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Abstract
The well-known second moment Heisenberg-Weyl inequality (or uncertainty re-
lation) states: Assume that f : R → C is a complex valued function of a
random real variable x such that f ∈ L2(R), where R = (−∞,∞). Then the
product of the second moment of the random real x for |f |2 and the second

moment of the random real ξ for
∣∣∣f̂ ∣∣∣2 is at least ER,|f |2

/
4π, where f̂ is the

Fourier transform of f , f̂ (ξ) =
∫

R e−2iπξxf (x) dx and f (x) =
∫

R e2iπξxf̂ (ξ) dξ,
and ER,|f |2 =

∫
R |f (x)|2 dx. This uncertainty relation is well-known in classical

quantum mechanics. In 2004, the author generalized the afore-mentioned re-
sult to the higher order moments for L2(R) functions f. In this paper, a refined
form of the generalized Heisenberg-Weyl type inequality is established.

2000 Mathematics Subject Classification: 26, 33, 42, 60, 62.
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1. Introduction
The serious question of certainty in science was high-lighted by Heisenberg, in
1927, via his “uncertainty principle” [2]. He demonstrated, for instance, the
impossibility of specifying simultaneously the position and the speed (or the
momentum) of an electron within an atom. In 1933, according to Wiener [7] “ a
pair of transforms cannot both be very small.” This uncertainty principle was
stated in 1925 by Wiener, according to Wiener’s autobiography [8, p. 105–
107], in a lecture in Göttingen. The following result of theHeisenberg-Weyl
Inequality is credited to Pauli according to Weyl [6, p. 77, p. 393–394]. In
1928, according to Pauli [6] “ the less the uncertainty in|f |2, the greater the

uncertainty in
∣∣∣f̂ ∣∣∣2, and conversely.” This result does not actually appear in

Heisenberg’s seminal paper [2] (in 1927).
In 1998, Burke Hubbard [1] wrote a remarkable book on wavelets. Ac-

cording to her, most people first learn the Heisenberg uncertainty principle in
connection with quantum mechanics, but it is also a central statement of in-
formation processing. The following second order moment Heisenberg-Weyl
inequality provides a precise quantitative formulation of the above-mentioned
uncertainty principle.

1.1. Second Moment Heisenberg-Weyl Inequality ([1], [4], [5])

For anyf ∈ L2(R), f : R → C, such that

‖f‖2
2,R =

∫
R
|f (x)|2 dx = ER,|f |2 ,
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mailto:jrassias@primedu.uoa.gr
http://jipam.vu.edu.au/


On the Refined
Heisenberg-Weyl Type

Inequality

John Michael Rassias

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 4 of 23

J. Ineq. Pure and Appl. Math. 6(2) Art. 45, 2005

http://jipam.vu.edu.au

any fixed but arbitrary constantsxm, ξm ∈ R, and for the second order moments

(µ2)R,|f |2 = σ2
R,|f |2 =

∫
R

(x− xm)2 |f (x)|2 dx

and

(µ2)R,|f̂|2 = σ2

R,|f̂|2 =

∫
R

(ξ − ξm)2
∣∣∣f̂ (ξ)

∣∣∣2 dξ,

the second order moment Heisenberg-Weyl inequality

(H1) σ2
R,|f |2 · σ

2

R,|f̂|2 ≥
‖f‖4

2,R

16π2
,

holds. Equality holds in (H1) if and only if the generalized Gaussians

f (x) = co exp (2πixξm) exp
(
−c (x− xm)2)

hold for some constantsco ∈ C andc > 0.
The Heisenberg-Weyl inequality inspectral analysissays that the product of

the effective duration∆x and the effective bandwidth∆ξ of a signal cannot be

less than the value1/4π, where∆x2 = σ2
R,|f |2

/
ER,|f |2 and∆ξ2= σ2

R,|f̂|2
/

ER,|f |2

with f : R → C, f̂ : R → C defined as in (H1), and

(PPR) ER,|f |2 =

∫
R
|f(x)|2dx =

∫
R

∣∣∣f̂ (ξ)
∣∣∣2 dξ = ER,|f̂|2

according to the Plancherel-Parseval-Rayleigh identity.
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1.2. Fourth Moment Heisenberg-Weyl Inequality
([4, pp. 26–27])

For anyf ∈ L2(R), f : R → C, such that

‖f‖2
2,R =

∫
R
|f (x)|2 dx = ER,|f |2 ,

any fixed but arbitrary constantsxm, ξm ∈ R, and for the fourth order moments

(µ4)R,|f |2 =

∫
R

(x− xm)4 |f (x)|2 dx

and

(µ4)R,|f̂|2 =

∫
R

(ξ − ξm)4
∣∣∣f̂ (ξ)

∣∣∣2 dξ,

the fourth order moment Heisenberg-Weyl inequality

(H2) (µ4)R,|f |2 · (µ4)R,|f̂|2 ≥
1

64π4
E2

2,R,f ,

holds, where

E2,R,f = 2

∫
R

[ (
1− 4π2ξ2

mx2
δ

)
|f(x)|2 − x2

δ |f ′(x)|2

− 4πξmx2
δ Im

(
f(x)f ′(x)

) ]
dx,

with xδ = x − xm, ξδ = ξ − ξm, Im(·) is the imaginary part of(·), and
|E2,R,f | < ∞.
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The “inequality” (H2) holds, unlessf(x) = 0.
We note that if the ordinary differential equation of second order

(ODE) f ′′α(x) = −2c2x
2
δfα(x)

holds, withα = −2πξmi, fα(x) = eαxf(x), and a constantc2 = 1
2
k2

2 > 0,
k2 ∈ R and k2 6= 0, then “equality” in (H2) seems to occur. However, the
solution of this differential equation (ODE), given by the function

f(x) =
√
|xδ|e2πixξm

[
c20J−1/4

(
1

2
|k2|x2

δ

)
+ c21J1/4

(
1

2
|k2|x2

δ

)]
,

in terms of the Bessel functionsJ±1/4 of the first kind of orders±1/4, leads to
a contradiction, because thisf /∈ L2(R). Furthermore, a limiting argument is
required for this problem. For the proof of this inequality see [4]. It is open
to investigate cases, where the integrand on the right-hand side of the integral
of E2,R,f will be nonnegative. For instance, forxm = ξm = 0, this integrand
is:= |f(x)|2 − x2|f ′(x)|2 (≥ 0).

In 2004, we [4] generalized the Heisenberg-Pauli-Weyl inequality inR =
(−∞,∞). In this paper, a refined form of this generalizedHeisenberg-Weyl
type inequalityis established inI = [0,∞). Afterwards, an open problem is
proposed on some pertinent extremum principle. However, the above-mentioned
Fourier transform is considered inR, while our results in this paper are re-
stricted toI = [0,∞). Futhermore, the corresponding inequality is investi-
gated inR, as well. Our second moment Heisenberg-Weyl type inequality and
the fourth moment Heisenberg-Weyl type inequality are of the following forms
(Ri), (i = 1, 2).
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1.3. Second Moment Heisenberg-Weyl Type Inequality ([4])

For anyf ∈ L2(I), I = [0,∞), f : I → C, such that‖f‖2
2,I =

∫
I
|f (x)|2 dx =

EI,|f |2, any fixed but arbitrary constantxm ∈ R, and for the second order
moment

(µ2)I,|f |2 = σ2
I,|f |2 =

∫
I

(x− xm)2 |f (x)|2 dx,

the second order moment Heisenberg-Weyl type inequality

(R1) (µ2)I,|f |2 · ‖f
′‖2

2,I ≥
1

4
E2

1,I,f =
1

4

[
−
∫

I

|f(x)|2dx

]2

,

holds, where|E1,I,f | < ∞. Equality holds in (R1) if and only if the Gaussians
f (x) = co exp

(
−c (x− xm)2) hold for some constantsco ∈ C andc > 0.

We note that this inequality (R1) still holds if we replace the interval of
integrationI with R, withoutany other change.

1.4. Fourth Moment Heisenberg-Weyl Type Inequality ([4])

For anyf ∈ L2(I), I = [0,∞), f : I → C, such that‖f‖2
2,I =

∫
I
|f (x)|2 dx =

EI,|f |2, any fixed but arbitrary constantxm ∈ R, and for the fourth order mo-
ment

(µ4)I,|f |2 =

∫
I

(x− xm)4 |f (x)|2 dx,

the fourth order moment Heisenberg – Weyl type inequality

(R2) (µ4)I,|f |2 · ‖f
′′‖2

2,I ≥
1

4
E2

2,I,f =

[∫
I

[
|f(x)|2 dx− x2

δ |f ′(x)|2
]
dx

]2

http://jipam.vu.edu.au/
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holds, wherexδ = x− xm, and |E2,I,f | < ∞.
The “inequality” (R2) holds, unlessf(x) = 0.
We note that this inequality (R2) still holds if we replace the interval of

integrationI with R, withoutany other change except that one on the following
condition (2.1), wherex →∞ has to be substituted with|x| → ∞.

We omit the proofs of the inequalities(Ri) (i = 1, 2) as special cases ofthe
corresponding proof of the following generalTheorem2.1 (with A = 0) of this
paper. Furthermore, we state our following fourpertinent propositions. Their
proofs are identical or analogous to the proofs of the corresponding propositions
of [4].

Proposition 1.1 (Pascal type combinatorial identity, [4]). If 0 ≤
[

k
2

]
is the

greatest integer≤ k
2
, then

(C)
k

k − i

(
k − i

i

)
+

k − 1

k − i

(
k − i

i− 1

)
=

k + 1

k − i + 1

(
k − i + 1

i

)
,

holds for any fixed but arbitraryk ∈ N = {1, 2, . . .}, and0 ≤ i ≤
[

k
2

]
for

i ∈ N0 = {0, 1, 2, . . .} such that
(

k
−1

)
= 0.

Proposition 1.2 (Generalized differential identity, [4]). If f : I → C is a
complex valued function of a real variablex, I = [0,∞), 0 ≤

[
k
2

]
is the

greatest integer≤ k
2
, f (j) = dj

dxj f , and(·) is the conjugate of(·), then

(*) f (x) f (k) (x) + f (k) (x) f̄ (x)

=

[ k
2 ]∑

i=0

(−1)i k

k − i

(
k − i

i

)
dk−2i

dxk−2i

∣∣f (i) (x)
∣∣2,

http://jipam.vu.edu.au/
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holds for any fixed but arbitraryk ∈ N = {1, 2, . . .}, such that0 ≤ i ≤
[

k
2

]
for

i ∈ N0 = {0, 1, 2, . . .}.

We note that the proof of (* ) requires the application of the new identity (C).
Furthermore, we note that the abovedifferential identity (* ) still holds if we
replace the interval of integrationI with R, withoutany other change.

Proposition 1.3 (P th-derivative of product, [4]). If fi : I → C (i = 1, 2) are
two complex valued functions of a real variablex, then thepth-derivative of the
productf1f2 is given, in terms of the lower derivativesf

(m)
1 , f

(p−m)
2 by

(1.1) (f1f2)
(p) =

p∑
m=0

( p

m

)
f

(m)
1 f

(p−m)
2

for any fixed but arbitraryp ∈ N0.

Proposition 1.4 (Generalized integral identity, [4]). If f : I → C is a complex
valued function of a real variablex, I = [0,∞), andh : I → R is a real valued
function ofx, as well as,w, wp : I → R are two real valued functions ofx,
such thatwp(x) = (x− xm)pw(x) for any fixed but arbitrary constantxm ∈ R
andv = p− 2q, 0 ≤ q ≤

[
p
2

]
, then

i)

(1.2)
∫

wp (x) h(v) (x) dx

=
v−1∑
r=0

(−1)r w(r)
p (x) h(v−r−1) (x) + (−1)v

∫
w(v)

p (x) h (x) dx

http://jipam.vu.edu.au/
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holds for any fixed but arbitraryp ∈ N0 and v ∈ N, and all r : r =
0, 1, 2, . . ., v − 1, as well as the integral identity

ii) ∫
I

wp (x) h(v) (x) dx = (−1)v

∫
I

w(v)
p (x) h (x) dx

holds if the limiting condition

iii)
v−1∑
r=0

(−1)r lim
x→∞

w(r)
p (x) h(v−r−1) (x) = 0,

holds, and if all of these integrals exist.

We note that the proof of (1.2) requires the application of the differential
identity (1.1). Furthermore, we note that the aboveintegral identityii) still holds
if we replace the interval of integrationI with R, without any other change
except that on the abovelimiting condition iii), where x → ∞ has to be
substituted with|x| → ∞.

http://jipam.vu.edu.au/
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2. Refined Heisenberg-Weyl Type Inequality
We assume thatf : I → C is a complex valued function of a real variablex,
andw : I → R a real valued weight function ofx, as well asxm any fixed but
arbitrary real constant. Also we denote

(µ2p)w,I,|f |2 =

∫
I

w2 (x) (x− xm)2p |f (x)|2 dx

the 2pth weighted moment ofx for |f |2 with weight functionw : I → R.
Besides we denote

Cq = (−1)q p

p− q

(
p− q

q

)
,

if 0 ≤ q ≤
[

p
2

]
(= the greatest integer≤ p

2
),

Iql = (−1)p−2q

∫
I

w(p−2q)
p (x)

∣∣f (l) (x)
∣∣2 dx,

if 0 ≤ l ≤ q ≤
[

p
2

]
, andwp = (x− xm)p w. We assume that all these integrals

exist. Finally we denoteDq =
∑q

l=0 Iql, if |Dq| < ∞ holds for0 ≤ q ≤
[

p
2

]
,

and

Ep,I,f =

[p/2]∑
q=0

CqDq,

if |Ep,I,f | < ∞ holds forp ∈ N. In addition, we assumethe condition:

(2.1)
p−2q−1∑

r=0

(−1)r lim
x→∞

w(r)
p (x)

(∣∣f (l) (x)
∣∣2)(p−2q−r−1)

= 0,

http://jipam.vu.edu.au/
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for 0 ≤ l ≤ q ≤
[

p
2

]
. Furthermore,

(2.2) |E∗
p,I,f | =

√
E2

p,I,f + 4A2,

whereA = ‖u‖x0 − ‖v‖ y0, with L2−norm ‖·‖2 =
∫

I
|·|2, inner product

(|u| , |v|) =
∫

I
|u| |v|, and

u = w(x)xp
δf(x), v = f (p)(x);

x0 =

∫
I

|v(x)h(x)|dx, y0 =

∫
I

|u(x)h(x)|dx,

as well as

h(x) =
1√
σ

4

√
2

π
e−

1
4
(x−µ

σ
)2 ,

or

(HI) h(x) =
√

2
1

4
√

nπ

√
Γ(n+1

2
)

Γ(n
2
)
· 1(

1 + x2

n

)n+1
4

,

whereµ is the mean,σ the standard deviation, andn ∈ N, and

‖h(x)‖2 =

∫
I

|h(x)|2dx = 1.

Theorem 2.1. If (2.1) holds andf ∈ L2(R), then

(R∗
p) 2p

√
(µ2p)w,I,|f |2

p

√
‖f (p)‖2,I ≥

1
p
√

2
p

√∣∣E∗
p,I,f

∣∣,

http://jipam.vu.edu.au/
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holds for any fixed but arbitraryp ∈ N.
Equality holds in (R∗

p) iff v(x) = −2cpu(x) holds for constantscp > 0, and
any fixed but arbitraryp ∈ N; cp = k2

p/2 > 0, kp ∈ R and kp 6= 0, p ∈ N,
andA = 0, or h(x) = c1pu(x) + c2pv(x) andx0 = 0, or y0 = 0, wherecip

(i = 1, 2) are constants andA2 > 0.

We note that this inequality (R∗
p) still holds if we replace the interval of

integrationI with R, without any other change except that one on the above
condition (2.1), wherex → ∞ has to be substituted with|x| → ∞, and the
choice ofh from (HI) must be replaced with

h(x) =
1

4
√

2π
√

σ
e−

1
4
(x−µ

σ
)2 ,

or

(HR) h(x) =
1

4
√

nπ

√
Γ
(

n+1
2

)
Γ
(

n
2

) · 1(
1 + x2

n

)n+1
4

,

whereµ is the mean,σ the standard deviation, andn ∈ N.

Proof. In fact, one gets

M∗
p = Mp − A2(2.3)

= (µ2p)w,I,|f |2 ·
∥∥f (p)

∥∥2

2,I
− A2

=

(∫
I

w2 (x) (x− xm)2p |f (x)|2 dx

)
·
(∫

I

∣∣f (p)(x)
∣∣2 dx

)
− A2

= ‖u‖2 ‖v‖2 − A2(2.4)

http://jipam.vu.edu.au/
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with u = w(x)xp
δf(x), v = f (p)(x), wherexδ = x− xm.

From (2.3) – (2.4), the Cauchy-Schwarz inequality(|u| , |v|) ≤ ‖u‖ ‖v‖ and
the non-negativeness of the followingGram determinant[3] or

0 ≤

∣∣∣∣∣∣
‖u‖2 (|u| , |v|) y0

(|v| , |u|) ‖v‖2 x0

y0 x0 1

∣∣∣∣∣∣(2.5)

= ‖u‖2 ‖v‖2 − (|u| , |v|)2 −
[
‖u‖2 x2

0 − 2(|u| , |v|)x0y0 + ‖v‖2 y2
0

]
,

0 ≤ ‖u‖2 ‖v‖2 − (|u| , |v|)2 − A2

with

A = ‖u‖x0 − ‖v‖ y0,

x0 =

∫
I

|v(x)h(x)|dx,

y0 =

∫
I

|u(x)h(x)|dx,

‖h(x)‖2 =

∫
I

|h(x)|2dx = 1,

we find

(2.6) M∗
p ≥ (|u| , |v|)2 =

(∫
I

|u| |v|
)2

=

(∫
I

∣∣wp (x) f (x) f (p) (x)
∣∣ dx

)2

,

wherewp = (x− xm)pw. In general, if‖h‖ 6= 0, then one gets

(u, v)2 ≤ ‖u‖2 ‖v‖2 −R2,
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where
R = A/ ‖h‖ = ‖u‖x− ‖v‖ y,

such thatx = x0/ ‖h‖ , y = y0/ ‖h‖.
In this case,A has to be replaced byR in all the pertinent relations of this

paper.
From (2.6) andthe complex inequality,

|ab| ≥ 1

2

(
ab + ab

)
with a = wp (x) f (x), b = f (p) (x), we get

(2.7) M∗
p =

[
1

2

∫
I

wp(x)(f(x)f (p)(x) + f (p)(x)f(x))dx

]2

.

From (2.7) and the generalized differential identity (* ), one finds

(2.8) M∗
p ≥

1

22

∫
I

wp (x)

[p/2]∑
q=0

Cq
dp−2q

dxp−2q

∣∣f (q) (x)
∣∣2 dx

2

.

From the generalized integral identity (1.2), the condition (2.1), and that all the
integrals exist, one gets∫

I

wp (x)
dp−2q

dxp−2q

∣∣f (l) (x)
∣∣2 dx = (−1)p−2q

∫
I

w(p−2q)
p (x)

∣∣f (l) (x)
∣∣2 dx = Iql.
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Thus we find

M∗
p ≥

1

22

[p/2]∑
q=0

Cq

(
q∑

l=0

Iql

)2

=
1

22
E2

p,I,f ,

whereEp,I,f =
∑[p/2]

q=0 CqDq, if |Ep,I,f | < ∞ holds, orthe refined moment
uncertainty formula

2p
√

Mp ≥
1
p
√

2
p

√∣∣E∗
p,I,f

∣∣ (
≥ 1

p
√

2
p

√
|Ep,I,f |

)
,

whereMp = M∗
p + A2.

We note that the corresponding Gram matrix to the above Gram determinant
is positive definite if and only if the above Gram determinant is positive if and
only if u, v, h are linearly independent. In addition, the equality in (2.5) holds if
and only ifh is a linear combination of linearly independentu andv andu = 0
or v = 0, completing the proof of the above theorem.
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3. Applied Refined Heisenberg-Weyl Type
Inequality

We apply the above Theorem2.1 to the following simpler cases of the refined
Heisenberg-Weyl type inequality.

3.1. Refined Second Moment Heisenberg-Weyl Type
Inequality

For anyf ∈ L2(I), I = [0,∞), f : I → C, such that‖f‖2
2,I =

∫
I
|f (x)|2 dx =

EI,|f |2, any fixed but arbitrary constantxm ∈ R, and for the second order
moment

(µ2)I,|f |2 = σ2
I,|f |2 =

∫
I

(x− xm)2 |f (x)|2 dx,

the second order moment Heisenberg-Weyl type inequality

(R∗
1) (µ2)I,|f |2 · ‖f

′‖2
2,I ≥

1

4

(
E∗

1,I,f

)2
=

1

4

[∫
I

|f(x)|2dx + 4A2

]2

,

holds, where
∣∣E∗

1,I,f

∣∣ < ∞.
Equality holds in(R∗

1) iff v(x) = −2c1u(x) holds for constantsc1 > 0,
and any fixedc1 = k2

1/2 > 0, k1 ∈ R and k1 6= 0, and A = 0, or h(x) =
c11u(x)+ c21v(x) andx0 = 0, or y0 = 0, whereci1 (i = 1, 2) are constants and
A2 > 0.

We note that this inequality (R∗
1) still holds if we replace the interval of

integrationI with R, withoutany other change except that one on the choice of
h, where (HI) has to be replaced with (HR).
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3.2. Refined Fourth Moment Heisenberg-Weyl Type
Inequality

For anyf ∈ L2(I), I = [0,∞), f : I → C, such that‖f‖2
2,I =

∫
I
|f (x)|2 dx =

EI,|f |2, any fixed but arbitrary constantxm ∈ R, and for the fourth order mo-
ment

(µ4)I,|f |2 =

∫
I

(x− xm)4 |f (x)|2 dx,

the fourth order moment Heisenberg-Weyl type inequality

(µ4)I,|f |2 · ‖f
′′‖2

2,I ≥
1

4
(E∗

2,I,f )
2(R∗

2)

=
1

4

[∫
I

[
|f(x)|2 dx− x2

δ |f ′(x)|2
]
dx + 4A2

]2

holds, wherexδ = x− xm, and
∣∣E∗

2,I,f

∣∣ < ∞.

Equality holds in (R∗
2) iff v(x) = −2c2u(x) holds for constantsc2 > 0, and

any fixed but arbitraryc2 = 1
2
k2

2 > 0, k2 ∈ R and k2 6= 0, and A = 0, or
h(x) = c12u(x) + c22v(x) and x0 = 0, or y0 = 0, whereci2 (i = 1, 2) are
constants andA2 > 0.

We note that this inequality (R∗
2) still holds if we replace the interval of

integrationI with R, without any other change except that one on the above
condition (2.1), wherex → ∞ has to be substituted with|x| → ∞, and the
choice ofh, where (HI) has to be replaced with (HR).
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Remark 1. Takewp(x) = xp, andw
(p)
p (x) = p! (p = 1, 2, 3, 4, . . .). Thus

E1,I,f = −
∫

I

|f (x)|2 dx = −EI,|f |2 ,

E2,I,f = 2

∫
I

[
|f (x)|2 − x2 |f ′ (x)|2

]
dx,

E3,I,f = −3

∫
I

[
2 |f (x)|2 − 3x2 |f ′ (x)|2

]
dx,

E4,I,f = 2

∫
I

[
12 |f (x)|2 − 24x2 |f ′ (x)|2 + x4 |f ′′ (x)|2

]
dx,

respectively, if|Ep,I,f | < ∞ holds forp = 1, 2, 3, 4. Therefore

Dq = AqqIqq = Iqq = (−1)p−2q

∫
I

w(p−2q)
p (x)

∣∣f (q) (x)
∣∣2 dx,

if |Dq| < ∞, for 0 ≤ q ≤
[

p
2

]
.

Furthermore,

w(p−2q)
p (x) = (xp)(p−2q) = p (p− 1) · · · (p− (p− 2q) + 1) xp−(p−2q),

or

w(p−2q)
p (x) =

p!

(p− (p− 2q))!
x2q =

p!

(2q)!
x2q, 0 ≤ q ≤

[p
2

]
.

In addition

Dq = (−1)p−2q p!

(2q)!

∫
I

x2q
∣∣f (q) (x)

∣∣2 dx,
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if |Dq| < ∞ holds for0 ≤ q ≤
[

p
2

]
.

Therefore

Ep,I,f =

[p/2]∑
q=0

CqDq

=

[p/2]∑
q=0

[
(−1)q p

p− q

(
p− q

q

)][
(−1)p−2q p!

(2q)!

∫
I

x2q
∣∣f (q) (x)

∣∣2 dx

]
,

or the formula

Ep,I,f =

∫
I

[p/2]∑
q=0

(−1)p−q p

p− q
· p!

(2q)!

(
p− q

q

)
x2q
∣∣f (q) (x)

∣∣2 dx,

if |Ep,I,f | < ∞ holds for0 ≤ q ≤
[

p
2

]
, whenw = 1 andxm = 0.

Let

(m2p)I,|f |2 =

∫
I

x2p |f (x)|2 dx

be the2pth moment ofx for |f |2 about the originxm = 0.
Denote

εp,q = (−1)p−q p

p− q
· p!

(2q)!

(
p− q

q

)
,

for p ∈ N and0 ≤ q ≤
[

p
2

]
.

Thus

Ep,I,f =

∫
I

[p/2]∑
q=0

εp,qx
2q
∣∣f (q) (x)

∣∣2 dx, if |Ep,I,f | < ∞
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holds for0 ≤ q ≤
[

p
2

]
.

Corollary 3.1. Assume thatf : I → C is a complex valued function of a real
variablex, w = 1, xm = 0. If f ∈ L2(I), then the following inequality

(Sp) 2p

√
(m2p)I,|f |2

p

√
‖f (p)‖2,I ≥

1
p
√

2

p

√√√√√
∣∣∣∣∣∣
[p/2]∑
q=0

εp,q (m2q)I,|f (q)|2

∣∣∣∣∣∣
2

+ 4A2,

holds for any fixed but arbitraryp ∈ N and0 ≤ q ≤
[

p
2

]
, where

(m2q)I,|f (q)|2 =

∫
I

x2q
∣∣f (q) (x)

∣∣2 dx

andA is analogous to the one in the above theorem.

Similar conditions are assumed for the“equality” in (Sp) with respect to
those in the above theorem. We note that this inequality (Sp) still holds if we
replace the interval of integrationI with R, without any other change except
that one on the above condition (2.1), wherex →∞ has to be substituted with
|x| → ∞, and the choice ofh, where (HI) has to be replaced with (HR).

Problem 1. Concerning our inequality (H2) further investigation is needed for
the case of the “equality”. As a matter of fact, our functionf is not inL2(R),
leading the left-hand side to be infinite in that “equality”. A limiting argument
is required for this problem. On the other hand, why does not the corresponding
“inequality” ( H2) attain an extremal inL2(R)?
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Here are some of our old results [4] related to the above problem. In particu-
lar, if we take into account these results contained in Section 9 on pp. 46-70 [4],
where the Gaussian function and the Euler gamma functionΓ are employed,
then via Corollary 9.1 on pp 50-51 of [4] we conclude that “equality” in (Hp) of
[4, p. 22],p ∈ N = {1, 2, 3, . . .}, holds only forp = 1. Furthermore, employing
the above Gaussian function, we established the followingextremum principle
(via (9.33) on p. 51 [4]):

(R) R(p) ≥ 1/2π, p ∈ N

for the corresponding “inequality” in (Hp) of [4, p. 22],p ∈ N, where the con-
stant1/2π “on the right-hand side” is the best lower bound forp ∈ N. Therefore
“equality” in (Hp) of [4, p. 22],p ∈ N andp 6= 1, in Section 8.1 on pp 19-46
[4] cannot occur under the afore-mentioned well-known functions. On the other
hand, there is a lower bound “on the right-hand side” of the corresponding “in-
equality” (H2) if we employ the above Gaussian function, which bound equals
to 1

64π4 E
2
2,R,f = 1

512π3

|c0|4
c

, with c0, c constants andc0 ∈ C, c > 0, because
ER,|f |2 = |c0|2

√
π
2c

andE2,R,f = 1
2
ER,|f |2.

Analogous pertinent results are investigated via our Corollaries 9.2-9.6 on
pp 53-68 [4].
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