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ABSTRACT. The well-knownsecond moment Heisenberg-Weyl inequality (or uncertainty rela-
tion) states: Assume that : R — C is a complex valued function of a random real vari-
able z such thatf € L?*(R), whereR = (—oo,00). Then the product of the second mo-

2
ment of the random reat for |f|2 and the second moment of the random redbr ‘f‘ is

at IeastER7|f|2/47r, where f is the Fourier transform of, f (¢) = Jpe 2™ f (z) do and

fla) = [ e¥méf (€)dg, and Eg 2 = Jx |f (x)|” d=. This uncertainty relation is well-
known in classical qguantum mechanics. In 2004, the author generalized the afore-mentioned
result tothe higher order moments fdt?(R) functionsf. In this paper, a refined form of the
generalized Heisenberg-Waybeinequality is established.
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1. INTRODUCTION

The serious question of certainty in science was high-lighted by Heisenberg, in 1927, via
his “uncertainty principle”[[2]. He demonstrated, for instance, the impossibility of specifying
simultaneously the position and the speed (or the momentum) of an electron within an atom. In
1933, according to Wien€r|[7H'pair of transforms cannot both be very snidlhis uncertainty
principle was stated in 1925 by Wiener, according to Wiener’s autobiography [8, p. 105-107],
in a lecture in Goéttingen. The following result of tieisenberg-Weyl Inequalitg credited
to Pauli according to Weyl [6, p. 77, p. 393—-394]. In 1928, according to Rauli {b¢ 1ess

2
the uncertainty ir1f|2, the greater the uncertainty iry| , and conversely This result does not
actually appear in Heisenberg's seminal papér [2] (in 1927).
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2 JOHN MICHAEL RASSIAS

In 1998, Burke Hubbard [1] wrote a remarkable book on wavelets. According to her, most
people first learn the Heisenberg uncertainty principle in connection with quantum mechanics,
but it is also a central statement of information processing. The following second order moment
Heisenberg-Weyl inequality provides a precise quantitative formulation of the above-mentioned
uncertainty principle.

1.1. Second Moment Heisenberg-Weyl Inequality [d]], [4], [5]). For any f € L*(R), f :
R — C, such that

13a = [ 1 @F do = Eg g
any fixed but arbitrary constants,,, &, € R, and for the second order moments
(adaygp = 7y = [ (@ =2 | @ da

and

Fe) e,

(MQ)R7|]?|2 = Uﬂ2&|f|2 = /R (€ - fm)2

the second order moment Heisenberg-Weyl inequality

(H) 2 o2 > ”f“;{R
: ORI TR |7 T Ton2

holds. Equality holds ifff;)) if and only if the generalized Gaussians
f () = coexp (2mixé,,) exp (—c (z — xm)Q)

hold for some constants € C andc¢ > 0.
The Heisenberg-Weyl inequality ispectral analysisays that the product of the effective
durationAx and the effective bandwidthh¢ of a signal cannot be less than the valyéer,

whereAz? = aﬂilf'Q/ER,mz andA¢&2= UI%R,|f|2/ER7|f|2 with f : R — C, f : R — C defined

asin[H;), and

(PPR) Baye = [ @)fde = [ |F©)
R R

according to the Plancherel-Parseval-Rayleigh identity.

2
d¢ = E,

71

1.2. Fourth Moment Heisenberg-Weyl Inequality ({4, pp. 26-27). For any f € L*(R),
f: R — C, such that

132 = [ 1f @ do = B
any fixed but arbitrary constants,,, &, € R, and for the fourth order moments
ey = [ (@ 2)! 1 @ do
and
—~ 2
o _ 4
ey = [ €= &[T i@ de

the fourth order moment Heisenberg-Weyl inequality

1
(Ha) (M4)R,|f\2 : (“4)R,\ﬂ2 2> WES,R,]%
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holds, where
Pany =2 [ [(1=47€a3) [f@) = 531/ () = dntuatin (§(@F @) ] da

withzs = x — x,, & = € — &, Im(+) is the imaginary part of(-), and |Ey g ¢| < oco.
The “inequality” holds, unlesg (z) =
We note that if the ordinary differential equation of second order

(ODE) faz) = —2c225 fo()

holds, withaw = —27&,,,4, fa(z) = €** f(z), and a constant, = 1k3 > 0, ks € R andk, # 0,
then “equality” in seems to occur. However, the solution of this differential equation
)B), given by the function

; 1 1
f(x) = /Jas|e*mesm {Czon]—l/zi (5 | o x?) +cadija (5 | o x?)} ,

in terms of the Bessel functionk,; ,, of the first kind of orderst1/4, leads to a contradiction,
because thig ¢ L*(R). Furthermore, a limiting argument is required for this problem. For
the proof of this inequality seél[4]. It ispento investigate cases, where the integrand on the
right-hand side of the integral df, r ; will be nonnegative. For instance, foy, = &, = 0,
this integrand is= | f(z)|? — 2| f'(z)]* (= 0).

In 2004, we [[4] generalized the Heisenberg-Pauli-Weyl inequalitR in= (—o0, 00). In
this paper, a refined form of this generalizddisenberg-Weyl type inequality established in
I = [0,00). Afterwards, an open problem is proposed on some pertinent extremum principle.
However, the above-mentioned Fourier transform is consider@&] wmhile our results in this
paper are restricted tb = [0,00). Futhermore, the corresponding inequality is investigated
in R, as well. Our second moment Heisenberg-Weyl type inequality and the fourth moment
Heisenberg-Weyl type inequality are of the following for(ig), (i = 1, 2).

1.3. Second Moment Heisenberg-Weyl Type Inequality [@]). For any f € L*(I), I =
[0,00), f: I — C, such thaﬂ|f||§, [ \f (= )P dx = Ey ;2. any fixed but arbitrary constant
2. € R, and for the second order moment

adsyg = Ty = [ @ = an)?If ()" da,

the second order moment Heisenberg-Weyl type inequality

() e W= 18 = 1 [ [1rwre]

holds, where|E ; ;| < oo. Equality holds in[R,) if and only if the Gaussiang (z) =
coexp (—c (v — x,,)%) hold for some constants € C andc > 0.

We note that this inequalityf{;) still holdsif we replace the interval of integratiahwith R,
withoutany other change.

1.4. Fourth Moment Heisenberg-Weyl Type Inequality [4]). For any f € L*(I), I =
[0,00), f: I — C, such thaﬂ|f||§1 [ \f (= )P dx = E, 1712 any fixed but arbitrary constant
2., € R, and for the fourth order moment

() gt = / (& — )" |f (@) de,
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the fourth order moment Heisenberg — Weyl type inequality

1
(Ry) ()i ggp - 15 = B3 s = [ / @) do = 23|/ (@) dm]

holds, wherers = © — z,,,, and | E5 1 ¢| < o0.

The “inequality” holds, unlesg(z) = 0.

We note that this inequality/() still holdsif we replace the interval of integratiahwith R,
withoutany other change except that one on the following condifion (2.1), whereco has
to be substituted withe| — oc.

We omit the proofs of the inequaliti€?;) (i = 1, 2) as special cases dhe corresponding
proof of the following generarheorenj 2[{with A = 0) of this paper. Furthermore, we state
our following fourpertinent propositionsTheir proofs are identical or analogous to the proofs
of the corresponding propositions of [4].

2

Proposition 1.1(Pascal type combinatorial identity] [4]f 0 < [£] is the greatest integex £,
then

©) ko [k—i +k—1 k—i\  k+1 [(k—i+1
k—1 i k—i\i—1) k—i+1 i ’

holds for any fixed but arbitrary: € N = {1,2,...}, and0 < i < [£] fori € Ny =
{0,1,2,...} such that( *,) = 0.

Proposition 1.2 (Generalized differential identity, [4])If f : I — C is a complex valued
function of a real variabler, I = [0, 00), 0 < [%] is the greatest integer %, /) = 4 f and
(-) is the conjugate of-), then

_ [] . — k—2i 9
O D@0 0i@=Y 0 () Sl @

: k—1i )
=0

[MIE

holds for any fixed but arbitraryt € N = {1,2,...}, such that) < i < [£] fori € Ny =
{0,1,2,...}.
We note that the proof of [*) requires the application of the new iderjtity (C). Furthermore,

we note that the abowdifferential identity[(F) still holdsf we replace the interval of integration
I with R, withoutany other change.

Proposition 1.3 (P"-derivative of product,[[4])If f; : I — C (i = 1,2) are two complex
valued functions of a real variable, then thep'-derivative of the producf, f, is given, in

terms of the lower derivative&™, £~ by
p

(L1 () =3 (D) g

m=0

for any fixed but arbitrary € Nj.

Proposition 1.4(Generalized integral identity, [4])f f : I — C is a complex valued function
of a real variablez, I = [0,00), andh : I — R is a real valued function aof, as well asw,
w, : I — R are two real valued functions af, such thatv,(z) = (z — z,,)?w(z) for any fixed
but arbitrary constantz,,, € R andv = p — 2¢, 0 < ¢ < [%], then

)
(1.2) /wp (z) B (z) dx = Z_: (-1)" wg) (2) K7D () + (—=1)" / w}(,”) (x) h(z)dx
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holds for any fixed but arbitrary € Ny andv € N,and allr : »=0,1,2,...,v — 1, as
well as the integral identity

ii)
/wp (z) BV (z) dz = (—1)" /wl(,”) () h(z)dx
I I
holds if the limiting condition

ii)

v—1

Z (—1)" lim w( D (z) KT () = 0,
r=0

holds, and if all of these integrals exist.

We note that the proof of (1.2) requires the application of the differential ideptity (1.1). Fur-
thermore, we note that the abowgegral identityii) still holds if we replace the interval of
integration/ with R, withoutany other change except that on the abbwating condition iii),
wherex — oo has to be substituted with| — oo.

2. REFINED HEISENBERG-WEYL TYPE INEQUALITY

We assume that : I — C is a complex valued function of a real variableandw : I — R
a real valued weight function of, as well ast,,, any fixed but arbitrary real constant. Also we
denote

()1 1 = / WP (@) (@ — ) |f () d

the2p'* weighted moment af for \f\Q with weight functionw : I — R. Besides we denote
p pP—q
gty (1)
¢ =(=1) el G
if 0 < ¢ < [2] (=the greatest integet 2),

= (177 [ )]0 @) da,

if 0 <1 <q< [E] andw, = (z — z,,)" w. We assume that all these integrals exist. Finally

we denoteD, = > ¢ I, if | D,| < oo holds for0 < ¢ < [2], and

[p/2]

plf_ZCDcn

if |E,.1,¢| < oo holds forp € N. In addition, we assumiiae condition

@) > 1w @) (10 @) =0,
r=0

for 0 <1< ¢ < [&]. Furthermore,

(2.2) Byl = /B2, + 442,

whereA = [|u| zo — |[v]| yo, with L2—norm |-||* = [, |-*, inner produc(|u|, [v]) = [, |u]|v],
and

u=wx)ef(z), v=fP); zy= /|v x)|de, yo = /|u x)|dz,
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as well as
1 2 lrxz—pN2
h(z) = ¥ e 1559
NG
or
1 F n+1 1
(Hr) h(z) =2 S wl

Vnm | T(5) (1+_ﬂ)"“’

wherey is the meang the standard deviation, amde N, and

nmmwzﬁmem=L

Theorem 2.1.1f (2.1) holds andf € L*(R), then
(R;) (//wpw[m (/Hf( ”21—\/— |E pf D

holds for any fixed but arbitrary € N.

Equality holds in iff v(z) = —2c¢,u(x) holds for constants, > 0, and any fixed but
arbitrary p € N; ¢, = k2/2 > 0, k, € Randk, # 0,p € N,andA = 0, or h(z) =
c1pu(x) + copv(z) andzg = 0, or yo = 0, wherec;, (i = 1,2) are constants andl? > 0.

We note that this mequaht@) still holdsif we replace the interval of integratiahwith R,
withoutany other change except that one on the above condition (2.1), whereo has to be
substituted withz| — oo, and the choice af from () must be replaced with

]_ 1z—p\2
h(x) = e"1(50) )
(@) V2o
or
1 1" n+1 1
(Hg) h(z) = - 5)

wherey is the meang the standard deviation, amde N.
Proof. In fact, one gets
(2.3) My = M, — A?

= (H2p) w,l,|f|? Hf ”21 — A2

- ([w @@y @k ([0 ) -

(2.4) = [Jul® [lv]” — A®

with u = w(z)zi fix), v = fP)(z), wherez; = x — z,,.
From (2.3) —[(2.4)the Cauchy-Schwarz inequalitl| , |v|) < |Ju|| ||v|| and the non-negativeness
of the following Gram determinanf3] or

Jul®  (lul, |§|) Yo
(2.5) 0<1| (lv],[ul) o[ o
Yo To 1
20 12 2 2
= llull* ol = (Jul, [0])? = [lull® 25 — 2(|ul , [v])zoyo + 01" 45]
2 2
0 < flull®[lv]l* = (lul, Jv])* — 47
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with
A= [lull 2o — o] o,
Ty = /\ x)|dz,
Yo = /|U |d93
HM@HI[W@HMIL
we find

@) > (o) = (/I|u||vy>2:</I|wp(x)f(x)f(p)<x)‘dx>2,

wherew, = (z — z,,,)Pw. In general, i
(u,0)* < [lul® [Jv]* — B?,

where
k= A/ Al = lullz = vlly,
such thate = zo/ [|Al, y = o/ [|1]]-
In this case A has to be replaced b in all the pertinent relations of this paper
From [2.6) andhe complex inequality,

lab] > = L (ab—l—ab)
with a = w, (z) f (), b = f® (z), we get

1 2
@7 M5 = [ [ 0T + 90 Fda
From (2.7) and the generalized differential identity (*), one finds
D ?
dr—24
(2.8) My > 212 /pr (x) ZC’qup_zq ‘f(q) (m)f dx
q=0

From the generalized integral identify ([L.2), the conditjon|(2.1), and that all the integrals exist,
one gets

dpr—2a
2 l 2
/pr AP op—2q |f ‘ dr = )p q/prp 2q) ( )‘f() )| dm:]ql.

Thus we find )

[p/2] 1
_ 2
5 |2c (z )| = s
whereE, ; y = 2[”/2] CyDy, it |E, 1 ¢| < oo holds, orthe refined moment uncertainty formula

Mp—\/— ‘p[f’ ( \/— ‘Ep1f|)
whereM, = My 4 A®.

We note that the corresponding Gram matrix to the above Gram determinant is positive def-
inite if and only if the above Gram determinant is positive if and only,it, h are linearly
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independent. In addition, the equality [n (2.5) holds if and onl} i& a linear combination
of linearly independent andv andu = 0 or v = 0, completing the proof of the above theo-
rem. 0

3. APPLIED REFINED HEISENBERG-WEYL TYPE | NEQUALITY

We apply the above Theorgm P.1 to the following simpler cases of the refined Heisenberg-
Weyl type inequality.

3.1. Refined Second Moment Heisenberg WeyI Type InequalityFor any f € L*(I), I =
[0,00), f: I — C,such thalﬂfHN = [,|f (= ) de = E, 1512 any fixed but arbitrary constant
z,, € R, and for the second order moment

adsygp = Ty = [ @ = an)?If () da,

the second order moment Heisenberg-Weyl type inequality

1 1 2
(R ) (M2>I,\f|2 ) ”f/”;,z 4 ( 1If = 1 [/I|f($)|2dx+4z42} ,

holds, wherd E; ; ;| < oo.

Equality holds in(R;) iff v(z) = —2c;u(x) holds for constants; > 0, and any fixed
o1 =k)2>0,k € ]R and k; 7& 0,and A = 0, or h(z) = cpyu(z) + exv(z) andzy = 0,
or yo = 0, Wherecﬂ (i = 1,2) are constants andi? > 0.

We note that this inequalityf{j) still holdsif we replace the interval of integratiahwith R,
withoutany other change except that one on the choide wfhere has to be replaced with

3.2. Refined Fourth Moment Heisenberg WeyI Type Inequality. For any f € L*(I), [ =
[0,00), f: I — C, such thaq|f\|21 = [,1f(z ) de = E, 1512 any fixed but arbitrary constant
T € R, and for the fourth order moment

sy = [ (@ = )11 @) o
the fourth order moment Heisenberg-Weyl type inequality

) Gy 11, = 4(Bin? = ¢ | [ [1F o= 217 @) o+

holds, wherer; = x — z,,,, and | E3; | < oo.

Equality holds in[R3) iff v(z) = —2c,u(z) holds for constants, > 0, and any fixed but
arbitrary ¢, = %k;g >0, kp € Randky # 0, and A = 0, or h(z) = cpu(x) + cov(x) and
zo = 0, or yo = 0, wherec;, (i = 1,2) are constants and!? > 0.

We note that this inequalityf;) still holdsif we replace the interval of integratiahwith R,
withoutany other change except that one on the above condition (2.1), whereo has to be
substituted withz| — oo, and the choice o, where [{7;) has to be replaced witff).
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Remark 3.1. Takew,(z) = z?, andw\’ (z) = p! (p = 1,2, 3,4, ...). Thus
By = - [ @ do = B,
Paiy =2 [ [If @F = 2|1 (0] o
Puy = =3 [ 217 @ =321 (@) as,
Buay =2 [ [1207 @F = 242° |1 (@) + o1 ()] o

respectively, if £, 1 s| < oo holds forp = 1,2, 3, 4. Therefore
Dq:Aquqq:[qq: (_1)p2q/wp 2) ’f )‘Qdﬂ%
I

if | Dy < o0, foro < ¢ < [&].

Furthermore,
wP 0 () = (@) P = p(p—1)--- (p— (p— 29) + 1) 2”29,
or | |
(p—29) _ b 2g _ P 2 < g< p
w r) = r = xr <qg< .
e P A e 5
In addition |
D =(—1 p—2q p' / 2q de‘,
o= G [0 @)
if | Dy| < oo holds for0 < ¢ < [&].
Therefore
Ip/2] Ip/2] b (p—q . o
= CyD, = —1)7—— _1p—q_'/qu @ (g dx],
Frts Z qz;[( )p—q<Q)H( " g ), @
or the formula
[p/2]

b= [0 g (7 ) e o

if |E,1,¢] < oo holds for0 < ¢ < [%], whenw = 1 andz,, = 0.
Let

(may)s e = [ @1 @ do

be the2p'” moment ofz for | f|* about the origine,, = 0.

Denote ‘
- :_1P—QL.L(p_q>,
pa = (1) p—q (29)
forp € Nand0 < ¢ < [2].

Thus
[p/2]

,,If_/Za,,qx2q]f )\Qdfv, it [Epryl < oo

holds for0 < ¢ < [2].
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Corollary 3.2. Assume thaf : I — Cis a complex valued function of a real variablew = 1,
r, = 0. If f € L?(I), then the following inequality

2

[p/2]
1 p
(Sp) 2</(m2p)1,|f\2 {/Hf(p)“z,I 2 % Z €pa (m2q)17|f<q)‘2 + 4A2,
q=0

holds for any fixed but arbitrary € N and0 < ¢ < [Z], where

2
(mgq)l7|f<q)|2 = /I(L‘QQ ‘f(‘I) (;p)| dx
and A is analogous to the one in the above theorem.

Similar conditions are assumed for tteguality” in (S,) with respect to those in the above
theorem. We note that this inequalify,] still holdsif we replace the interval of integratiah
with R, withoutany other change except that one on the above condjtioh (2.1), wherec
has to be substituted withk| — oo, and the choice of, where has to be replaced with

Problem 1. Concerning our inequality/{;) further investigation is needed for the case of the
“equality”. As a matter of fact, our functiofi is not in L?(R), leading the left-hand side to be
infinite in that “equality”. A limiting argument is required for this problem. On the other hand,
why does not the corresponding “inequalit@ attain an extremal if.?(R)?

Here are some of our old results [4] related to the above problem. In particular, if we take
into account these results contained in Section 9 on pp. 46-70 [4], where the Gaussian function
and the Euler gamma functidnare employed, then via Corollary 9.1 on pp 50-51[df [4] we
conclude that “equality” in &,) of [4, p. 22],p € N = {1,2,3,...}, holds only forp = 1.
Furthermore, employing the above Gaussian function, we established the follextieghum
principle (via (9.33) on p. 51.[4]):

(R) R(p) = 1/2m, peN

for the corresponding “inequality” inH{,) of [4, p. 22],p € N, where the constarit/27 “on

the right-hand side” is the best lower bound foe N. Therefore “equality” in {,,) of [4, p.

22],p € Nandp # 1, in Section 8.1 on pp 19-46][4] cannot occur under the afore-mentioned
well-known functions. On the other hand, there is a lower bound “on the right-hand side” of the
corresponding “inequality[f)) if we employ the above Gaussian function, which bound equals

4 .
to ﬁEﬁM — 1 _lel with ¢y, ¢ constants and, € C, ¢ > 0, because’ ;2 = lco|? /z

51273 ¢
Analogous pertinent results are investigated via our Corollaries 9.2-9.6 on pp 53-68 [4].
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