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ABSTRACT. An illustration is given showing the advantage of the definition given by Telyakovskiı̆
for the class introduced by Sidon. It is also verified that if a sequence{an} belongs to the re-
cently defined subclassSγ of S, γ > 0, then the sequence{nγan} belongs to the classS, but
the converse statement does not hold.
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1. I NTRODUCTION

A great number of mathematicians have studied the question ‘What conditions for a sequence
{an} guarantee that the trigonometric series

(1.1)
a0

2
+

∞∑
n=1

an cos nx

and

(1.2)
∞∑

n=1

an sin nx

to be Fourier series, or to converge inL1-metric?’. We refer only to W.H. Young [13], A.H. Kol-
mogorov [2], S. Sidon [6], S. A. Telyakovskiı̆ [9] and the plentiful references given in [9] and in
the excellent monograph by R.P. Boas, Jr. [1]. It is also known that conditions were established
with monotone, quasi-monotone, convex and quasi-convex sequences, with null-sequences of
bounded variation, and also sequences given by Sidon via a nice special construction.

In 1973 S. A. Telyakovskiı̆ [10] introduced a very effective idea, defined a “new” class of
coefficient sequences. He denoted this class byS; the letterS refers to an esteemed result ofS.
Sidon [6], and to the class defined by him in the same paper. Namely, Telyakovskiı̆ also showed
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2 L. LEINDLER

that his class and that of Sidon are identical, but to apply his definition is more convenient. This
is the reason, in my view, that later most of the authors ([7], [8], [14]), dealing with similar
problems, wanted to extend the definition of Telyakovskiı̆.

In [3] and [4] we showed that some of these “extensions” are equivalent to the classS, and
some others are real extensions ofS, but they are identical among themselves.

All of these facts show that the classS defined by Telyakovskiı̆ plays a very important role
in the studies of the problems mentioned above.

The definition of the classS is the following: A null-sequencea := {an} belongs to the
classS, or brieflya ∈ S, if there exists a monotonically decreasing sequence{An} such that∑∞

n=1 An < ∞ and|∆an| ≤ An hold for alln.
The aim of the present note is to give one further illustration which underlies the central

position of the classS and the following theorems proved in the same paper where the definition
of S was given.

In [10] Telyakovskĭı, among others, proved the next two theorems.

Theorem 1.1.Let the coefficients of the series (1.1) belong to the classS. Then the series (1.1)
is a Fourier series and ∫ π

0

∣∣∣∣∣a0

2
+

∞∑
n=1

an cos nx

∣∣∣∣∣ dx ≤ C
∞∑

n=0

An,

whereC is an absolute constant.

Theorem 1.2. Let the coefficients of the series (1.2) belong to the classS. Then for anyp =
1, 2, . . . ∫ π

π
p+1

∣∣∣∣∣
∞∑

n=1

an sin nx

∣∣∣∣∣ dx =

p∑
n=1

|an|
n

+ O

(
∞∑

n=1

An

)
holds uniformly.

In particular, the series (1.2) is a Fourier series if and only if
∞∑

n=1

|an|
n

< ∞.

Recently Z. Tomovski [12] defined certain subclasses ofS, and denoted them bySr, r =
1, 2, . . . (see also [11] and in [5] the definition of the classS(α)). A null-sequence{an} be-
longs to the classSr, if there exists a monotonically decreasing sequence{A(r)

n } such that∑∞
n=1 nrA

(r)
n < ∞ and|∆an| ≤ A

(r)
n for all n. (Forr = 0 clearlyS0 = S andA

(0)
n = An.)

In [11] Tomovski established, among others, two theorems in connection with the classesSr

as follows:

Theorem 1.3. Let the coefficients of the series (1.1) belong to the classSr, r = 0, 1, . . .. Then
ther-th derivative of the series (1.1) is a Fourier series and iff (r)(x) denotes its sum function
we have that ∫ π

0

∣∣f (r)(x)
∣∣ dx ≤ M

∞∑
n=0

nrA(r)
n , M = M(r) > 0.

Theorem 1.4. Let the coefficients of the series (1.2) belong to the classSr, r = 0, 1, . . ., fur-
thermore letg(x) denote the sum function of the series (1.2). Then for anyp = 1, 2, . . .∫ π

π
p+1

|g(r)(x)|dx =

p∑
n=1

|an|nr−1 + O

(
∞∑

n=1

nrA(r)
n

)
.
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In particular, ther-th derivative of the series (1.2) is a Fourier series if and only if
∞∑

n=1

|an|nr−1 < ∞.

It is obvious that ifr = 0 then the Theorems 1.3 and 1.4 reduce to the Theorems 1.1 and 1.2,
respectively.

The proof of Theorem 1.3 has not yet appeared, the proof of Theorem 1.4 given in [11] is a
constrictive one, follows similar lines as that of Telyakovskiı̆.

Now, we shall verify that if a sequence{an} belongs toSr, then the sequence{nran} belongs
to S, with such a sequence{An} which satisfies the inequality

(1.3)
∞∑

n=1

An ≤ (r + 1)
∞∑

n=1

nrA(r)
n , (An ≡ A(0)

n ).

Thus, this result and the Theorems 1.1 and 1.2 immediately imply the Theorems 1.3 and 1.4,
respectively.

2. RESULTS

We shall deduce our assertion from a somewhat more general result. In the Introduction we
have already referred to that in [5], we also defined a certain subclass ofS as follows:

Let α := {αn} be a positive monotone sequence tending to infinity. A null-sequence{an}
belongs to the classS(α), if there exists a monotonically decreasing sequence{A(α)

n } such that
∞∑

n=1

αnA
(α)
n < ∞, and |∆an| ≤ A(α)

n for all n.

If we denote the classS(α), whereαn := nα, α > 0, by Sα, that is, if we introduce the
definitionSα := S(nα), we immediately get the generalization of the classesSr, r = 1, 2, . . . ,
for any positiveα.

We shall prove our result for the classesSα, α > 0.

Theorem 2.1. Let γ ≥ β > 0. If {an} belongs to the classSγ, then the sequence{nβan}
belongs to the classSγ−β and

(2.1)
∞∑

n=1

nγ−βA(γ−β)
n ≤ (β + 1)

∞∑
n=1

nγA(γ)
n

holds.

It is clear that ifγ = β = r then (2.1) gives (1.3). Thus the inequality (1.3), utilizing the
assumptions of Theorem 1.3 and 1.4, and the statements of Theorems 1.1 and 1.2, implies the
assertions of Theorems 1.3 and 1.4, respectively.

This is a new and short proof for the Theorems 1.3 and 1.4.

Remark 2.2. The statement of the theorem is not reversible in general.

3. PROOFS

Proof of Theorem 2.1.In order to prove our theorem we have to verify that there exists a mono-

tonically decreasing sequence
{

A
(γ−β)
n

}
such that (2.1) and

(3.1) |∆(nβan)| ≤ A(γ−β)
n
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hold. Since{an} ∈ Sγ thus ifβ ≥ 1 then

|∆(nβan)| = |nβ(an − an+1)− an+1((n + 1)β − nβ)|(3.2)

≤ nβ|∆an|+ β(n + 1)β−1|an+1|

≤ nβA(γ)
n + β(n + 1)(β−1)

∞∑
k=n+1

A
(γ)
k .

Now define

A(γ−β)
n := nβA(γ)

n + β
∞∑

k=n+1

kβ−1A
(γ)
k .

By this definition and (3.2) it is clear that (3.1) holds. Next we show that the sequence{A(γ−β)
n }

is monotonic, that is

A
(γ−β)
n+1 ≤ A(γ−β)

n .

Since(n + 1)β ≤ nβ + β(n + 1)β−1 andA
(γ)
n+1 ≤ A

(γ)
n , thus

A
(γ−β)
n+1 = (n + 1)βA

(γ)
n+1 + β

∞∑
k=n+2

kβ−1A
(γ)
k

≤ nβA(γ)
n + β(n + 1)β−1A

(γ)
n+1 + β

∞∑
k=n+2

kβ−1A
(γ)
k = A(γ−β)

n .

Finally we verify (2.1). Since
∞∑

n=1

nγ−βA(γ−β)
n =

∞∑
n=1

nγA(γ)
n + β

∞∑
n=1

nγ−β

∞∑
k=n+1

kβ−1A
(γ)
k

≤
∞∑

n=1

nγA(γ)
n + β

∞∑
k=2

kβ−1A
(γ)
k

k∑
n=1

nγ−β

≤ (β + 1)
∞∑

n=1

nγA(γ)
n .

If 0 < β < 1 then, using the first equality of (3.2), we get that

|∆(nβan)| ≤ nβA(γ)
n + βnβ−1

∞∑
k=n+1

A
(γ)
k .

Henceforth the proof follows the lines given forβ ≥ 1 if we define

A(γ−β)
n := nβA(γ)

n + βnβ−1

∞∑
k=n+1

A
(γ)
k .

Herewith the proof is complete. �

Proof of Remark 2.2.It suffices to prove the remark for the caseγ = β = 1. We know that if
{an} ∈ S1 then{nan} ∈ S. Our next example will show that there exists a sequence{cn} such
that{ncn} ∈ S but{cn} /∈ S1. This verifies that the implication

{an} ∈ S1 ⇒ {nan} ∈ S

is not reversible.
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Put

cn :=
1

n log(n + 1)
, n ≥ 1.

Then the sequence{ncn} is monotonically decreasing, tends to zero, and thus clearly belongs
to the classS.

On the other hand

|∆cn| ≥
1

n(n + 1) log(n + 1)
,

whence
∞∑

n=1

nA(1)
n = ∞

obviously follows ifA(1)
n ≥ |∆cn| holds, consequently{cn} does not belong toS1.

This proves Remark 2.2. �
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[10] S. A. TELYAKOVSKIĬ, On a sufficient condition of Sidon for integrability of trigonometric series,
Math. Zametki, (Russian)14 (1973), 317–328.
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