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ABSTRACT. In the case of two positive numbers, the geometric mean is closer to the harmonic
than to the arithmetic mean. We derive some spectral results relating to corresponding properties
with more than two positive numbers.
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1. INTRODUCTION

Let A, G, H denote respectively the arithmetic, geometric and harmonic meanpasitive

real numbers;, ..., z,, which are not all equal. It is well-known that < G < A. Scott [3
has shown in the case= 2 that( is closer toH than toA, so that
A-G 1
1.1 —_— > —.
(1.1) A—H 2

He showed by a counterexample that this need not be the caseahén
Subsequently Lord [1] and Pearce an@®€ [2] addressed the question of the behaviour of
the quotient
falan, o) =
in the case of general. Several generalisations and extensiong of| (1.1) were obtained. The
following are pertinent to the present article.
Since

folazy, ... az,) = f(x1,...,2,)
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2 C.E.M. FEARCE

for a > 0, it suffices to consider the values taken fiywhenx = (xy,...,z,) lies on the
intersection

K:= {xGR”: r; >0for 1<i<n and Zx?zl}
=1
of the nonnegative orthant and the surface of the unit hypersphere. The fufici®ilearly

well-defined and continuous on the interiorl§fexcept ate := (\/Lﬁ, e \/Lﬁ) where it is
undefined sincel, G and H all coincide. In fact this singularity is removable. It is shown in
[1] that definingf,,(x) = 1 for boundary points oK (where some but not all values vanish)
andf,(e) = % makesf,, continuous on the whole &. SinceK is compact,f,, possesses and
realises an infimuna,,. Further, the range of,, constitutes the intervaly,, 1], the sequence
(avn,)5° is strictly decreasing to limit zero and, > % for n > 3. The seminal paper of Scott
givesas = 3.

In this article we continue the development/of [1] and [2] and derive some striking structural
results, principally as follows. In Sectiph 2, Theorfen] 2.1, we show thaisisuch thaff,,(x) =
oy, then{zy,... ,z,} contains precisely two distinct values. In Secti¢n 3, Thedrefn 3.3, we
show that iff,,(x) = «a,, then the smaller of the two distinct componentsahust occur with
multiplicity one. We conclude in Sectign 4 by giving characterisations,oéind some related
infima arising naturally in our analysis.

We postpone consideration of asymptotics to a subsequent article.

2. THE DICHOTOMY THEOREM

Theorem 2.1.For n > 2, any set{zy,...,x,} for which f,(z) = «, contains precisely two
distinct values.

Proof. First suppose that;, := > " , z; andS, := [[_, z; are fixed. Subject to these con-
straints, the mimimum of,, correspond to an extremum »f’"_, xi and satisfies

oL
(9xi
whereL denotes the Lagrangian

foS s (Sas) (T

=1 =1 i=1

=0 fori=1,...,n,

Then

szi =—$—A—MH:1;J-:0 (i=1,...,n),
¢ J#i
that is,
i'-l—)\xi—k,usn:() (i1=1,...,n).
Hence each; must be equai to one of the two solutions of the quadratic
\e® + pS,r +1=0.

For a minimum, these solutions must be distinct, sifige) = 3 while o, < § forn > 3. O

Forj =1,2,...,n and fixedn > 2, define

V; ={x: {z1,...,z,} contains precisely distinct value$,

Vi = {fu(x): x €V}
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and
5]‘ = inf VJ*
An immediate implication of Theorem 2.1 is the following result.

Corollary 2.2. We have
52:63:---:5n:an.

For j > 1, the sefV’; contains its infimum only fof = 2.

Proof. If 1 < j <n—1, any element o¥; can be approximated arbitrarily closely by elements
of V; 11, but not conversely. Sinde is compact and,, continuous, we must therefore have that
dj+1 < 6. Thus
1
5n§5n—1§ §52§61:§
On the other hand, by Theor¢gm2.1
0y = a, = inf { f,,(x)} = min{01, o, ..., 0}

The first part of the corollary follows.
The second part follows by invoking Theorém|2.1 again. O

3. COMPARISON RESULTS

In the remaining sections of the paper we examine more closely the central case when
{z1,...,x,} contains only two distinct values, thatsise V,. We may assume without loss of
generality an ordering

Ty S S ST

n-

We decompose

n—1
VQZUuka
k=1
where
U ={x:11=20=" =23 <Tpp1 ==z, (1<k<n).

Forx € U, we have for thé: equal points denoted hyand the rest by that
A—H & k k| onk)
5$+(1—;)y—”/(5+7)

If we set3 = k/n andu = x/y, this gives

Bu+1—p—ul

n\X) =

fa) Bu+1-p3-1/(2+1-p)
with g e {1,2 .. 2=l and0 < u < 1.

This may be rearranged as
u
(3.1) fa(x)=1- mg(ua )s
where
B _1 -(1-8) _1

(3.2) g(u, ) = S+ ©

J. Inequal. Pure and Appl. Math4(3) Art. 58, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

4 C.E.M. FEARCE

We shall find it convenient to have alternative sets of variables and functions.-Set/".
Then forx € U, we put

k
o) = £, and on(0) =g (1w, ).
Proposition 3.1. For fixedn > 3 andv € (0, 1), the sequencéhy,(n, v));_| is strictly increas-
ing.

Proof. By virtue of the representation (3.1), (8.2), it suffices to prove that the seq(er(ee);—;
is strictly decreasing. To show thaf(v) > ¢x+1(v), we need to establish the inequality

Uk -1 Uf(nfk) -1 ,UkJrl -1 Uf(nfkfl) -1

Ty Sy Ai e R T

which on multiplication byv"~* becomes

O(v) <0,
whereo is the polynomial
| 1 1 1
= Sl i eyl oyt

v 1
n—k—1 n—k°
Sincen+1>n>n—-k >1> 0, (3.3) expresse® in descending powers of. The
coefficients taken in sequence have exactly three changes in sign, regardless of whether the

expression in brackets is positive, negative or zero. Hence by Descartes’ rule of signs the
polynomial equation

(3.4) O(w) = 0

+

has at most three positive solutions.
Now by elementary algebra we have that

O(1) = O'(1) = ©"(1) = 0,

so thatw = 1 is a triple zero o©(w). Hence®©(w) has no zeros ofD, 1) and therefore must
have constant sign aff), 1). Because(0) < 0, we thus havé®(w) < 0 throughout(0, 1) and
we are done. O

Forl < k < n, put
Uy = {fu(x): x €U}

and
Er = inf Z/{]:
Lemma 3.2. For eachn > 3 we have
1 n
<= for 1<k<~—
2 - 2
ok 1 n
=— for =<k<n-1.
2 2
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Proof. Sincev = 1 givesf,, = % andv = 0 gives f,, = 1, a necessary and sufficient condition
thate;, < 5 is that there should existe (0, 1) for which

nu" vk —1 . v (k) 1 - 1
(1 —om)? k n—k 2
or
(3.5) Qv) <0,
where
Qv) = v*" — 2—nv”+k pon D g g 2n +1
N k k n—k n—=k
2n n k 2n
2n n+k n k
= - — 2 — — 1.
v kv +U[l§+n—k} Un—k+

The polynomial? has four changes of sign in its coefficients, and so has at most four positive
zeros. We may verify readily that

(3.6) Q1) = (1) =Q"(1) =0,
while
(3.7) Q" (1) = 2n*(n — 2k).

If £ <k <n—1,then{)(v) has a triple zero at = 1 and so can have at most one zero on
(0,1). SinceQ2(0) > 0, condition (3.5) can thus be satisfied if and only if there is such a zero,
in which case)(1 — A) < 0 for all A > 0 sufficiently small. But by Taylor’s theorem
A? A3
Q1 —A)=Q(1) — AQ(1) + 7&2”(1) - yQ”’(l) +0(A%Y)
3

(3.8) ~ —%nQ(n —2k),

which is positive.

Hence we must have, > % But sincee can be approximated arbitrarily closely by elements
of Uy, by lettingv — 1, we must have,, < f,(e) = 1. Thuse, = 3.

If £ = %, thenQ(v) has exactly four positive zeros, allat= 1, so) has constant sign on
(0,1). Sincef2(0) > 0, we thus havé&(v) > 0 on (0, 1). Arguing as in the previous paragraph,
we derive again that, = 1.

Finally, if & < §, we have by8) tha (1 — A) < 0 for A > 0 sufficiently small, so that

condition [3.}) is satisfied. This completes the proof. O
Theorem 3.3. The sequencey)1<x<x is strictly increasing.

Proof. The desired result is equivalent,),<.<» being strictly decreasing, where

U
&= sup ———op(u) =1—¢y.
g u€(0,1) (1_U)2 k() :

By Proposition) 3.11,

ﬁ%(u) > ﬁ%ﬂ(u)
for eachu € (0, 1), so that
& >&y for 1<k<n-—1.
Further.&; is realised for some choice of for u = wy, say, and arguing as in Lemrpa|3.2 we
must havey, € (0,1)for1 <k < %.
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To show the inequalities are strict, suppose if possible that equality holds for some value of

k, so that
(39) Ao = = o nea ()
By Proposition) 3.11,
uj‘kﬁa)k(um >4 j";;l)z(m(um
so that by[(3.p)
ﬁ¢k(uk+l) > ﬁ%(uk) = &k
contradicting the definition of;. O

4. CHARACTERISATION OF ¢

In the previous section we saw that for< & < 7 the supremung, is realised for some

u = ug € (0,1). We now consider the determination«@f. For convenience we again employ

1
v = uk/”.

Theorem 4.1. (i) For1 <k < %, v = v is the unique solution oD, 1) of the equation

o [V (L L),
L E n—k) T n_k|

(i) Ifv e (0,1), thenv < v or v > v, according asb,(v) < 0 or $x(v) > 0.

Proof. Sincef, achieves a minimum at= v, € (0, 1), we have that

d nu" k-1 (k) g
—_ . + =0
dv | (v* —1)2 k n—k

for v = vy, this value ofv corresponding to a local maximum of the differentiated expression.
The left—hand side is the quotient of

k k
n(o" — 1)? |:Un+k1n2:— _ L (% I . ﬁ k) 4 kaln - k;]

n+k 1 1 k
— 20" — 1R [UT - (E Tz k) e k;]

by (v — 1)%. Removing this denominator and the factdrw™ — 1)v*~! from the numerator
gives thaty = v, satisfies[(4]1). Statement (i) will therefore follow if it can be shown that (4.1)
has a unique solution aif, 1). Uniqueness gives that the differentiated expression has positive
gradient forv < v, and negative gradient far > v,. Statement (ii) will then follow, since the
term cancelled is negative.

J. Inequal. Pure and Appl. Math4(3) Art. 58, 2003 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

SPECTRAL RESULTS 7

It therefore remains only to show théf,(v) has a unique zero of0,1). This we do as
follows. The polynomiatb,(v) may be written in descending powers:oés

B 2nn—k+ ok (1M o 2n—k+n—|—k‘
v T k) U\ Tk 2

T I R
k- n—k n—=k’

the coefficients of which exhibit four changes of sign. Hence by Descartes’ rule of $igns,
has at most four positive zeros.
By elementary algebra,

(42) Di(1) = B (1) = DY(1) = 0, B(1) = n*(2k — ),

so that®,(v) has a triple zero at = 1. Henced,(v) has at most one zero df, 1).
Now &, (v) < 0 and forA > 0 small

AS
dr(l—A) = —?dﬂk”(l) +0(A%) >0,
by Taylor's theorem and (4.2). Hende (v) has a zero o0, 1) and this must be unique. O
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