Journal of Inequalities in Pure and

 Applied Mathematics
A GENERALIZATION OF AN INEQUALITY OF JIA AND CAU

EDWARD NEUMAN

Department of Mathematics
Southern Illinois University
CARbONDALE, IL 62901-4408, USA.
edneuman@math.siu.edu
URL:http://www.math.siu.edu/neuman/personal.html
Received 13 January, 2004; accepted 10 February, 2004
Communicated by J. Sándor

Abstract. Let L, H_{r}, and A_{s} stand for the logarithmic mean, the Heronian mean of order r, and the power mean of order s, of two positive variables. A generalization of the inequality

$$
L \leq H_{r} \leq A_{s}
$$

$(1 / 2 \leq r \leq 3 s / 2)$, of G. Jia and J. Cao ([3]), is obtained.

Key words and phrases: Means of two variables; Inequalities.
2000 Mathematics Subject Classification. 26D15.

1. Introduction and Definitions

Let x and y be positive numbers. The Heronian mean of order $a \in \mathbb{R}$ of x and y, denoted by $H_{a} \equiv H_{a}(x, y)$, is defined as

$$
H_{a}= \begin{cases}\left(\frac{x^{a}+(x y)^{a / 2}+y^{a}}{3}\right)^{\frac{1}{a}}, & a \neq 0 \\ G, & a=0\end{cases}
$$

where $G=\sqrt{x y}$ is the geometric mean of x and y. When $a=1$, we will write H instead of H_{1}. Let us note that $H=(2 A+G) / 3$, where $A=(x+y) / 2$ is the arithmetic mean of x and y. The logarithmic mean L of x and y and the power mean A_{a} of order a of x and y are defined as

$$
L= \begin{cases}\frac{x-y}{\ln x-\ln y}, & x \neq y \\ x, & x=y,\end{cases}
$$

[^0]and
\[

A_{a}= $$
\begin{cases}\left(\frac{x^{a}+y^{a}}{2}\right)^{\frac{1}{a}}, & a \neq 0 \\ G, & a=0\end{cases}
$$
\]

respectively. Throughout the sequel the means of order one will be denoted by a single letter with the subscript 1 being omitted.

In the recent paper [3] the authors have established the following result. Let $\frac{1}{2} \leq r \leq \frac{3}{2} s$. Then

$$
\begin{equation*}
L \leq H_{r} \leq A_{s} \tag{1.1}
\end{equation*}
$$

All the means mentioned earlier in this section belong to the large family of means introduced by K.B. Stolarsky in [8]. This two-parameter class of means, denoted by $\mathcal{D}_{a, b}$, is defined as follows

$$
\mathcal{D}_{a, b}= \begin{cases}\left(\frac{b}{a} \cdot \frac{x^{a}-y^{a}}{x^{b}-y^{b}}\right)^{\frac{1}{(a-b)}}, & a b(a-b) \neq 0 \tag{1.2}\\ \exp \left(-\frac{1}{a}+\frac{x^{a} \ln x-y^{a} \ln y}{x^{a}-y^{a}}\right), & a=b \neq 0 \\ {\left[\frac{x^{a}-y^{a}}{a(\ln x-\ln y)}\right]^{\frac{1}{a}},} & a \neq 0, b=0 \\ G, & a=b=0\end{cases}
$$

For later use let us record some formulas which follow from (1.2). We have

$$
\begin{equation*}
H_{r}=\mathcal{D}_{3 r / 2, r / 2}, A_{s}=\mathcal{D}_{2 s, s}, L_{p}=\mathcal{D}_{p, 0}, I_{t}=\mathcal{D}_{t, t} \tag{1.3}
\end{equation*}
$$

Here L_{p} is the logarithmic mean of order p and I_{t} is called the identric mean of order t.
The inequalities (1.1) can be written in terms of the Stolarsky means as

$$
\mathcal{D}_{1,0} \leq \mathcal{D}_{3 r / 2, r / 2} \leq \mathcal{D}_{2 s, s}
$$

The goal of this note is to provide a short proof of a general inequality (see (2.1) which contains (1.1) as a special case.

2. Main Result

For the reader's convenience, we recall the Comparison Theorem for the Stolarsky means. Two functions

$$
k(p, q)= \begin{cases}\frac{|p|-|q|}{p-q}, & p \neq q \\ \operatorname{sign}(p), & p=q\end{cases}
$$

and

$$
l(p, q)= \begin{cases}L(p, q), & p>0, q>0 \\ 0, & p \cdot q=0\end{cases}
$$

play a crucial role in the Comparison Theorem which has been established by E.B. Leach and M.C. Sholander [4] and also by Zs. Páles [6].

Theorem 2.1 (Comparison Theorem). Let $a, b, c, d \in \mathbb{R}$. Then the comparison inequality

$$
\mathcal{D}_{a, b} \leq \mathcal{D}_{c, d}
$$

holds true if and only if $a+b \leq c+d$ and

$$
\begin{aligned}
l(a, b) \leq l(c, d) & & \text { if } 0 \leq \min (a, b, c, d), \\
k(a, b) \leq k(c, d) & & \text { if } \min (a, b, c, d)<0<\max (a, b, c, d), \\
-l(-a,-b) \leq-l(-c,-d) & & \text { if } \max (a, b, c, d) \leq 0 .
\end{aligned}
$$

In what follows the symbols \mathbb{R}_{+}and \mathbb{R}_{-}will stand for the nonnegative semi-axis and the nonpositive semi-axis, respectively.

The main result of this note reads as follows.
Theorem 2.2. Let $p, q, r, s, t \in \mathbb{R}_{+}$. Then the inequalities

$$
\begin{equation*}
\mathcal{D}_{p, q} \leq H_{r} \leq \mathcal{D}_{s, t} \tag{2.1}
\end{equation*}
$$

hold true if and only if

$$
\begin{equation*}
\max \left\{\frac{p+q}{2},(\ln 3) l(p, q)\right\} \leq r \leq \min \left\{\frac{s+t}{2},(\ln 3) l(s, t)\right\} . \tag{2.2}
\end{equation*}
$$

If $p, q, r, s, t \in \mathbb{R}_{-}$, then the inequalities (2.1) are reversed if and only if

$$
\begin{equation*}
\max \left\{\frac{s+t}{2},(-\ln 3) l(-s,-t)\right\} \leq r \leq \min \left\{\frac{p+q}{2},(-\ln 3) l(-p,-q)\right\} . \tag{2.3}
\end{equation*}
$$

Proof. We shall establish the first part of the assertion only. Using the Comparison Theorem we see that the inequalities

$$
\begin{equation*}
\mathcal{D}_{p, q} \leq \mathcal{D}_{3 r / 2, r / 2} \leq \mathcal{D}_{s, t} \tag{2.4}
\end{equation*}
$$

hold true if and only if

$$
\begin{equation*}
p+q \leq 2 r \leq s+t \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
l(p, q) \leq \frac{r}{\ln 3} \leq l(s, t) . \tag{2.6}
\end{equation*}
$$

Solving the inequalities for r we obtain (2.2). Since the middle term in (2.4) equals to H_{r} (see (1.3)), the assertion follows.

Remark 2.3. Letting $p=1, q=0, s:=2 s$ and $t=s$ in (2.1) and next using (1.1') we obtain the inequalities (1.1).

Corollary 2.4. Let $p, q, r, s, t \in \mathbb{R}_{+}$. Then the inequalities

$$
\begin{equation*}
L_{p} \leq H_{r} \leq A_{s} \leq I_{t} \tag{2.7}
\end{equation*}
$$

hold true if and only if $p \leq 2 r \leq 3 s \leq 2 t$.
Proof. Letting $q=0, s:=2 s$, and $t=s$ in (2.1) and (2.2) we obtain the first two inequalities in (2.7). It is easy to see, using the Comparison Theorem, that the inequality $\mathcal{D}_{2 s, s} \leq \mathcal{D}_{t, t}$ is valid if and only if $3 s \leq 2 t$. This completes the proof of the third inequality in (2.7) because of (1.3).

It is worth mentioning that (2.7) contains two known results: $H \leq I$ (see [7]) and $\sqrt{A L} \leq$ $A_{2 / 3} \leq I$ (see [5]). Indeed, letting $p=2, r=1, s=\frac{3}{2}$ and $t=1$ in Corollary 2.4 we obtain

$$
\begin{equation*}
\sqrt{A L} \leq H \leq A_{2 / 3} \leq I \tag{2.8}
\end{equation*}
$$

Here we have used the formula $L_{2}=\sqrt{A L}$.

The celebrated Gauss' arithmetic-geometric mean $A G M \equiv A G M(x, y)$ of $x>0$ and $y>0$ is the common limit of two sequences $\left\{x_{n}\right\}_{0}^{\infty}$ and $\left\{y_{n}\right\}_{0}^{\infty}$, i.e.,

$$
A G M=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n},
$$

where $x_{0}=x, y_{0}=y, x_{n+1}=\left(x_{n}+y_{n}\right) / 2, y_{n+1}=\sqrt{x_{n} y_{n}}(n \geq 0)$. This important mean is used for numerical evaluation of the complete elliptic integral of the first kind [2]

$$
R_{K}\left(x^{2}, y^{2}\right)=\frac{2}{\pi} \int_{0}^{\pi / 2}\left(x^{2} \cos ^{2} \phi+y^{2} \sin ^{2} \phi\right)^{-1 / 2} d \phi
$$

Gauss' famous result states that $R_{K}\left(x^{2}, y^{2}\right)=1 / \operatorname{AGM}(x, y)$.
Corollary 2.5. Let $x>0$ and $y>0$. Then

$$
\begin{equation*}
A G M \leq H_{3 / 4} . \tag{2.9}
\end{equation*}
$$

Proof. J. Borwein and P. Borwein [1, Prop. 2.7] have proven that $A G M \leq L_{3 / 2}$. On the other hand, using the first inequality in (2.7) with $p=3 / 2$ and $r=3 / 4$ we obtain $L_{3 / 2} \leq H_{3 / 4}$. Hence (2.9) follows.

Some results of this note can be used to obtain inequalities involving hyperbolic functions. For instance, using (2.7), (1.3), and (1.2), with $x=e$ and $y=e^{-1}$, we obtain

$$
\left(\frac{\sinh p}{p}\right)^{\frac{1}{p}} \leq\left(\frac{2 \cosh r+1}{3}\right)^{\frac{1}{r}} \leq(\cosh s)^{\frac{1}{s}} \leq \exp \left(-\frac{1}{t}+\operatorname{coth} t\right)
$$

$(0<p \leq 2 r \leq 3 s \leq 2 t)$.

References

[1] J.M. BORWEIN AND P.B. BORWEIN, Inequalities for compound mean iterations with logarithmic asymptotes, J. Math. Anal. Appl., 177 (1993), 572-582.
[2] B.C. CARLSON, Special Functions of Applied Mathematics, Academic Press, New York, 1977.
[3] G. JIA and J. CAO, A new upper bound of the logarithmic mean, J. Ineq. Pure and Appl. Math. 4(4) (2003), Article 80. [ONLINE: http: // jipam.vu.edu.au].
[4] E.B. LEACH and M.C. SHOLANDER, Multi-variable extended mean values, J. Math. Anal. Appl., 104 (1984), 390-407.
[5] E. NEUMAN AND J. SÁNDOR, Inequalities involving Stolarsky and Gini means, Math. Pannonica, 14(1) (2003), 29-44.
[6] Zs. PÁLES, Inequalities for differences of powers, J. Math. Anal. Appl., 131 (1988), 271-281.
[7] J. SÁNDOR, A note on some inequalities for means, Arch. Math. (Basel), 56(5) (1991), 471-473.
[8] K.B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag., 48(2) (1975), 87-92.

[^0]: ISSN (electronic): 1443-5756
 (C) 2004 Victoria University. All rights reserved.

 010-04

