3]). Suppose that f is superquadratic. Let $\xi_{i} \geq 0, i=1, \ldots, m$, and let $\bar{\xi}=\sum_{i=1}^{m} p_{i} \xi_{i}$, where $p_{i} \geq 0, i=1, \ldots, m$, and $\sum_{i=1}^{m} p_{i}=1$. Then

$$
\sum_{i=1}^{m} p_{i} f\left(\xi_{i}\right)-f(\bar{\xi}) \geq \sum_{i=1}^{m} p_{i} f\left(\left|\xi_{i}-\bar{\xi}\right|\right)
$$

Lemma B ([1, Lemma 2.2]). Let f be superquadratic function with $C(x)$ as in Definition 1.1 Then:
(i) $f(0) \leq 0$,
(ii) if $f(0)=f^{\prime}(0)=0$ then $C(x)=f^{\prime}(x)$ whenever f is differentiable at $x>0$,
(iii) if $f \geq 0$, then f is convex and $f(0)=f^{\prime}(0)=0$.

In [3] the following refinement of Jensen's Steffensen's type inequality for nonnegative superquadratic functions was proved:
Theorem D ([3, Th. 1]). Let $f:[0, \infty) \rightarrow[0, \infty)$ be a differentiable and superquadratic function, let $\boldsymbol{\xi}$ be a nonnegative monotonic m-tuple in \mathbb{R}^{m} and \boldsymbol{p} a real m-tuple, $m \geq 3$, satisfying

$$
0 \leq P_{j} \leq P_{m}, j=1, \ldots, m, \quad P_{m}>0
$$

Let $\bar{\xi}$ be defined as

$$
\bar{\xi}=\frac{1}{P_{m}} \sum_{i=1}^{m} p_{i} \xi_{i}
$$

Then

$$
\begin{align*}
\sum_{i=1}^{m} p_{i} f\left(\xi_{i}\right)-P_{m} f(\bar{\xi}) \geq & \sum_{i=1}^{k-1} P_{i} f\left(\xi_{i+1}-\xi_{i}\right)+P_{k} f\left(\bar{\xi}-\xi_{k}\right) \tag{1.6}\\
& +\bar{P}_{k+1} f\left(\xi_{k+1}-\bar{\xi}\right)+\sum_{i=k+2}^{m} \bar{P}_{i} f\left(\xi_{i}-\xi_{i-1}\right) \\
\geq & {\left[\sum_{i=1}^{k} P_{i}+\sum_{i=k+1}^{m} \bar{P}_{i}\right] f\left(\frac{\sum_{i=1}^{m} p_{i}\left|\bar{\xi}-\xi_{i}\right|}{\sum_{i=1}^{k} P_{i}+\sum_{i=k+1}^{m} \bar{P}_{i}}\right) } \\
\geq & (m-1) P_{m} f\left(\frac{\sum_{i=1}^{m} p_{i}\left|\bar{\xi}-\xi_{i}\right|}{(m-1) P_{m}}\right)
\end{align*}
$$

where $\bar{P}_{i}=\sum_{j=i}^{m} p_{j}$ and $k \in\{1, \ldots, m-1\}$ satisfies

$$
\xi_{k} \leq \bar{\xi} \leq \xi_{k+1}
$$

In case f is also strictly superquadratic, inequality

$$
\sum_{i=1}^{m} p_{i} f\left(\xi_{i}\right)-P_{m} f(\bar{\xi})>(m-1) P_{m} f\left(\frac{\sum_{i=1}^{m} p_{i}\left(\left|\xi_{i}-\bar{\xi}\right|\right)}{(m-1) P_{m}}\right)
$$

holds for $\boldsymbol{\xi}>\mathbf{0}$ unless one of the following two cases occurs:
(1) either $\bar{\xi}=\xi_{1}$ or $\bar{\xi}=\xi_{m}$,
(2) there exists $k \in\{3, \ldots, m-2\}$ such that $\bar{\xi}=\xi_{k}$ and

$$
\begin{cases}P_{j}\left(\xi_{j}-\xi_{j+1}\right)=0, & j=1, \ldots, k-1 \tag{1.7}\\ \bar{P}_{j}\left(\xi_{j}-\xi_{j-1}\right)=0, & j=k+1, \ldots, m\end{cases}
$$

In these two cases

$$
\sum_{i=1}^{m} p_{i} f\left(\xi_{i}\right)-P_{m} f(\bar{\xi})=0
$$

In Section 2 we refine Theorem B and Theorem C for functions which are superquadratic and positive. One of the refinements is derived easily from Theorem D.

We use in Section 3 the following theorem [7, p. 323] to give an alternative proof of Theorem B
Theorem E. Let I be an interval in \mathbb{R}, and $\boldsymbol{\xi}, \boldsymbol{\eta}$ two decreasing m-tuples such that $\boldsymbol{\xi}, \boldsymbol{\eta} \in I^{m}$. Let \boldsymbol{p} be a real m-tuple such that

$$
\begin{equation*}
\sum_{i=1}^{k} p_{i} \xi_{i} \leq \sum_{i=1}^{k} p_{i} \eta_{i} \tag{1.8}
\end{equation*}
$$

for $k=1,2, \ldots, m-1$, and

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} \xi_{i}=\sum_{i=1}^{m} p_{i} \eta_{i} \tag{1.9}
\end{equation*}
$$

Then for every continuous convex function $f: I \rightarrow \mathbb{R}$ we have

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i} f\left(\xi_{i}\right) \leq \sum_{i=1}^{m} p_{i} f\left(\eta_{i}\right) \tag{1.10}
\end{equation*}
$$

2. Variants of Jensen-Steffensen's Inequality for Positive Superquadratic Functions

In this section we refine in two ways Theorem Cfor functions which are superquadratic and positive. The refinement in Theorem 2.1 follows by showing that it is a special case of Theorem D for specific \boldsymbol{p}. The refinement in Theorem 2.2 follows the steps in the proof of Theorem B given by Witkowski in [8]. Therefore the second refinement is confined only to the specific \boldsymbol{p} given in Theorem B , which means that what we get is a variant of Jensen's inequality and not of the more general Jensen-Steffensen's inequality.

Theorem 2.1. Let $f:[0, \infty) \rightarrow[0, \infty)$ and let $[a, b] \subseteq[0, \infty)$. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a monotonic $n-$ tuple in $[a, b]^{n}$ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$ a real n-tuple such that $v_{i} \neq 0, i=1, \ldots, n$, $0 \leq V_{j} \leq V_{n}, j=1, \ldots, n$, and $V_{n}>0$, where $V_{j}=\sum_{i=1}^{j} v_{i}$. If f is differentiable and superquadratic, then

$$
\begin{align*}
f(a)+f(b)-\frac{1}{V_{n}} & \sum_{i=1}^{n} v_{i} f\left(x_{i}\right)-f\left(a+b-\frac{1}{V_{n}} \sum_{i=1}^{n} v_{i} x_{i}\right) \tag{2.1}\\
& \geq(n+1) f\left(\frac{b-a-\frac{1}{V_{n}} \sum_{i=1}^{n} v_{i}\left|a+b-x_{i}-\frac{1}{V_{n}} \sum_{j=1}^{n} v_{j} x_{j}\right|}{n+1}\right) .
\end{align*}
$$

In case f is also strictly superquadratic and $a>0$, inequality (2.1) is strict unless one of the following two cases occurs:
(1) either $\bar{x}=a$ or $\bar{x}=b$,
(2) there exists $l \in\{2, \ldots, n-1\}$ such that $\bar{x}=x_{1}+x_{n}-x_{l}$ and

$$
\left\{\begin{array}{c}
x_{1}=a, x_{n}=b \text { or } x_{1}=b, x_{n}=a \tag{2.2}\\
\bar{V}_{j}\left(x_{j-1}-x_{j}\right)=0, j=2, \ldots, l \\
V_{j}\left(x_{j}-x_{j+1}\right)=0, j=l, \ldots, n-1
\end{array}\right.
$$

where $\bar{V}_{j}=\sum_{i=j}^{n} v_{i}, j=1, \ldots, n$, and $\bar{x}=\frac{1}{V_{n}} \sum_{i=1}^{n} v_{i} x_{i}$.
In these two cases we have

$$
f(a)+f(b)-\frac{1}{V_{n}} \sum_{i=1}^{n} v_{i} f\left(x_{i}\right)-f\left(a+b-\frac{1}{V_{n}} \sum_{i=1}^{n} v_{i} x_{i}\right)=0 .
$$

In the special case where $\boldsymbol{v}>0$ and f is also strictly superquadratic, the equality holds in (2.1) iff $x_{i}=a, i=1, \ldots, n$, or $x_{i}=b, i=1, \ldots, n$.

Proof. Suppose that \boldsymbol{x} is an increasing n-tuple in $[a, b]^{n}$. The proof of the theorem is an immediate result of Theorem D, by defining the $(n+2)$-tuples $\boldsymbol{\xi}$ and \boldsymbol{p} as

$$
\begin{array}{ll}
\xi_{1}=a, & \xi_{i+1}=x_{i}, i=1, \ldots, n, \quad \xi_{n+2}=b \\
p_{1}=1, & p_{i+1}=-v_{i} / V_{n}, i=1, \ldots, n, \quad p_{n+2}=1 .
\end{array}
$$

Then we get (2.1) from the last inequality in (1.6) and from the fact that in our special case we have

$$
\sum_{i=1}^{k} P_{i}+\sum_{i=k+1}^{n+2} \bar{P}_{i} \leq n+1
$$

for $P_{i}=\sum_{j=1}^{i} p_{j}$ and $\bar{P}_{i}=\sum_{j=i}^{n+2} p_{j}$, and

$$
\bar{\xi}=\frac{1}{P_{m}} \sum_{i=1}^{m} p_{i} \xi_{i}=a+b-\frac{1}{V_{n}} \sum_{i=1}^{n} v_{i} x_{i}=a+b-\bar{x} .
$$

The proof of the equality case and the special case where $\boldsymbol{v}>\mathbf{0}$ follows also from Theorem D.

We have

$$
\begin{gathered}
P_{j}=\frac{\bar{V}_{j}}{V_{n}}, j=1, \ldots, n, \quad P_{n+1}=0, \quad P_{n+2}=1 \\
\bar{P}_{1}=1, \bar{P}_{2}=0, \bar{P}_{j}=\frac{V_{j-2}}{V_{n}}, j=3, \ldots, n+2
\end{gathered}
$$

Obviously, $\bar{\xi}=\xi_{1}$ is equivalent to $\bar{x}=b$ and $\bar{\xi}=\xi_{n+2}$ is equivalent to $\bar{x}=a$. Also, the existence of some $k \in\{3, \ldots, m-2\}$ such that $\bar{\xi}=\xi_{k}$ and that (1.7) holds is equivalent to the existence of some $l \in\{2, \ldots, n-1\}$ such that $\bar{x}=x_{1}+x_{n}-x_{l}=a+b-x_{l}$ and that (2.2) holds. Therefore, applying Theorem D we get the desired conclusions. In the case when \boldsymbol{x} is decreasing we simply replace \boldsymbol{x} and \boldsymbol{v} with $\widetilde{\boldsymbol{x}}=\left(x_{n}, \ldots, x_{1}\right)$ and $\widetilde{\boldsymbol{v}}=\left(v_{n}, \ldots, v_{1}\right)$, respectively, and then argue in the same manner.

In the special case that $\boldsymbol{v}>\mathbf{0}$ also, $V_{i}>0$ and $\bar{V}_{j}>0, i=1, \ldots, n$, and therefore according to (2.2) equality holds in (2.1) only when either $x_{1}=\cdots=x_{n}=a$ or $x_{1}=\cdots=x_{n}=b$.

In the following theorem we will prove a refinement of TheoremB. Without loss of generality we assume that $\sum_{i=1}^{n} v_{i}=1$.
Theorem 2.2. Let $f:[0, \infty) \rightarrow[0, \infty)$ and let $[a, b] \subseteq[0, \infty), a<b$. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an n-tuple in $[a, b]^{n}$ and $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$ a real n-tuple such that $\boldsymbol{v} \geq \mathbf{0}$ and $\sum_{i=1}^{n} v_{i}=1$. If f is superquadratic we have

$$
\begin{aligned}
f(a)+f(b) & -\sum_{i=1}^{n} v_{i} f\left(x_{i}\right)-f\left(a+b-\sum_{i=1}^{n} v_{i} x_{i}\right) \\
& \geq \sum_{i=1}^{n} v_{i} f\left(\left|\sum_{j=1}^{n} v_{j} x_{j}-x_{i}\right|\right)+2 \sum_{i=1}^{n} v_{i}\left[\frac{x_{i}-a}{b-a} f\left(b-x_{i}\right)+\frac{b-x_{i}}{b-a} f\left(x_{i}-a\right)\right] \\
& \geq \sum_{i=1}^{n} v_{i} f\left(\left|\sum_{j=1}^{n} v_{j} x_{j}-x_{i}\right|\right)+2 \sum_{i=1}^{n} v_{i} f\left(\frac{2\left(x_{i}-a\right)\left(b-x_{i}\right)}{b-a}\right) .
\end{aligned}
$$

If f is strictly superquadratic and $\boldsymbol{v}>\mathbf{0}$ equality holds in (2.3) iff $x_{i}=a, i=1, \ldots, n$, or $x_{i}=b, i=1, \ldots, n$.
Proof. The proof follows the technique in [8] and refines the result to positive superquadratic functions. From Lemma A we know that for any $\lambda \in[0,1]$ the following holds:

$$
\begin{align*}
\lambda f(a)+ & (1-\lambda) f(b)-f(\lambda a+(1-\lambda) b) \\
& \geq \lambda f(|a-\lambda a-(1-\lambda) b|)+(1-\lambda) f(|b-\lambda a-(1-\lambda) b|) \\
& =\lambda f(|(1-\lambda)(a-b)|)+(1-\lambda) f(|\lambda(b-a)|) \\
& =\lambda f((1-\lambda)(b-a))+(1-\lambda) f(\lambda(b-a)) . \tag{2.4}
\end{align*}
$$

Also, for any $x_{i} \in[a, b]$ there exists a unique $\lambda_{i} \in[0,1]$ such that $x_{i}=\lambda_{i} a+\left(1-\lambda_{i}\right) b$. We have

$$
\begin{equation*}
f(a)+f(b)-\sum_{i=1}^{n} v_{i} f\left(x_{i}\right)=f(a)+f(b)-\sum_{i=1}^{n} v_{i} f\left(\lambda_{i} a+\left(1-\lambda_{i}\right) b\right) . \tag{2.5}
\end{equation*}
$$

Applying (2.4) on every $x_{i}=\lambda_{i} a+\left(1-\lambda_{i}\right) b$ in (2.5) we obtain

$$
\begin{aligned}
f(a)+f(b) & -\sum_{i=1}^{n} v_{i} f\left(x_{i}\right) \\
\geq & f(a)+f(b)+\sum_{i=1}^{n} v_{i}\left[-\lambda_{i} f(a)-\left(1-\lambda_{i}\right) f(b)\right. \\
& \left.\quad+\lambda_{i} f\left(\left(1-\lambda_{i}\right)(b-a)\right)+\left(1-\lambda_{i}\right) f\left(\lambda_{i}(b-a)\right)\right] \\
= & \sum_{i=1}^{n} v_{i}\left[\left(1-\lambda_{i}\right) f(a)+\lambda_{i} f(b)\right] \\
& \quad+\sum_{i=1}^{n} v_{i}\left[\lambda_{i} f\left(\left(1-\lambda_{i}\right)(b-a)\right)+\left(1-\lambda_{i}\right) f\left(\lambda_{i}(b-a)\right)\right] .
\end{aligned}
$$

Applying again (2.4) on (2.6) we get

$$
\begin{align*}
f(a)+f(b)-\sum_{i=1}^{n} v_{i} f\left(x_{i}\right) & \geq \sum_{i=1}^{n} v_{i} f\left(\left(1-\lambda_{i}\right) a+\lambda_{i} b\right) \tag{2.7}\\
+ & 2 \sum_{i=1}^{n} v_{i}\left[\lambda_{i} f\left(\left(1-\lambda_{i}\right)(b-a)\right)+\left(1-\lambda_{i}\right) f\left(\lambda_{i}(b-a)\right)\right]
\end{align*}
$$

Applying again Lemma A on (2.7) we obtain

$$
\begin{array}{rl}
f(a)+f(b) & -\sum_{i=1}^{n} v_{i} f\left(x_{i}\right) \\
\geq f & f\left(\sum_{i=1}^{n} v_{i}\left[\left(1-\lambda_{i}\right) a+\lambda_{i} b\right]\right) \\
& +\sum_{i=1}^{n} v_{i} f\left(\left|\left(1-\lambda_{i}\right) a+\lambda_{i} b-\sum_{j=1}^{n} v_{j}\left[\left(1-\lambda_{j}\right) a+\lambda_{j} b\right]\right|\right) \\
& +2 \sum_{i=1}^{n} v_{i}\left[\left(1-\lambda_{i}\right) f\left(\lambda_{i}(b-a)\right)+\lambda_{i} f\left(\left(1-\lambda_{i}\right)(b-a)\right)\right] \\
=f\left(a+b-\sum_{i=1}^{n} v_{i} x_{i}\right)+\sum_{i=1}^{n} v_{i} f\left(\left|\sum_{j=1}^{n} v_{j} x_{j}-x_{i}\right|\right) \\
& +2 \sum_{i=1}^{n} v_{i}\left[\frac{x_{i}-a}{b-a} f\left(b-x_{i}\right)+\frac{b-x_{i}}{b-a} f\left(x_{i}-a\right)\right] \tag{2.8}
\end{array}
$$

and this is the first inequality in (2.3).
Since f is a nonnegative superquadratic function, from Lemma B we know that it is also convex, so from (2.8) we have

$$
\sum_{i=1}^{n} v_{i}\left[\frac{x_{i}-a}{b-a} f\left(b-x_{i}\right)+\frac{b-x_{i}}{b-a} f\left(x_{i}-a\right)\right] \geq \sum_{i=1}^{n} v_{i} f\left(\frac{2\left(b-x_{i}\right)\left(x_{i}-a\right)}{b-a}\right)
$$

hence, the second inequality in 2.3 is proved.

For the case when f is strictly superquadratic and $\boldsymbol{v}>\mathbf{0}$ we may deduce that inequalities (2.6) and (2.7) become equalities iff each of the $\lambda_{i}, i=1, \ldots, n$, is either equal to 1 or equal to 0 , which means that $x_{i} \in\{a, b\}, i=1, \ldots, n$. However, since we also have

$$
\sum_{j=1}^{n} v_{j} x_{j}-x_{i}=0, \quad i=1, \ldots, n
$$

we deduce that $x_{i}=a, i=1, \ldots, n$, or $x_{i}=b, i=1, \ldots, n$.
This completes the proof of the theorem.
Corollary 2.3. Let $\boldsymbol{v}=\left(v_{1}, \ldots, v_{n}\right)$ be a real n-tuple such that $\boldsymbol{v} \geq \mathbf{0}, \sum_{i=1}^{n} v_{i}=1$ and let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be an n-tuple in $[a, b]^{n}, 0<a<b$. Then for any real numbers r and s such that $\frac{s}{r} \geq 2$ we have

$$
\left(\frac{Q_{s}(a, b ; \boldsymbol{x})}{Q_{r}(a, b ; \boldsymbol{x})}\right)^{s}-1
$$

$$
\begin{aligned}
& \geq \frac{1}{Q_{r}(a, b ; \boldsymbol{x})^{s}}\left[\sum_{i=1}^{n} v_{i}\left|\sum_{j=1}^{n} v_{j} x_{j}^{r}-x_{i}^{r}\right|^{\frac{s}{r}}\right. \\
& \left.\quad+2 \sum_{i=1}^{n} v_{i}\left(\frac{x_{i}^{r}-a^{r}}{b^{r}-a^{r}}\left(b^{r}-x_{i}^{r}\right)^{\frac{s}{r}}+\frac{b^{r}-x_{i}^{r}}{b^{r}-a^{r}}\left(x_{i}^{r}-a^{r}\right)^{\frac{s}{r}}\right)\right] \\
& \geq \\
& \quad \frac{1}{Q_{r}(a, b ; \boldsymbol{x})^{s}}\left[\sum_{i=1}^{n} v_{i}\left|\sum_{j=1}^{n} v_{j} x_{j}^{r}-x_{i}^{r}\right|^{\frac{s}{r}}+2 \sum_{i=1}^{n} v_{i}\left(\frac{2\left(x_{i}^{r}-a^{r}\right)\left(b^{r}-x_{i}^{r}\right)}{b^{r}-a^{r}}\right)^{\frac{s}{r}}\right],
\end{aligned}
$$

where $Q_{p}(a, b ; \boldsymbol{x})=\left(a^{p}+b^{p}-\sum_{i=1}^{n} v_{i} x_{i}\right)^{\frac{1}{p}}, p \in \mathbb{R} \backslash\{0\}$.
If $\frac{s}{r}>2$ and $\boldsymbol{v}>\mathbf{0}$, the equalities hold in (2.9) iff $x_{i}=a, i=1, \ldots, n$ or $x_{i}=b, i=1, \ldots, n$.
Proof. We define a function $f:(0, \infty) \rightarrow(0, \infty)$ as $f(x)=x^{\frac{s}{r}}$. It can be easily checked that for any real numbers r and s such that $\frac{s}{r} \geq 2$ the function f is superquadratic. We define a new positive n-tuple $\boldsymbol{\xi}$ in $\left[a^{r}, b^{r}\right]$ as $\xi_{i}=x_{i}^{r}, i=1, \ldots, n$. From Theorem 2.2 we have

$$
\begin{aligned}
& a^{s}+b^{s}-\sum_{i=1}^{n} v_{i} x_{i}^{s}-\left(a^{r}+b^{r}-\sum_{i=1}^{n} v_{i} x_{i}^{r}\right)^{\frac{s}{r}} \\
& \quad \geq \sum_{i=1}^{n} v_{i}\left|\sum_{j=1}^{n} v_{j} x_{j}^{r}-x_{i}^{r}\right|^{\frac{s}{r}}+2 \sum_{i=1}^{n} v_{i}\left[\frac{x_{i}^{r}-a^{r}}{b^{r}-a^{r}}\left(b^{r}-x_{i}^{r}\right)^{\frac{s}{r}}+\frac{b^{r}-x_{i}^{r}}{b^{r}-a^{r}}\left(x_{i}^{r}-a^{r}\right)^{\frac{s}{r}}\right] \\
& \text { 2.10) } \quad \geq \sum_{i=1}^{n} v_{i}\left|\sum_{j=1}^{n} v_{j} x_{j}^{r}-x_{i}^{r}\right|^{\frac{s}{r}}+2 \sum_{i=1}^{n} v_{i}\left(\frac{2\left(x_{i}^{r}-a^{r}\right)\left(b^{r}-x_{i}^{r}\right)}{b^{r}-a^{r}}\right)^{\frac{s}{r}} \geq 0 .
\end{aligned}
$$

We have

$$
a^{s}+b^{s}-\sum_{i=1}^{n} v_{i} x_{i}^{s}-\left(a^{r}+b^{r}-\sum_{i=1}^{n} v_{i} x_{i}^{r}\right)^{\frac{s}{r}}=Q_{s}(a, b ; \boldsymbol{x})^{s}-Q_{r}(a, b ; \boldsymbol{x})^{s}
$$

so from (2.10) the inequalities in (2.9) follow.
The equality case follows from the equality case in Theorem 2.2, as the function $f(x)=x^{\frac{s}{r}}$ is strictly superquadratic for $\frac{s}{r}>2$.

Remark 2.4. It is an immediate result of Corollary 2.3 that if $\frac{s}{r}>2$ and there is at least one $j \in\{1, \ldots, n\}$ such that

$$
v_{j}\left(x_{j}^{r}-a^{r}\right)\left(b^{r}-x_{j}^{r}\right)>0,
$$

then for this j we have

$$
\left(\frac{Q_{s}(a, b ; \boldsymbol{x})}{Q_{r}(a, b ; \boldsymbol{x})}\right)^{s}-1>\frac{2 v_{j}}{Q_{r}(a, b ; \boldsymbol{x})^{s}}\left(\frac{2\left(x_{j}^{r}-a^{r}\right)\left(b^{r}-x_{j}^{r}\right)}{b^{r}-a^{r}}\right)^{\frac{s}{r}}>0 .
$$

3. An Alternative Proof of Theorem B

In this section we give an interesting alternative proof of Theorem B based on Theorem E To carry out that proof we need the following technical lemma.
Lemma 3.1. Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$ be a decreasing real m-tuple and $\boldsymbol{p}=\left(p_{1}, \ldots, p_{m}\right) a$ nonnegative real m-tuple with $\sum_{i=1}^{m} p_{i}=1$. We define

$$
\bar{y}=\sum_{i=1}^{m} p_{i} y_{i}
$$

and the m-tuple

$$
\overline{\boldsymbol{y}}=(\bar{y}, \bar{y}, \ldots, \bar{y}) .
$$

Then the m-tuples $\boldsymbol{\eta}=\boldsymbol{y}, \boldsymbol{\xi}=\overline{\boldsymbol{y}}$ and \boldsymbol{p} satisfy conditions (1.8) and (1.9).
Proof. Note that \bar{y} is a convex combination of $y_{1}, y_{2}, \ldots, y_{m}$, so we know that

$$
y_{m} \leq \bar{y} \leq y_{1}
$$

From the definitions of the m-tuples $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$ we have

$$
\sum_{i=1}^{m} p_{i} \xi_{i}=\bar{y} \sum_{i=1}^{m} p_{i}=\bar{y}=\sum_{i=1}^{m} p_{i} y_{i}=\sum_{i=1}^{m} p_{i} \eta_{i} .
$$

Hence, condition (1.9) is satisfied. Furthermore, for $k=1,2, \ldots, m-1$ we have

$$
\begin{aligned}
\sum_{i=1}^{k} p_{i} \eta_{i}-\sum_{i=1}^{k} p_{i} \xi_{i} & =\sum_{i=1}^{k} p_{i} y_{i}-\bar{y} \sum_{i=1}^{k} p_{i} \\
& =\sum_{i=1}^{k} p_{i} y_{i}-\sum_{j=1}^{m} p_{j} y_{j} \sum_{i=1}^{k} p_{i} .
\end{aligned}
$$

Since $\sum_{i=1}^{m} p_{i}=1$, we can write

$$
\begin{aligned}
\sum_{i=1}^{k} p_{i} \eta_{i}-\sum_{i=1}^{k} p_{i} \xi_{i} & =\left(\sum_{j=1}^{k} p_{j}+\sum_{j=k+1}^{m} p_{j}\right) \sum_{i=1}^{k} p_{i} y_{i}-\left(\sum_{j=1}^{k} p_{j} y_{j}+\sum_{j=k+1}^{m} p_{j} y_{j}\right) \sum_{i=1}^{k} p_{i} \\
& =\sum_{j=k+1}^{m} p_{j} \sum_{i=1}^{k} p_{i} y_{i}-\sum_{i=1}^{k} p_{i} \sum_{j=k+1}^{m} p_{j} y_{j} \\
& =\sum_{i=1}^{k} p_{i}\left(\sum_{j=k+1}^{m} p_{j} y_{i}-\sum_{j=k+1}^{m} p_{j} y_{j}\right) \\
& =\sum_{i=1}^{k} p_{i} \sum_{j=k+1}^{m} p_{j}\left(y_{i}-y_{j}\right) .
\end{aligned}
$$

Since \boldsymbol{p} is nonnegative and \boldsymbol{y} is decreasing, we obtain

$$
\sum_{i=1}^{k} p_{i} \eta_{i}-\sum_{i=1}^{k} p_{i} \xi_{i} \geq 0, \quad k=1,2, \ldots, m-1,
$$

which means that condition (1.8) is satisfied as well.
Now we can give an alternative proof of Theorem B which is mainly based on Theorem E
Proof of Theorem B Since $\bar{x}=\sum_{i=1}^{n} w_{i} x_{i}$ is a convex combination of $x_{1}, x_{2}, \ldots, x_{n}$ it is clear that there is an $s \in\{1,2, \ldots, n-1\}$ such that

$$
x_{1} \leq \cdots \leq x_{s} \leq \bar{x} \leq x_{s+1} \leq \cdots \leq x_{n}
$$

that is,

$$
\begin{equation*}
-x_{1} \geq \cdots \geq-x_{s} \geq-\bar{x} \geq-x_{s+1} \geq \cdots \geq-x_{n} \tag{3.1}
\end{equation*}
$$

Adding $x_{1}+x_{n}$ to all the inequalities in (3.1) we obtain

$$
x_{n} \geq \cdots \geq x_{1}+x_{n}-x_{s} \geq x_{1}+x_{n}-\bar{x} \geq x_{1}+x_{n}-x_{s+1} \geq \cdots \geq x_{1}
$$

which gives us

$$
\begin{equation*}
x_{1}+x_{n}-\bar{x}=x_{1}+x_{n}-\sum_{i=1}^{n} w_{i} x_{i} \in\left[x_{1}, x_{n}\right] . \tag{3.2}
\end{equation*}
$$

We use (1.10) to prove the theorem. For this, we define the $(n+2)$-tuples $\boldsymbol{\xi}, \boldsymbol{\eta}$ and \boldsymbol{p} as follows:

$$
\begin{aligned}
& \eta_{1}=x_{n}, \quad \eta_{2}=x_{n}, \quad \eta_{3}=x_{n-1}, \quad \ldots, \quad \eta_{n}=x_{2}, \quad \eta_{n+1}=x_{1}, \quad \eta_{n+2}=x_{1}, \\
& p_{1}=1, \quad p_{2}=-w_{n}, \quad p_{3}=-w_{n-1}, \quad \ldots, \quad p_{n}=-w_{2}, \quad p_{n+1}=-w_{1}, \quad p_{n+2}=1, \\
& \xi_{1}=\xi_{2}=\cdots=\xi_{n+2}=\bar{\eta}, \quad \bar{\eta}=\sum_{i=1}^{n+2} p_{i} \eta_{i}=x_{1}+x_{n}-\sum_{j=1}^{n} w_{j} x_{j} .
\end{aligned}
$$

It is easily verified that $\boldsymbol{\xi}$ and $\boldsymbol{\eta}$ are decreasing and that $\sum_{i=1}^{n+2} p_{i}=1$. It remains to see that $\boldsymbol{\xi}$, $\boldsymbol{\eta}$ and \boldsymbol{p} satisfy conditions (1.8) and (1.9).

Condition (1.9) is trivially fulfilled since

$$
\sum_{i=1}^{n+2} p_{i} \xi_{i}=\bar{\eta} \sum_{i=1}^{n+2} p_{i}=\bar{\eta}=\sum_{i=1}^{n+2} p_{i} \eta_{i}
$$

Further, we have $\xi_{i}=\bar{\eta}, i=1,2, \ldots, n+2$. To prove 1.8), we need to demonstrate that

$$
\begin{equation*}
\bar{\eta} \sum_{i=1}^{k} p_{i} \leq \sum_{i=1}^{k} p_{i} \eta_{i}, \quad k=1,2, \ldots, n+1 . \tag{3.3}
\end{equation*}
$$

For $k=1$, (3.3) becomes $\bar{\eta} \leq x_{n}$, and this holds because of (3.2). On the other hand, for $k=n+1$, (3.3) becomes

$$
\bar{\eta}\left(1-\sum_{i=1}^{n} w_{i}\right) \leq x_{n}-\sum_{i=1}^{n} w_{i} x_{i}
$$

that is,

$$
0 \leq x_{n}-\bar{x}
$$

and this holds because of (3.2) .

If $k \in\{2, \ldots, n\}, 3.3$ can be rewritten and in its stead we have to prove that

$$
\begin{equation*}
\bar{\eta}\left(1-\sum_{i=n+2-k}^{n} w_{i}\right) \leq x_{n}-\sum_{i=n+2-k}^{n} w_{i} x_{i} \tag{3.4}
\end{equation*}
$$

Let us consider the decreasing n-tuple \boldsymbol{y}, where

$$
y_{i}=x_{1}+x_{n}-x_{i}, \quad i=1,2, \ldots, n
$$

We have

$$
\begin{aligned}
\bar{y} & =\sum_{i=1}^{n} w_{i} y_{i} \\
& =\sum_{i=1}^{n} w_{i}\left(x_{1}+x_{n}-x_{i}\right) \\
& =x_{1}+x_{n}-\sum_{i=1}^{n} w_{i} x_{i}=x_{1}+x_{n}-\bar{x}=\bar{\eta}
\end{aligned}
$$

If we apply Lemma 3.1 to the n-tuple \boldsymbol{y} and to the weights \boldsymbol{w}, then $m=n$ and for all $l \in$ $\{1,2, \ldots, n-1\}$ the inequality

$$
\bar{y} \sum_{i=1}^{l} w_{i} \leq \sum_{i=1}^{l} w_{i}\left(x_{1}+x_{n}-x_{i}\right)
$$

holds. Taking into consideration that $\bar{y}=\bar{\eta}, \sum_{i=1}^{l} w_{i}=1-\sum_{i=l+1}^{n} w_{i}$ and changing indices as $l=n+1-k$, we deduce that

$$
\begin{equation*}
\bar{\eta}\left(1-\sum_{i=n+2-k}^{n} w_{i}\right) \leq \sum_{i=1}^{n+1-k} w_{i}\left(x_{1}+x_{n}-x_{i}\right) \tag{3.5}
\end{equation*}
$$

for all $k \in\{2, \ldots, n\}$. The difference between the right side of (3.4) and the right side of (3.5) is

$$
\begin{aligned}
& x_{n}-\sum_{i=n+2-k}^{n} w_{i} x_{i}-\sum_{i=1}^{n+1-k} w_{i}\left(x_{1}+x_{n}-x_{i}\right) \\
&=x_{n}-\sum_{i=n+2-k}^{n} w_{i} x_{i}-x_{n} \sum_{i=1}^{n+1-k} w_{i}-\sum_{i=1}^{n+1-k} w_{i}\left(x_{1}-x_{i}\right) \\
&=x_{n}\left(1-\sum_{i=1}^{n+1-k} w_{i}\right)-\sum_{i=n+2-k}^{n} w_{i} x_{i}-\sum_{i=1}^{n+1-k} w_{i}\left(x_{1}-x_{i}\right) \\
&=x_{n} \sum_{i=n+2-k}^{n} w_{i}-\sum_{i=n+2-k}^{n} w_{i} x_{i}-\sum_{i=1}^{n+1-k} w_{i}\left(x_{1}-x_{i}\right) \\
&=\sum_{i=n+2-k}^{n} w_{i}\left(x_{n}-x_{i}\right)+\sum_{i=1}^{n+1-k} w_{i}\left(x_{i}-x_{1}\right) \geq 0
\end{aligned}
$$

since \boldsymbol{w} is nonnegative and \boldsymbol{x} is increasing. Therefore, the inequality

$$
\begin{equation*}
\sum_{i=1}^{n+1-k} w_{i}\left(x_{1}+x_{n}-x_{i}\right) \leq x_{n}-\sum_{i=n+2-k}^{n} w_{i} x_{i} \tag{3.6}
\end{equation*}
$$

holds for all $k \in\{2, \ldots, n\}$. From (3.5) and (3.6) we obtain (3.4). This completes the proof that the m-tuples $\boldsymbol{\xi}, \boldsymbol{\eta}$ and \boldsymbol{p} satisfy conditions (1.8) and (1.9) and we can apply TheoremE to obtain

$$
\sum_{i=1}^{n+2} p_{i} f(\bar{\eta}) \leq f\left(x_{n}\right)-\sum_{i=1}^{n} w_{i} f\left(x_{i}\right)+f\left(x_{1}\right) .
$$

Taking into consideration that $\sum_{i=1}^{n+2} p_{i}=1$ and $\bar{\eta}=x_{1}+x_{n}-\sum_{j=1}^{n} w_{j} x_{j}$ we finally get

$$
f\left(x_{1}+x_{n}-\sum_{i=1}^{n} w_{i} x_{i}\right) \leq f\left(x_{1}\right)+f\left(x_{n}\right)-\sum_{i=1}^{n} w_{i} f\left(x_{i}\right) .
$$

References

[1] S. ABRAMOVICH, G. JAMESON AND G. SINNAMON, Refining Jensen's inequality, Bull. Math. Soc. Math. Roum., 47 (2004), 3-14.
[2] S. ABRAMOVICH, G. JAMESON and G. SINNAMON, Inequalities for averages of convex and superquadratic functions, J. Inequal. in Pure and Appl. Math., 5(4) (2004), Art. 91. [ONLINE: http://jipam.vu.edu.au/article.php?sid=444].
[3] S. ABRAMOVICH, S. BANIĆ, M. MATIĆ AND J. PEČARIĆ, Jensen-Steffensen's and related inequalities for superquadratic functions, submitted for publication.
[4] S. ABRAMOVICH, M. KLARIČIĆ BAKULA, M. MATIĆ AND J. PEČARIĆ, A variant of JensenSteffensen's inequality and quasi-arithmetic means, J. Math. Anal. Applics., 307 (2005), 370-385.
[5] A. McD. MERCER, A monotonicity property of power means, J. Inequal. in Pure and Appl. Math., 3(3) (2002), Art. 40. [ONLINE: http://jipam.vu.edu.au/article.php?sid=192].
[6] A. McD. MERCER, A variant of Jensen's inequality, J. Inequal. in Pure and Appl. Math., 4(4) (2003), Art. 73. [ONLINE: http://jipam.vu.edu.au/article.php?sid=314].
[7] J.E. PEČARIĆ, F. PROSCHAN AND Y.L. TONG, Convex Functions, Partial Orderings, and Statistical Applications, Academic Press, Inc. (1992).
[8] A. WITKOWSKI, A new proof of the monotonicity property of power means, J. Inequal. in Pure and Appl. Math., 5(3) (2004), Art. 73. [ONLINE: http://jipam.vu.edu.au/article. php?sid=425].

