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Abstract
The well-known second moment Heisenberg-Weyl inequality (or uncertainty re-
lation) states: Assume that f : R — C is a complex valued function of a
random real variable z such that f € L%(R), where R = (—o0,00). Then the

~2
moment of the random real ¢ for ‘f

is at least £y, Hz/Jzﬂ where fis the

Fourier transform of f f = [pe ™ f (z)dr and f(z) = [; €

and E, e = Ja If () d,:,. Thls uncertalnty relation is vveII known in classmal
quantum mechanics. In 2004, the author generalized the afore-mentioned re-
sult to the higher order moments for L2(R) functions f. In this paper, a refined
form of the generalized Heisenberg-Wey! type inequality is established.

2000 Mathematics Subject Classification: 26, 33, 42, 60, 62.
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The serious question of certainty in science was high-lighted by Heisenberg, in
1927, via his “uncertainty principle”?]. He demonstrated, for instance, the
impossibility of specifying simultaneously the position and the speed (or the
momentum) of an electron within an atom. In 1933, according to Wiefjéia

pair of transforms cannot both be very sniallhis uncertainty principle was
stated in 1925 by Wiener, according to Wiener’s autobiograpghy] 105-
107], in a lecture in Gottingen. The following result of thkeisenberg-Weyl
Inequality is credited to Pauli according to Weyi,[p. 77, p. 393-394]. In
1928, according to Pauli] “ the less the uncertainty ih”|2, the greater the

uncertainty in’f 2, and conversely This result does not actually appear in
Heisenberg’s seminal papei[(in 1927).

In 1998, Burke Hubbardl] wrote a remarkable book on wavelets. Ac-
cording to her, most people first learn the Heisenberg uncertainty principle in
connection with quantum mechanics, but it is also a central statement of in-
formation processing. The following second order moment Heisenberg-Weyl
inequality provides a precise quantitative formulation of the above-mentioned
uncertainty principle.

Forany f € L*(R), f : R — C, such that

1125 = / @) dz = Ey )

On the Refined
Heisenberg-Weyl Type
Inequality

John Michael Rassias

Title Page
Contents
44 44
| >
Go Back
Close
Quit
Page 3 of 23

J. Ineq. Pure and Appl. Math. 6(2) Art. 45, 2005
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:jrassias@primedu.uoa.gr
http://jipam.vu.edu.au/

any fixed but arbitrary constants,,, ¢, € R, and for the second order moments

el = 7y = [ (@ =2 | @ da

and
2

dg,

~

(el g = 72 = | (6= &°[F©)

the second order moment Heisenberg-Weyl inequality

(Hl) 2 2 ||f||§,R

O-]R,\f|2 . JR,|J?|2 = Wv

holds. Equality holds in/{,) if and only if the generalized Gaussians

f(z) = coexp (2mizé,,) exp (—c(z — :L‘m)2)

hold for some constants € C andc > 0.
The Heisenberg-Weyl inequality spectral analysisays that the product of
the effective duratiod\z and the effective bandwidth ¢ of a signal cannot be

2 _ 2 2_ 2
less than the valug/4r, whereAz® = JRW/ER,W andA¢ = O]R,|f|2/ER’f|2

with f : R — C, f: R — C defined as inf/;), and
PPR) By = [ If)lde= [ [Fo)] as =B, g

according to the Plancherel-Parseval-Rayleigh identity.
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Forany f € L?(R), f : R — C, such that

1125 = / @) de = By,

any fixed but arbitrary constants,,, &,, € R, and for the fourth order moments

(4)s g2 = / (2 — 1) | ()2 da

and )
= =& | F O] ds,

(g g = [ €= 6" |F©)
the fourth order moment Heisenberg-Weyl inequality

1
(Hs) (Ha)g g2 - (M4)R,|f|2 2 @ES,R,J%

holds, where

Pas =2 [ [(1-476a3) @) =317 ()
— 4m€,2s Im <f(x)m> ] dx,

with zs = = — x,,, & = € — &, Im(+) is the imaginary part of(-), and

|E27R,f| < 0.
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The “inequality” (/;) holds, unlesg(x) = 0.
We note that if the ordinary differential equation of second order

(ODE) fi(x) = =220 fo ()

holds, witha = —27&,i, fo(z) = e°*f(z), and a constant, = k3 > 0,
ks € R and ky # 0, then “equality” in () seems to occur. However, the
solution of this differential equatior(DE), given by the function

-1/ 2 0 / 2 0 ’ Inequality

in terms of the Bessel functionk., ;4 of the first kind of orderst1/4, leads to John Michael Rassias

a contradiction, because this¢ L?*(R). Furthermore, a limiting argument is

required for this problem. For the proof of this inequality s€p [it is open Title Page

to investigate cases, where the integrand on the right-hand side of the integral Contents

of Eyr ; will be nonnegative. For instance, fo, = ¢, = 0, this integrand

is:= | f(x)|* — 2*| f'(x)]? (> 0). K dd
In 2004, we {] generalized the Heisenberg-Pauli-Weyl inequalityRin= < S

(—o00,00). In this paper, a refined form of this generalizddisenberg-Weyl
type inequalityis established il = [0, 00). Afterwards, an open problem is
proposed on some pertinent extremum principle. However, the above-mentioned Close
Fourier transform is considered iR, while our results in this paper are re- Quit
stricted tol = [0,00). Futhermore, the corresponding inequality is investi-

gated inR, as well. Our second moment Heisenberg-Weyl type inequality and Page 6 of 23

the fourth moment Heisenberg-Weyl type inequality are of the following forms

. ) — 1 2 . J. Ineq. Pure and Appl. Math. 6(2) Art. 45, 2005
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Forany f € L*(I), 1 =[0,00), f : I — C, suchthat|f||5, = [, |f (z)]" dz =
EH 2 any fixed but arbitrary constant,, € R, and for the second order

moment
7y = [ a1 @

the second order moment Heisenberg-Weyl type inequality

(H2)p g2 =

) e I 2 3B = |- [1fte |d4,

holds, wherdE ; ¢| < co. Equality holds in () if and only if the Gaussians
f(z) = c,exp (—c(z — x,,)*) hold for some constants € C andc¢ > 0.

We note that this inequality/(;) still holds if we replace the interval of
integration/ with R, withoutany other change.

Foranyf € L*(I),I =[0,00), f : [ — C, suchthaq\f||21_f1|f )P do =
E; sz, any fixed but arbitrary constant,, € R, and for the fourth order mo-

ment
()15 = / (2 — )" |f () da,

the fourth order moment Heisenberg — Weyl type inequality

) 1 2 S
) Gy 17" = 380 = | [ 5@ do = 317 @) ]
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holds, wheress = x — z,,,, and | E5 1 ¢| < o0.

The “inequality” (R,) holds, unlesg(z) =

We note that this inequality/{;) still holds if we replace the interval of
integration/ with R, withoutany other change except that one on the following
condition @.1), wherex — oo has to be substituted with| — oo.

We omit the proofs of the inequaliti€s?;) (: = 1, 2) as special cases dhe
corresponding proof of the following generétheoren®.1 (with A = 0) of this
paper. Furthermore, we state our following fqartinent propositions Their
proofs are identical or analogous to the proofs of the corresponding propositions
of [4].

Proposition 1.1 (Pascal type combinatorial identity, {]). If 0 < [£] is the
greatest integeK %, then

© ko [(k—i +k;—1 k—i\  k+1 k—i+1
k—1 i k—i\i—1) k—i+1 i ’

holds for any fixed but arbitrary: € N = {1,2,...}, and0 < i < [£] for
i € Ng=1{0,1,2,...} such that( * ) = 0.

Proposition 1.2 (Generalized differential identity, [4]). |
complex valued functlon of a real variable I = [0, 00

If
)s
greatest integex %, fU) = —jf, and(-) is the conjugate of-

¢ S @)@+ (@) f ()

ik (k=i &%
=30 () el e

f:1I —-Cisa
0 < [£] is the
), then
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holds for any fixed but arbitrarg € N = {1,2,..
1€ Ny = {0, 1,2,. }

We note that the proof of § requires the application of the new identity)(
Furthermore, we note that the abadiferential identity ¢) still holds if we
replace the interval of integratiahwith R, withoutany other change.

Proposition 1.3 (P**-derivative of product, [4]). If f; : [ — C (i = 1,2) are
two complex valued functions of a real variablgthen thep'-derivative of the

.}, such that < i < [%] for

productf; f5 is given, in terms of the lower derivativ¢é’”), 2(”_’”) by
p
(L1) L) =3 (D)
m=0

for any fixed but arbitrary € N,.

Proposition 1.4 (Generalized integral identity, [I]). If f : I — Cis acomplex
valued function of a real variable, I = [0, c0), andh : [ — Ris a real valued
function ofz, as well as,w, w, : I — R are two real valued functions of,
such thatw,(z) = (x — x,,)Pw(z) for any fixed but arbitrary constant,, € R
andv =p—2¢,0<¢g < [g},then

)
(1.2) /wp x)dz
=3 (1) wl® () BT () + (—1)° / W (2) b (z) d
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holds for any fixed but arbitrarp € Ny andv € N, and allr : r =
0,1,2,...,v— 1, as well as the integral identity

ii)
/wp (z) ") (z) dx = (—1)" /wl()”) () h(z)dx
I I
holds if the limiting condition
i)

<
|
—

(<1)" Jim wf) () A7 (1) =0,

Il
=)

r

holds, and if all of these integrals exist.

We note that the proof ofl(2) requires the application of the differential
identity (1.1). Furthermore, we note that the abaentegral identityii) still holds
if we replace the interval of integratioh with R, without any other change
except that on the abovédimiting condition iii), where z — oo has to be
substituted withz| — oco.
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We assume that : I — C is a complex valued function of a real variahlge
andw : I — R areal valued weight function of, as well asz,, any fixed but
arbitrary real constant. Also we denote

arhrsgi = [ 0 @) (@ =) | (@) do
the 2p'" weighted moment of: for |f|* with weight functionw : I — R.
Besides we denote
C= (-1 2 (P,

pP—q q
if 0 < ¢ < [2] (=the greatest integet 2),

L= (=17 [[ulp 0 (@) |1 (@) da,

if 0 <1<gq<[8],andw, = (z — z,,)” w. We assume that all these integrals
exist. Finally we denotd, = Y"7_ I, if |D,| < oo holds for0 < ¢ < [2],

2
and
[p/2]

Epvl’f = Z Cqu7
q=0
if |E,.1,¢| < oo holds forp € N. In addition, we assumtiie condition

—92g—1
ra (p—2q—r-1)

@y X U mwf) @) (|10 @) =0,
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for 0 <1< ¢ < [&]. Furthermore,

(2.2) Byl =\ B2, + 442,

where A = |jul| 7o — [|v||yo, with L2>—norm ||-|* = [, ||, inner product
(lul s vl) = f; lul [v], and
u=w(x)zgf(z), v=f" ()
On the Refined
Ty = /|U |d$ Yo = /|U |d$ Heisenberg-Weyl Type
Inequality
as well as John Michael Rassias
1 2 1l/z—pN\2
h(z) = —=] =e 1057,
\/E T Title Page
or
Contents
1 7’L+1 1
(H)) h(z) = f\/_ r(( )> e « »
(1+%) < >
wherey is the meang the standard deviation, amde N, and Go Back
||h /|h | dr = 1. Close
Quit
Theorem 2.1.1f (2.1) holds andf € L*(R), then Page 12 of 23
1
(R;) 2{/(N2p)w,17|f|2 (/Hf(lp) ”2,[ > % ‘ .1 f| J. |n;n:.t;:l;;ﬁggc;ﬁ%pl;.neAgtS;;saz) Art. 45, 2005
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holds for any fixed but arbitrary € N.

Equality holds in (2) iff v(x) = —2c,u(z) holds for constants, > 0, and
any fixed but arbitraryp € N; ¢, = k2/2 > 0, k, € Randk, # 0, p € N,
and A = 0, or h(z) = cpu(x) + cypv(z) andzy = 0, or y, = 0, wherec,,
(i = 1,2) are constants andl? > 0.

We note that this inequality/{;) still holds if we replace the interval of
integration/ with R, without any other change except that one on the above
condition @.1), wherex — oo has to be substituted with:| — oo, and the
choice ofh from (/) must be replaced with

or

(Hr) h(x) =

wherey is the meang the standard deviation, amde N.
Proof. In fact, one gets
(2.3) M, =M, — A?

<:“2pw1\f| ”f H21

=(/Iw2<x><x—xm>2p|f \dw) ([l ) - 2

24 = ulfol* - A%
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with v = w(z)af fx),

v = fP)(z), wherez; = r — x,,.
From 2.3) — (2.4), the Cauchy-Schwarz inequalit| , |v|) < ||| ||| and

the non-negativeness of the followi@yam determinanfz] or

lull
(2:5) 0<| (fol,|ul)

Yo

= [lull® [lol|* = (lul , [o)? = [llull® 25 — 2(|ul, [v])aoyo + o]l 5

(luls [ol) %o
2

lollI™ o

i 1

0 < [[ull* o]l* = (ful, Ju])* — A?

with

we find

(2.6) My > (lul, [v])*

= [lull o = [lv[l %o,

r0= [ oaha)lds.

-(fon) - (e

wherew, = (z — z,,)Pw. In general, if|| || # 0, then one gets

2 20112
(u,0)” < Jlull* Jol” = R?,

z) fP) (z)] d:c) :
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where
R=A/|h] =

such thate = =/ ||h||, ¥ = yo/ ||P]|-

[ull 2 = {lvlly,

In this case A has to be replaced by in all the pertinent relations of this

paper
From (2.6) andthe complex inequality,

lab| > = 5 (ab—l—ab)

with a = w, (z) f (), b = f® (z), we get

2

en ;= [} [ ETE - s

I
From @.7) and the generalized differential identit§)( one finds

ip/2] 2

L1 dr=2
28 M=o /]wp(x) > c . s | (2 o) | da

q=0

From the generalized integral identity.p), the condition 2.1), and that all the
integrals exist, one gets

2 _ 2
/pr g 2q\f o)) de = (—1) QQ/I w2 (2) | O ()] do = I,
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Thus we find

1 [p/2] q 1
* o 2
Mp 2 922 ZCQ Z[ql - ?Ep,l,f’

where £, = z[;;/g] CyDy, if |E, 1] < oo holds, orthe refined moment
uncertainty formula

1 1 On the Refined
2 > * > Heisenberg-Weyl Type
MP = \p/§ ’E’pJvfl = {/ﬁ ’Epvl’f’ ) Inequality

John Michael Rassias

whereM, = M} + A®.
We note that the corresponding Gram matrix to the above Gram determinant

is positive definite if and only if the above Gram determinant is positive if and e e
only if u, v, h are linearly independent. In addition, the equalitydrb holds if Contents
and only ifh is a linear combination of linearly independenandv andu = 0 % o
orv = 0, completing the proof of the above theorem. O
< >
Go Back
Close
Quit
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We apply the above Theoreinl to the following simpler cases of the refined
Heisenberg-Weyl type inequality.

On the Refined

Foranyf € L*(I), I =[0,00), f: I — C, such thaﬂf||21 = [,|f (@) do = Hmsenﬁ,i?;\é\ﬁyy”ype
E; sz, any fixed but arbitrary constant,, € R, and for the second order _ _
mément John Michael Rassias
= g? —/x—:z:mQ Ide,

(e2)1yg =7 g = | (= 2m)* 1S (@) e Page

the second order moment Heisenberg-Weyl type inequality Contents
1 *
) g 1 = 3 (B = [ [ s ] « | »
| >

holds, wherd E; ; ;| < co.

Equality holds in(7;) iff v(z) = —2c,u(z) holds for constantg; > 0, Cofac
and any fixed; = k¥/2 > 0, k; € Randk; # 0,and A = 0, or h(z) = Close
criu(x) + copv(x) andxzy = 0, or yo = 0, wherec;; (i = 1, 2) are constants and Quit
A% > 0.

We note that this inequality/(;) still holds if we replace the interval of Page 17 of 23
integration/ with R, withoutany other change except that one on the choice of
h’ Where H]) has to be replaced WItHR)- J. Ineq. Pure and Appl. Math. 6(2) Art. 45, 2005
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Forany/ € L2(I), I = [0,00), f : I — C, suchthal| {2, = [, |/ (x) dx =
E; sz, any fixed but arbitrary constant,, € R, and for the fourth order mo-
ment

()15 = /1 (2 = wn)* If (@) do,

the fourth order moment Heisenberg-Weyl type inequality on the Refined

Heisenberg-Weyl Type
Inequality

. 2 Lo
(R3) (/M)Jm? ’ ||f//|’2,1 > Z( 2,1,f)2

_ i UI @) dz = a3 |f'(2)]*] do + 4A2]

5 John Michael Rassias

Title Page
holds, wherers = = — z,,,, and ‘E§7]7f| < 0. Contents
Equality holds in (2}) iff v(z) = —2cou(z) holds for constants, > 0, and « b
any fixed but arbitrarye, = %k% >0, ko € Randky, # 0, and A = 0, or
h(z) = cpu(z) + coov(x) andxy = 0, or yo = 0, wherec;, (i = 1,2) are < >
constants andi® > 0. Go Back
We note that this inequality/{;) still holds if we replace the interval of
integration/ with R, without any other change except that one on the above Close
condition @.1), wherexz — oo has to be substituted with| — oo, and the Quit
choice ofh, where ({;) has to be replaced with ). Page 18 of 23
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Remark 1. Takew,(z) = 27, andw (z) = p! (p = 1,2,3,4,...). Thus
Buay == [ 1/ @F do = ~Ey
Puiy =2 [ [ @F =2 1f @) e
Buy = =3 [ [21f @) =327 |f (0)"]

2 2 gl 2 4 pn 2 On the Refined
Bus=2 [ [121f @) - 2122 f @ + 21" @) ] Hersenberg e Type
I Inequality
respectively, ifE, 1 ¢| < oo holds forp = 1,2, 3, 4. Therefore Joi e ReseEs
Dy = Agglyg = Ipq = (—1)" /wj(,qu) (x) |f(q) (a:)’2 dz, Title Page
! Contents
if |D,| <oo,for0<gqg<|E|.
|Dy| < 00 <q< [§] «“ 33
Furthermore, < >
w0 (z) = ()P =p(p— 1) (p— (p— 2q) + 1) 2?72, Go Back
or Close
| |
(p—2q) _ D 2 P 9 []_7] .
w x) = ¥l = . 0<¢q< . Quit
v (p—(p—29)) (29)! 2 oace 19 of 23
In addition ' J
_og P! 2
Dq = (_1)p 2 ? /qu ‘f(q) ($)| dz, J. Ineq. Pure and Appl. Math. 6(2) Art. 45, 2005
( q)- I http://jipam.vu.edu.au
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if | Dy| < oo holds for0 < ¢ < [£].
Therefore

[p/2]

pr—ZCDq

S | ) e [ @),

or the formula
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(p/2] ‘ Inequality
- 2
pI F= /Z — (2pq) (p q q) $2q |f(q) (ac)‘ dz, John Michael Rassias
if |E,.r.¢| < oo holds for0 < ¢ < [g] , whenw = 1 andz,, = 0. Title Page
Let ) / . " )’2 ] Contents
Mo 2= | X T X
Pl «“« b
be the2p'” moment ofz for | f|* about the origine,, = 0. < S
Denote
g D Go Back
Epq = (=1)"1 — ( )
p q Close

forp e Nando < ¢ < [&]. Quit
Thus
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holds for0 < ¢ < [2].

Corollary 3.1. Assume thaf : I — C is a complex valued function of a real
variablez, w = 1, x,,, = 0. If f € L*(I), then the following inequality

2

[p/2]
1 P
(Sp) 2{/(m2p)[7|f‘2 </Hf(p) HQJ > % Z Ep.q (mgq)11|f(q) ’2 -+ 4142,
q=0

holds for any fixed but arbitrary € N and0 < ¢ < [2], where

2
(qu)I,‘f(‘Z)f = /Igj2q ’f(Q) (x)‘ dx

and A is analogous to the one in the above theorem.

Similar conditions are assumed for tfequality” in (S5,) with respect to
those in the above theorem. We note that this inequatity till holdsif we
replace the interval of integratiohwith R, without any other change except
that one on the above conditiod.{), wherex — oo has to be substituted with
|z| — oo, and the choice of, where (/) has to be replaced with ).

Problem 1. Concerning our inequality/{,) further investigation is needed for
the case of the “equality”. As a matter of fact, our functigrs not in L*(R),
leading the left-hand side to be infinite in that “equality”. A limiting argument

is required for this problem. On the other hand, why does not the corresponding

“inequality” ( F-) attain an extremal inL?(R)?
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Here are some of our old result{ felated to the above problem. In particu-
lar, if we take into account these results contained in Section 9 on pp. 4§;70 [
where the Gaussian function and the Euler gamma fundtiane employed,
then via Corollary 9.1 on pp 50-51 cf][we conclude that “equality” inf{,)) of
[4,p. 22],p € N ={1,2,3,...}, holds only forp = 1. Furthermore, employing
the above Gaussian function, we established the followkigemum principle
(via (9.33) on p. 514)):

(R) R(p) 2 1/2r, peN

for the corresponding “inequality” inf{,) of [4, p. 22],p € N, where the con-
stantl /27 “on the right-hand side” is the best lower boundfor N. Therefore
“equality” in (H,) of [4, p. 22],p € Nandp # 1, in Section 8.1 on pp 19-46

[4] cannot occur under the afore-mentioned well-known functions. On the other
hand, there is a lower bound “on the right-hand side” of the corresponding “in-
equality” (H) if we employ the above Gaussian function, which bound equals

4 -
to s 'Ci' , With ¢y, ¢ constants and, € C, ¢ > 0, because

2 E
ER,|f|2 — |CO’ % andEQJR’f — % R,|f‘2'

Analogous pertinent results are investigated via our Corollaries 9.2-9.6 on
pp 53-68 [1].

2 _
Eyry =
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