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Abstract

S-quasiconvex functions (Phu and An, Optimization, Vol. 38, 1996) are stable
with respect to the properties: “every lower level set is convex", “each local min-
imizer is a global minimizer", and “each stationary point is a global minimizer"
(i.e., these properties remain true if a sufficiently small linear disturbance is
added to a function of this class). In this paper, we introduce a subclass of
s-quasiconvex functions, namely strictly s-quasiconvex functions which guar-
antee the uniqueness of the minimizer. The density of the set of these func-
tions in the set of s-quasiconvex functions and some necessary and sufficient
conditions of these functions are presented.
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A function f is said to be stable with respect to some property (P) if there
existse > 0 such thatf + ¢ fulfills (P) for all linear functions¢ satisfying

€]l < e. It was shown in {] that well-known kinds of generalized convex
functions are often not stable with respect to the property they have to keep
during the generalization, for example, quasiconvex functions (pseudoconvex
functions, respectively) are not stable with respect to the property “every lower
level setis convex" (“each stationary point is a global minimizer", respectively). P ——
Then the so-called-quasiconvex functions were introduced i.[ They are Generalized Convex Functions
stable with respect to the properties “every lower level set is convex", “each

local minimizer is a global minimizer" and “each stationary point is a global -
minimizer".

Unfortunately, the uniqueness of the minimizersafuasiconvex functions UILERERS
does not hold while this property is included often in the sufficient conditions Contents
for the continuity of optimal solutions to parametric optimization problems (see % N
[3D).

In this paper, we introduce strictlyquasiconvex functions which guaran- < >
tee the uniqueness of the minimizer. Propositioé says that under certain Go Back
assumptions, we can approximate affine parts sfjaasiconvex function de-
fined onD C R, by strictly convex functions to obtain a stricéyquasiconvex Close
function. Strictlys-quasiconvex functions are stable with respect to strict pseu- Quit
doconvexity (Theoren2.6). Finally, the necessary and sufficient conditions Page 4 of 23

for a continuously differentiable function to be stricyjuasiconvex are stated
(Theorems3.1-3.2). —
. e . J. Ineq. Pure and Appl. Math. 7(3) Art. 81, 2006
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D c R" — R andD be open and convex. We recall that:
f is said to be convex if, for alty, z; € D, \ € [0, 1],

(1.1) f(@x) < (1= A)f(zo) + Af (1),

wherez, = (1 — M)z + A\x;. f is said to be strictly convex ifl(1) is a strict
inequality for every distincty, z; € D.
f is said to be quasiconvex if, for alh, z; € D, A € [0, 1],

(1.2) f(xo) < f(x1) implies f(x)) < f(a1):

f is said to be strictly quasiconvex if the second inequalityli)(is strict, for
every distinctrg, z; € D, A €10, 1[. Note that the concept "strict quasiconvex-
ity" here is exactly the "XC" concept irv].

A differentiable functionf is said to be pseudoconvex if, for al|, v, € D,

(13) f(ZL‘()) < f([El) ImpIIeS (ZEO — Jfl)TVf(ZEl) < 0,

where” is the matrix transposition. A differentiable functighis said to be
strictly pseudoconvex if the first inequality ifh.() is not strict, for every distinct
Xg, L1 € D.

We also recall the definition afquasiconvex functions (“s" stands for “sta-
ble"). f is said to bes-quasiconvex if there exists > 0 such that

f(zo) — f(21) f(xx) = f(x1)

[z — 2] [y = 21|

(1.4) <& implies <5

for |6] < o, 29,21 € D, z) = (1 — N)xo + Axy and X € [0, 1] ([4]).
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Clearly, every convex function is-quasiconvex and a-quasiconvex func-
tion is quasiconvex. The following are some propertiess-gfuasiconvexity
given in [4].

Theorem 1.1 (F]). Supposef : D C R™ — R.

a) f is s-quasiconvex iff there exists> 0 such thatf + ¢ is quasiconvex for
each linear functiorg on R" satisfying||{]| < e;

b) fis s-qua}siconvex iff there exists_> 0_ such thatf + ¢ is s-quasiconvex A New Type of Stable
for each linear functiorg onR™ satisfying||{|| < e; Generalized Convex Functions
P.T. An

c) A continuously differentiable functiofi is s-quasiconvex iff there exists
e > 0 such thatf + ¢ is pseudoconvex for each linear functioron R"

satisfying||¢]| < e. Title Page
We will show that, in (.4), both inequalities can be replaced by strict in- S
equalities and first inequalities can be replaced by strict inequalities. <« >
Proposition 1.2. The following statements are equivalent: < >
a) f: D C R* — Ris s-quasiconvex; Go Back
b) There existg > 0 such that Close
Quit
(1.5) Jlro) = J@) implies Jlon) = fzy) Page 6 of 23
[0 — 21| lx — 21
for ‘6’ < o, T, T c D and)\ c [O’ 1[’ J. Ineq. Pure and Appl. Math. 7(3) Art. 81, 2006
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c) There existg > 0 such that

f(xo) — f(21)

Hﬂ’?o —$1H

f(xx) = fla)

)
|2y — 21|

(1.6) < ¢ implies

for |0| < o, xg, 21 € D and\ € [0, 1].

Proof. ) = b) Suppose thaf is s-quasiconvex and > 0 is given in the
definition of s-quasiconvex functiorf. Let zy, 21 € D and {&0=l)

[lz1—=ol|

. 20)— f(z A New Type of Stable
Wlth |5‘ < ag. Take 51 SUCh that|51 | < g and % < 61 < 5 then Generalized Convex Functions
fe=f@) < 5« 5. Hence, (.5 holds true. BT AN

zx—z1]l

b) = ¢) ltistrivial, since (L.5) implies (L.6) with the samer > 0.

o . Title Page
¢) = a) Suppose thaf satisfies {.6) andf‘“’f“)—f(”ﬁ1 < § with |6] < o.
Then, for eacld; €15, o[, we have( f(zo) — f(z1))/||z1 — zo|| < 61. By (1.6), Contents
% < & with A € [0, 1[. Hencelflle) < 5 with A € [0, 1[. Thus, < 33
f Is s-quasiconvex. O P >
As we see from Propositioh 2, in (1.4), replacing both inequalities by strict Go Back
inequalities and replacing first inequalities by strict inequalities will not rise to Close

new types of generalized convexity. In the following section, we replace second
inequalities by strict inequalities, and in this way we shall generate a new type Quit

of generalized convexity. Page 7 of 23
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Let us introduce the notion of stricthtquasiconvex functions

Definition 2.1. f : D € R™ — R is said to be strictlys-quasiconvex if there
existss > 0 such that

f(@o) — fla1)

on — |

for |0| < 0,79, 21 € D, 19 # 21,75 = (1 — N)2g + Axy@andX €10, 1].

f(@x) — f(z1)

<9
|23 — 21|

(2.1) <4 implies

Clearly, a strictly convex functioif is strictly s-quasiconvex. Furthermore,
every strictly s-quasiconvex function is-quasiconvex and every strictly
guasiconvex function is strictly quasiconvex.

Theorem 2.1. A functionf : D € R™ — R is strictly s-quasiconvex iff there
existse > 0 such thatf + ¢ is strictly quasiconvex for each linear functigron
R” satisfying||¢|| < e.

Proof. (a) Necessity: Assume thdtis strictly s-quasiconvex. Choose= o
and supposé€ is a linear function satisfying¢|| < €, whereo is given in
Definition2.1. Then

f(zo) — f(21) Sﬁ( I — Zo ):g( T — Ty ),
|21 — 2ol| |21 — 2ol| |21 — 2|

for every distinctry, x; € D satisfyingf(xo) + &(xo) < f(x1) + &(x1) and for

all A €]0,1[. Since
'5( 1~ 0 )\ <l <e=o
|21 — 2]
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and sincef is strictly s-quasiconvex, we have
f(zy) = fz1) <£( Ty — Ty )
5 — 21| 21 — ]|
Therefore,f(z,) + &(xy) < f(x1) + &(xy), i.e., f + £ is strictly quasiconvex.

(b) Sufficiency: Suppose that there exists> 0 such thatf + ¢ is strictly
quasiconvex for each linear functigron R” satisfying||¢|| < e. Chooser = ¢
and suppose thaty, z; € D satisfy% < § with || < €. By the

Hahn-Banach theorem, there exists a linear funcgisatisfying||¢|| = ¢ and
& <M> = 6. Then,

[lz1—zoll
f(ifo)—f(l"l) <§< T1 — Xo >
|21 — 2ol — |21 — ol )

Hence,f(xq) + &(zo) < f(z1) +&(x1). Sincef + £ is strictly quasiconvex, we
havef(x,) + &(zy) < f(x1) + &(xq) forall X €]0, 1[. It follows that

f(xy) — f(xy) <€( T — Ty ):£< T — T >:5
[x — 21 [EZRE| [l — ol
forall A €]0,1]. O

We now consider the density of the set of strigtlguasiconvex functions in
the set ofs-quasiconvex functions.

Proposition 2.2. If a s-quasiconvexf : D C R™ — R is not strictly s-
guasiconvex then it is affine on a certain intervallin
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Proof. Suppose thaf is not strictly s-quasiconvex. Sincé is s-quasiconvex,
there exists > 0 such thatf +¢ is quasiconvex for each linear functigonR”
satisfying||¢|| < e (Theoreml.1). On the other hand, in view of Theoreknl,
f + £ is not strictly quasiconvex for some linear functigron R" satisfying
€]l < e. Sincef + ¢ is quasiconvex, we conclude thAt ¢ is constant on a
certain interval. Hence/, is affine on this interval. O

Proposition 2.3. Suppose thaf :]a,b|C R — R is s-quasiconvex and let
e > 0. Ifitis affine only on a finite number of intervals;, b;] Cla,b[, (i =
1,2,..., k) then there exist strictly convex functiogsdefined ofa;, b;] (i =
1,2,...,k) such that

gi(x) ifzxelab](i=1,2...k),
h(z) = _
f(l’) if z € ]a, b[\ UZ‘:LQ 77777 k [CLZ', bz]
is strictly s-quasiconvex andf — hl[: = sup,¢ ., |f(z) — h(z)| <e.
Proof. Assume without loss of generality th#tis affine only ona,, b;]. By

Theoreml.1 (a), there exists, > 0 such thatf + ¢ is quasiconvex for each
linear functioné on R satisfying||¢|| < eo. Assume without loss of generality

that f(a1) < f(b1).
First, consider the casf(a;) < f(b;). Choosey,(z): = az? + Bz + 7,
(o, 8,7 € R, > 0) such that
gi(ar) = f(ar), g1(b1) = f(b1)
0 < gy(ay)
e> sup |[f(z) - gi(x)].

z€la1,b1]
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We are now in a position to show that the sum of the function

g1(x) if x € [ay, by,
h(z) = { _
f(z) ifz €la,b[\|a1, b1]

and¢ is quasiconvex for each linear functigsatisfying||¢|| < min{eg, g1 (a1)}.
Suppose thag(x) = —az, a > 0. Sincea < ¢}(a;) andg, is strictly convex
on [ar, by], f(a) + ae — a1) < fla) + gi(a)(z — a1) < gi(x) for every
x €lay, by]. Itfollows thatg, (a,) — aa; = f(a1) — aay < g1(x) — azx. Hence,

(2.2) gi(ar) +&(ar) < gi(z) + &(2).

for everyx €Jay, by]. Letxg, x1 €la,b[C RandX €]0,1].
We now consider the case €| — oo, a;[N]a,b] andz; € [ag,b;]. If
x) € [a1, z1] then, by quasiconvexity af, + £ and by @.2) (with z = z),

h(za) +&(xx) = gi(xa) + &(0)
< max{gi(a1) + &(a1), g1(z1) + &(x1) }
= gi(21) +&(w1) = h(z1) + &(21).

If 2\ € [zo,a1] then, by quasiconvexity of + ¢ and by €.2) (with z = x),

h(zy) +&(zx) = f(zr) +E(2))
< max{ f(zo) + &(70), f(a1) +&(a1)}
< max{f(zo) + &(x0), g1(z1) + &(21)}
= max{h(zo) + {(xo), h(z1) + (1) }-
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Similarly, if eitherzy €] — o0, a;[N]a,b] andz;, € )by, +o00]N]a,b] ofr zy €
lay, b1] andzy € ]by, +00[N]a, b, we have

() + &(za) < max{h(zo) + {(wo), h(z1) + §(21)}

forall x) € [zo,x1]. Itimplies thath + ¢ is quasiconvex for each linear function
¢ satisfying||£]| < min{eg, €;}. By Theoreml.1(a), h is s-quasiconvex.

On the other hand, sincg is not affine on any interval contained i \
la1,b1] and g, is strictly convex,h is not affine on any intervals. By Proposi-
tion 2.2, h is strictly s-quasiconvex. Sinceup,c(,, ,,1[f(7) — g1(z)| < €, we
conclude thaf| f — h|| < e.

Finally, we consider the casfa,) = f(b;). By Theoreml.1 (b), there
existsey > 0 such thatf + ¢ is s-quasiconvex for each linear functigron R
satisfying||¢|| < min{e/2, ¢ }. Setf = f + & where¢ is a linear function on
R satisfying||¢|| < min{e/2, ¢} andé(a;) < £(by). Thenf is s-quasiconvex,

affine onfa,, b,] and f(a1) < f(b1). Applying the above case, there exists a

strictly s-quasiconvex function such that| f — h| < ¢/2. It follows that

If =hll = [lf + &= h+ &l < If =Rl +llgll < e

From Propositior?2.3, we have the following.

Corollary 2.4. The set of strictlys-quasiconvex functions defined @n =
la,b[C R is dense in the set of s-quasiconvex functions, which are affine
only on a finite number of intervals ifu, b] .
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We do not know whether the conclusion of Corollary holds for the case
D c R", n > 1. Note that the uniqueness of the minimizer of strictly

guasiconvex functions follows directly from the uniqueness of the minimizer of

strictly quasiconvex functions.
We now consider continuously differentiable functions.

Lemma 25.1f f : D C R" — R is strictly pseudoconvex then it is strictly
guasiconvex.

Proof. Suppose thay is strictly pseudoconvex. Lety,z; € D, xg # 1
be such thatf(xzy) < f(z;). We want to show thaf(z,) < f(z;) for all
x) €zo, x1[. ASsume the contrary that there existse |zo, x1[ such that

flax) = fla1) = f (o).

By the strictly pseudoconvexity of, we have

(2.3) (1 — 25)"Vf(x;) <0 and (zg — 23)  V f(z35) < 0.
Sets: = (x; — x3)/[|z1 — 3] then—s: = (z¢g — z3)/||xo — x3]|. It follows
from (2.3 thats”V f(zy) < 0 and—sTV f(x3) < 0, a contradiction. O

Theorem 2.6. Suppose thaf : D ¢ R" — R is continuously differentiable.
Then,f is strictly s-quasiconvex iff there exists> 0 such thatf + £ is strictly
pseudoconvex for each linear functioonR" satisfying||¢|| < e.

Proof. (a) Necessity: Assume thdtis strictly s-quasiconvex. Then, it is-
guasiconvex. By Theorem 1, there existg; > 0 such thatf + ¢ is pseudocon-
vex for each linear functiog on R™ satisfying||¢|| < €;. On the either hand,
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by Theoreni2.1, there existg, > 0 such thatf + £ is strictly quasiconvex for
each linear functiof on R™ satisfying||¢|| < €. Therefore,f + £ is pseu-
doconvex and strictly quasiconvex for each linear functimn R” satisfying
€]l < e: = min{e;, e2}. Thusf + £ is pseudoconvex and XC (sed). By
Theorem 1§], f + ¢ is strictly pseudoconvex for each linear function R”
satisfying||¢]| < e.

(b) Sufficiency: Suppose that there exists 0 such thatf +¢ is strictly pseudo-

convex for each linear functighonR™ satisfying||¢|| < e. By Lemma2.5, f+¢

is strictly quasiconvex. According to Theoréirl, f is strictly s-quasiconvex.
O
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Our next objective is to give necessary and sufficient conditions for a continu-

ously differentiable function to be stricthrquasiconvex.

Theorem 3.1. Suppose thaf : D C R" — R is continuously differentiable.
Then,f is strictly s-quasiconvex iff there exists> 0 such that

f(xo) — f(z1) (2o — 21)"

o — 21| o — 21|

(3.1) <9 implies Vf(xy) <o

forall || < o,x0,21 € D.

Proof. (a) Necessity: Assume thdtis strictly s-quasiconvex. Then, by Theo-
rem2.6, there exists > 0 such thatf+¢ is strictly pseudoconvex for each linear
function¢ onR™ satisfying||{|| < €. Seto: = e. Suppose that,, x; € D, and
Jzo)=Jtn1) < 5 for |§| < . Choose a linear functiog such that|<|| = ¢ and

[lz1—=oll

f((l’l — I’Q)/Hl’l — .I’QH) =J. Then,
f(@o) + &(0) < flz1) + £(21).
Sincef + £ is strictly pseudoconvex,

Mvu%)(mlku

|20 — 1|
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Clearly,¢ can be expressed in the fogte) = 27 a, with somea € R". Hence,

0>H (F +€) (1)
_(ﬁf —x)u Vo) + (u —a:)u V()

_ (ZL’O ) Vf( ) (Io—l‘l)Ta

Hl’l —»’COH |21 — o]
Hl’l —%H |21 — o]

Thus,
(w0 — 131)T Ty — To .
MOV G () < £ 0 ) =4

Therefore, 8.1) holds true.

(b) Sufficiency: Suppose that there exists- 0 satlsfying @.1). We prove that
f is strictly s-quasiconvex. Suppose t 0) f("“ < § with [§| < 0. Choose

lz1—o|
a linear functiorg such that|¢|| = § and¢ ( I ) = 0. Then,

llz1—=oll

(3.2) f(@o) + &(xo) < flz1) + &(21).
Consider the differentiable functiah: [0, 1] — R defined as follows

$(A): = (f+&) (@2) = (f + &) (1 = A)wo + Aza) .
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We are now in a position to show that\) < ¢(1) forall A €]0, 1]
Assume the contrary that(\) > ¢(1), for someX €]0,1[. Then, there
exists\y € [\, 1], such that

d(No) = ¢(1),¢'(No) = (21 — 20)" V (f +&) (x,) <0,
wherezx,, = (1 — A\o)xo + Aox;. This yields
(33) f(xl) + 6(1’1) = ¢(1> < ¢ (>‘0) = f (3:)\0) + f (23,\0) .

By (32) and 63), f(l’o) + f(ﬂ?o) <f (mo) +¢ (.CE)\O). Hence,

A New Type of Stable
Generalized Convex Functions

PT. An
f(xo) — f(1y,) §€< Tx, — Zo ) 25( Ty — X ) _s
|2z — ol| [ESv| |1 — o] Title Page
It follows from (3.1) that Contents
o) 1) <5 (2200 ) “« 9 »
M0 Fro) \ —e ST 0 )
|25, — ol ’ |25, — ol 4 d
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=) (9 (1) 4 a)

" Tne — ol
—M V(4 ()
2 — o]

Hence(zo — z,)" V (f 4 €) (z),) < Owhichyields(z; — z0)" V (f + ) (xx,)
> 0. Thus,¢'(x,,) > 0, a contradiction. Thereforey(\) < ¢(1) for all
A €]0,1]. Itfollows that f (zy) + £ (zx) < f(x1) + £ (21). Hence,

f(xy) = f(71) <€( T — Ty ):5( T — o ) 5,
[zx — 24| [zx — 2| |21 — o]

i.e., f is strictly s-quasiconvex. ]

Theorem 3.2. A continuously differentiable functighon D C R"™ is strictly s-
quasiconvex iff there exists> 0 such thatf is strictly convex on every segment
[0, 1] satisfying

(21 = 7o) Vf(xx)

[[1 = ol

(3.4) <a forall =z, € [xg,xq].

Proof. (a) Necessity: Assume thditis strictly s-quasiconvex. Choose = o,

whereo is given in Definition2.1 Let [z, z1] € D satisfy ¢.4). We have to
show thatf is strictly convex orz, 1]. Takeyo, y1 € [xo, 1], A € [0,1]. By

the mean-value theorem, there exigts [y, y1] such that

‘f yo)
||?J1 - y0||

_ (yl - yo)T - o=0
B ‘ ||yl —?J0|| Vf(y) se=e
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Therefore, by Definitior2.1,
Fly) = flyo) _ flyr) = F(u)
1 — ol lyn — vl

forall y, € [yo, 1] Itfollows that f(y,) < (1 —A)f(yo) + Af(y1). Hence,f is
strictly convex onxz, z4].

(b) Sufficiency: Assume that there is art> 0 such thatf is strictly convex on
every segmenizy, x;] satisfying 8.4). Chooser = . We have to show that
for |0] < o, g, 21 € D, zy = (1 — X)zo + Azy andX €]0, 1[, (2.1) is satisfied.
Assume the contrary that

f(xx) - f(xl)

[y = ]|

(3.5) f(xo) — f(z1)

<4 but
|20 — 1]

> .

In analogy to the proof of Theorem 2.2][ we consider the function

To — T1

g(t): :f<:v1+t )—5t, 0<t< ||z — w0l

|20 — 1]

Sinceg is continuous, the set: = argmax.,.,_.,(9(t) is nonempty and
closed. Moreover,3.5) implies that

9([lzo = z1[]) < 9(0) < g(l[[ax = 21])-

If either 0 or ||zy — x| belongs toA so does|z, — x1||. This implies that
AN0, ||z — z1||[# 0. Takez € AN]0, ||xo — x1]|[. Theng/(z) = 0. It follows
that

(B =20) (mzl%;%)]:wq:a.

|ff0 - 1’1||

A New Type of Stable
Generalized Convex Functions

P.T. An

Title Page
Contents
44 44
< >
Go Back
Close
Quit
Page 19 of 23

J. Ineq. Pure and Appl. Math. 7(3) Art. 81, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:thanhan@math.ac.vn
http://jipam.vu.edu.au/

SinceV f is continuous and € |0, ||zo — 21]|[, there existsy > 0 such that

(@1=20) g (wl it )

<o
|21 — o] |20 — 1|

holds true fort € [z—w, z+w] C]0, ||zo—x1]|[. This implies by our assumption
thatg is strictly convex oriz — w, z + w|. Sinceg’(z) = 0, we conclude that
is a minimizer ofg on [z — w, z + w]. It follows from z € A thatg is constant
on [z —w, z +w], in contradiction with the strict convexity gf This completes
our proof. O

The following corollary is a direct result of Theoresr.

Corollary 3.3. A continuously differentiable functiofion |a, b| C R is strictly
s-quasiconvex iff there exists > 0 such thatf is strictly convex on the level set

LI/ @) = {z €la,b[: [f'(z)] < a}.

Example 3.1. The functions

file) = V]zl, z € [-1,1,
folz) = —coszx, x € [-2,2],
f3(x) =Inz, z €[1,2]

given in [4] are not onlys-quasiconvex but also stricthrquasiconvex. Since a
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Based on the results in the above sections &hd [5], Fig. 1 gives a complete
description of the relations existing between strigjuasiconvexity $S-QQ,
s-quasiconvexity £-0Q0), strict quasiconvexity (SQC), quasiconvexity (QC),
strict pseudoconvexity (SPC), pseudoconvexity (PC), strict convexity (SC), and
convexity (C) of continuously differentiable functions. This figure consists of
11 disjoint regions, numbered from 1 to 11. Here all abbreviations refer to
circular regions, apart from SPC which refers to the intersection of the circles P —
defined by PC and SQC. QC refers to the entire interior of the largest circle, Generalized Convex Functions
refers to the union of the regions 3-9, ag8-QCrefers to the union of
the regions 6-8.

In [1], we introduced the notion of-quasimonotone maps which are stable
with respect to their characterizations. In analogy to this paper, we can generate
a new type of generalized monotonicity, namely stsicfuasimonotonicity and Contents
show that in the case of a differentiable map, stsicquasimonotonicity of the
gradient is equivalent to stristquasiconvexity of the underlying function. This K N
will be a subject of another paper. Also, an application of this trend in the theory < >
of general economic equilibrium was presented’in [
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Figure 1. Relations existing between strictquasiconvexity $S-QQ, s- Close
guasiconvexity $-Q0), strict quasiconvexity (SQC), quasiconvexity (QC), Quit
strict pseudoconvexity (SPC), pseudoconvexity (PC), strict convexity (SC), and

convexity (C) of continuously differentiable functions. FEIE 22 A 2
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