SUPERSTABILITY FOR GENERALIZED MODULE LEFT DERIVATIONS AND GENERALIZED MODULE DERIVATIONS ON A BANACH MODULE (II)

HUAI-XIN CAO, JI-RONG LV, AND J. M. RASSIAS
College of Mathematics and Information Science
Shandil Normal University
Xi'an 710062, P. R. China
caohx@snnu.edu.cn
r981@163.com
Pedagogical Department
Section of Mathematics and Informatics
National and Capodistrian University of Athens
Athens 15342, Greece
jrassias@primedu.uoa.gr

Received 12 January, 2009; accepted 12 May, 2009
Communicated by S.S. Dragomir

Abstract

In this paper, we introduce and discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module.

Key words and phrases: Superstability, Generalized module left derivation, Generalized module derivation, Module left derivation, Module derivation, Banach module.

2000 Mathematics Subject Classification. Primary 39B52; Secondary 39B82.

1. Introduction

The study of stability problems was formulated by Ulam in [28] during a talk in 1940: "Under what conditions does there exist a homomorphism near an approximate homomorphism?" In the following year 1941, Hyers in [12] answered the question of Ulam for Banach spaces, which states that if $\varepsilon>0$ and $f: X \rightarrow Y$ is a map with a normed space X and a Banach space Y such that

$$
\begin{equation*}
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon \tag{1.1}
\end{equation*}
$$

for all x, y in X, then there exists a unique additive mapping $T: X \rightarrow Y$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \varepsilon \tag{1.2}
\end{equation*}
$$

for all x in X. In addition, if the mapping $t \mapsto f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed x in X, then the mapping T is real linear. This stability phenomenon is called the Hyers-Ulam stability of the additive functional equation $f(x+y)=f(x)+f(y)$. A generalized version

[^0]of the theorem of Hyers for approximately additive mappings was given by Aoki in [1] and for approximate linear mappings was presented by Th. M. Rassias in [26] by considering the case when the left hand side of the inequality (1.1) is controlled by a sum of powers of norms [25]. The stability of approximate ring homomorphisms and additive mappings were discussed in [6, 7, 8, 10, 11, 13, 14, 21].
The stability result concerning derivations between operator algebras was first obtained by P. Semrl in [27]. Badora [5] and Moslehian [17, 18] discussed the Hyers-Ulam stability and the superstability of derivations. C. Baak and M. S. Moslehian [4] discussed the stability of J^{*}-homomorphisms. Miura et al. proved the Hyers-Ulam-Rassias stability and Bourgin-type superstability of derivations on Banach algebras in [16]. Various stability results on derivations and left derivations can be found in [3, 19, 20, 2, 9]. More results on stability and superstability of homomorphisms, special functionals and equations can be found in J. M. Rassias' papers [22, 23, 24].

Recently, S.-Y. Kang and I.-S. Chang in [15] discussed the superstability of generalized left derivations and generalized derivations. In the present paper, we will discuss the superstability of generalized module left derivations and generalized module derivations on a Banach module.

To give our results, let us give some notations. Let \mathscr{A} be an algebra over the real or complex field \mathbb{F} and X be an \mathscr{A}-bimodule.

Definition 1.1. A mapping $d: \mathscr{A} \rightarrow \mathscr{A}$ is said to be module- X additive if

$$
\begin{equation*}
x d(a+b)=x d(a)+x d(b) \quad(a, b \in \mathscr{A}, x \in X) . \tag{1.3}
\end{equation*}
$$

A module- X additive mapping $d: \mathscr{A} \rightarrow \mathscr{A}$ is said to be a module- X left derivation (resp., module- X derivation) if the functional equation

$$
\begin{equation*}
x d(a b)=a x d(b)+b x d(a) \quad(a, b \in \mathscr{A}, x \in X) \tag{1.4}
\end{equation*}
$$

(resp.,

$$
\begin{equation*}
x d(a b)=a x d(b)+d(a) x b \quad(a, b \in \mathscr{A}, x \in X)) \tag{1.5}
\end{equation*}
$$

holds.
Definition 1.2. A mapping $f: X \rightarrow X$ is said to be module- \mathscr{A} additive if

$$
\begin{equation*}
a f\left(x_{1}+x_{2}\right)=a f\left(x_{1}\right)+a f\left(x_{2}\right) \quad\left(x_{1}, x_{2} \in X, a \in \mathscr{A}\right) . \tag{1.6}
\end{equation*}
$$

A module- \mathscr{A} additive mapping $f: X \rightarrow X$ is called a generalized module- \mathscr{A} left derivation (resp., generalized module- \mathscr{A} derivation) if there exists a module- X left derivation (resp., module- X derivation) $\delta: \mathscr{A} \rightarrow \mathscr{A}$ such that

$$
\begin{equation*}
a f(b x)=a b f(x)+a x \delta(b) \quad(x \in X, a, b \in \mathscr{A}) \tag{1.7}
\end{equation*}
$$

(resp.,

$$
\begin{equation*}
a f(b x)=a b f(x)+a \delta(b) x \quad(x \in X, a, b \in \mathscr{A})) . \tag{1.8}
\end{equation*}
$$

In addition, if the mappings f and δ are all linear, then the mapping f is called a linear generalized module- \mathscr{A} left derivation (resp., linear generalized module \mathscr{A} derivation).

Remark 1. Let $\mathscr{A}=X$ and \mathscr{A} be one of the following cases:
(a) a unital algebra;
(b) a Banach algebra with an approximate unit.

Then module- \mathscr{A} left derivations, module- \mathscr{A} derivations, generalized module- \mathscr{A} left derivations and generalized module- \mathscr{A} derivations on \mathscr{A} become left derivations, derivations, generalized left derivations and generalized derivations on \mathscr{A} as discussed in [15].

2. Main Results

Theorem 2.1. Let \mathscr{A} be a Banach algebra, X a Banach \mathscr{A}-bimodule, k and l be integers greater than 1 , and $\varphi: X \times X \times \mathscr{A} \times X \rightarrow[0, \infty)$ satisfy the following conditions:
(a) $\lim _{n \rightarrow \infty} k^{-n}\left[\varphi\left(k^{n} x, k^{n} y, 0,0\right)+\varphi\left(0,0, k^{n} z, w\right)\right]=0(x, y, w \in X, z \in \mathscr{A})$.
(b) $\lim _{n \rightarrow \infty} k^{-2 n} \varphi\left(0,0, k^{n} z, k^{n} w\right)=0(z \in \mathscr{A}, w \in X)$.
(c) $\tilde{\varphi}(x):=\sum_{n=0}^{\infty} k^{-n+1} \varphi\left(k^{n} x, 0,0,0\right)<\infty(x \in X)$.

Suppose that $f: X \rightarrow X$ and $g: \mathscr{A} \rightarrow \mathscr{A}$ are mappings such that $f(0)=0, \delta(z):=$ $\lim _{n \rightarrow \infty} \frac{1}{k^{n}} g\left(k^{n} z\right)$ exists for all $z \in \mathscr{A}$ and

$$
\begin{equation*}
\left\|\Delta_{f, g}^{1}(x, y, z, w)\right\| \leq \varphi(x, y, z, w) \tag{2.1}
\end{equation*}
$$

for all $x, y, w \in X$ and $z \in \mathscr{A}$ where

$$
\Delta_{f, g}^{1}(x, y, z, w)=f\left(\frac{x}{k}+\frac{y}{l}+z w\right)+f\left(\frac{x}{k}-\frac{y}{l}+z w\right)-\frac{2 f(x)}{k}-2 z f(w)-2 w g(z)
$$

Then f is a generalized module- \mathscr{A} left derivation and g is a module- X left derivation.
Proof. By taking $w=z=0$, we see from (2.1) that

$$
\begin{equation*}
\left\|f\left(\frac{x}{k}+\frac{y}{l}\right)+f\left(\frac{x}{k}-\frac{y}{l}\right)-\frac{2 f(x)}{k}\right\| \leq \varphi(x, y, 0,0) \tag{2.2}
\end{equation*}
$$

for all $x, y \in X$. Letting $y=0$ and replacing x by $k x$ in (2.2), we get

$$
\begin{equation*}
\left\|f(x)-\frac{f(k x)}{k}\right\| \leq \frac{1}{2} \varphi(k x, 0,0,0) \tag{2.3}
\end{equation*}
$$

for all $x \in X$. Hence, for all $x \in X$, we have from (2.3) that

$$
\begin{aligned}
\left\|f(x)-\frac{f\left(k^{2} x\right)}{k^{2}}\right\| & \leq\left\|f(x)-\frac{f(k x)}{k}\right\|+\left\|\frac{f(k x)}{k}-\frac{f\left(k^{2} x\right)}{k^{2}}\right\| \\
& \leq \frac{1}{2} \varphi(k x, 0,0,0)+\frac{1}{2} k^{-1} \varphi\left(k^{2} x, 0,0,0\right)
\end{aligned}
$$

By induction, one can check that

$$
\begin{equation*}
\left\|f(x)-\frac{f\left(k^{n} x\right)}{k^{n}}\right\| \leq \frac{1}{2} \sum_{j=1}^{n} k^{-j+1} \varphi\left(k^{j} x, 0,0,0\right) \tag{2.4}
\end{equation*}
$$

for all x in X and $n=1,2, \ldots$ Let $x \in X$ and $n>m$. Then by (2.4) and condition (c), we obtain that

$$
\begin{aligned}
\left\|\frac{f\left(k^{n} x\right)}{k^{n}}-\frac{f\left(k^{m} x\right)}{k^{m}}\right\| & =\frac{1}{k^{m}}\left\|\frac{f\left(k^{n-m} \cdot k^{m} x\right)}{k^{n-m}}-f\left(k^{m} x\right)\right\| \\
& \leq \frac{1}{k^{m}} \cdot \frac{1}{2} \sum_{j=1}^{n-m} k^{-j+1} \varphi\left(k^{j} \cdot k^{m} x, 0,0,0\right) \\
& \leq \frac{1}{2} \sum_{s=m}^{\infty} k^{-s+1} \varphi\left(k^{s} x, 0,0,0\right) \\
& \rightarrow 0(m \rightarrow \infty)
\end{aligned}
$$

This shows that the sequence $\left\{\frac{f\left(k^{n} x\right)}{k^{n}}\right\}$ is a Cauchy sequence in the Banach \mathscr{A}-module X and therefore converges for all $x \in X$. Put $d(x)=\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{n}}$ for every $x \in X$ and $f(0)=d(0)=$ 0 . By (2.4), we get

$$
\begin{equation*}
\|f(x)-d(x)\| \leq \frac{1}{2} \tilde{\varphi}(x) \quad(x \in X) \tag{2.5}
\end{equation*}
$$

Next, we show that the mapping d is additive. To do this, let us replace x, y by $k^{n} x, k^{n} y$ in (2.2), respectively. Then

$$
\left\|\frac{1}{k^{n}} f\left(\frac{k^{n} x}{k}+\frac{k^{n} y}{l}\right)+\frac{1}{k^{n}} f\left(\frac{k^{n} x}{k}-\frac{k^{n} y}{l}\right)-\frac{1}{k} \cdot \frac{2 f\left(k^{n} x\right)}{k^{n}}\right\| \leq k^{-n} \varphi\left(k^{n} x, k^{n} y, 0,0\right)
$$

for all $x, y \in X$. If we let $n \rightarrow \infty$ in the above inequality, then the condition (a) yields that

$$
\begin{equation*}
d\left(\frac{x}{k}+\frac{y}{l}\right)+d\left(\frac{x}{k}-\frac{y}{l}\right)=\frac{2}{k} d(x) \tag{2.6}
\end{equation*}
$$

for all $x, y \in X$. Since $d(0)=0$, taking $y=0$ and $y=\frac{l}{k} x$, respectively, we see that $d\left(\frac{x}{k}\right)=$ $\frac{d(x)}{k}$ and $d(2 x)=2 d(x)$ for all $x \in X$, and then we obtain that $d(x+y)+d(x-y)=2 d(x)$ for all $x, y \in X$. Now, for all $u, v \in X$, put $x=\frac{k}{2}(u+v), y=\frac{l}{2}(u-v)$. Then by 2.6, we get that

$$
\begin{aligned}
d(u)+d(v) & =d\left(\frac{x}{k}+\frac{y}{l}\right)+d\left(\frac{x}{k}-\frac{y}{l}\right) \\
& =\frac{2}{k} d(x)=\frac{2}{k} d\left(\frac{k}{2}(u+v)\right)=d(u+v) .
\end{aligned}
$$

This shows that d is additive.
Now, we are going to prove that f is a generalized module- \mathscr{A} left derivation. Letting $x=$ $y=0$ in (2.1), we get

$$
\|f(z w)+f(z w)-2 z f(w)-2 w g(z)\| \leq \varphi(0,0, z, w)
$$

that is

$$
\begin{equation*}
\|f(z w)-z f(w)-w g(z)\| \leq \frac{1}{2} \varphi(0,0, z, w) \tag{2.7}
\end{equation*}
$$

for all $z \in \mathscr{A}$ and $w \in X$. By replacing z, w with $k^{n} z, k^{n} w$ in 2.7) respectively, we deduce that

$$
\begin{equation*}
\left\|\frac{1}{k^{2 n}} f\left(k^{2 n} z w\right)-z \frac{1}{k^{n}} f\left(k^{n} w\right)-w \frac{1}{k^{n}} g\left(k^{n} z\right)\right\| \leq \frac{1}{2} k^{-2 n} \varphi\left(0,0, k^{n} z, k^{n} w\right) \tag{2.8}
\end{equation*}
$$

for all $z \in \mathscr{A}$ and $w \in X$. Letting $n \rightarrow \infty$, condition (b) yields that

$$
\begin{equation*}
d(z w)=z d(w)+w \delta(z) \tag{2.9}
\end{equation*}
$$

for all $z \in \mathscr{A}$ and $w \in X$. Since d is additive, δ is module- X additive. Put $\Delta(z, w)=$ $f(z w)-z f(w)-w g(z)$. Then by (2.7) we see from condition (a) that

$$
k^{-n}\left\|\Delta\left(k^{n} z, w\right)\right\| \leq \frac{1}{2} k^{-n} \varphi\left(0,0, k^{n} z, w\right) \rightarrow 0 \quad(n \rightarrow \infty)
$$

for all $z \in \mathscr{A}$ and $w \in X$. Hence

$$
\begin{aligned}
d(z w) & =\lim _{n \rightarrow \infty} \frac{f\left(k^{n} z \cdot w\right)}{k^{n}} \\
& =\lim _{n \rightarrow \infty}\left(\frac{k^{n} z f(w)+w g\left(k^{n} z\right)+\Delta\left(k^{n} z, w\right)}{k^{n}}\right) \\
& =z f(w)+w \delta(z)
\end{aligned}
$$

for all $z \in \mathscr{A}$ and $w \in X$. It follows from (2.9) that $z f(w)=z d(w)$ for all $z \in \mathscr{A}$ and $w \in X$, and then $d(w)=f(w)$ for all $w \in X$. Since d is additive, f is module- \mathscr{A} additive. So, for all $a, b \in \mathscr{A}$ and $x \in X$ by (2.9),

$$
a f(b x)=a d(b x)=a b f(x)+a x \delta(b)
$$

and

$$
\begin{aligned}
x \delta(a b) & =d(a b x)-a b f(x) \\
& =a f(b x)+b x \delta(a)-a b f(x) \\
& =a(d(b x)-b f(x))+b x \delta(a) \\
& =a x \delta(b)+b x \delta(a) .
\end{aligned}
$$

This shows that if δ is a module- X left derivation on \mathscr{A}, then f is a generalized module- \mathscr{A} left derivation on X.

Lastly, we prove that g is a module- X left derivation on \mathscr{A}. To do this, we compute from (2.7) that

$$
\left\|\frac{f\left(k^{n} z w\right)}{k^{n}}-z \frac{f\left(k^{n} w\right)}{k^{n}}-w g(z)\right\| \leq \frac{1}{2} k^{-n} \varphi\left(0,0, z, k^{n} w\right)
$$

for all $z \in \mathscr{A}$ and all $w \in X$. By letting $n \rightarrow \infty$, we get from condition (a) that

$$
d(z w)=z d(w)+w g(z)
$$

for all $z \in \mathscr{A}$ and all $w \in X$. Now, (2.9) implies that $w g(z)=w \delta(z)$ for all $z \in \mathscr{A}$ and all $w \in X$. Hence, g is a module- X left derivation on \mathscr{A}. This completes the proof.

Corollary 2.2. Let \mathscr{A} be a Banach algebra, X a Banach \mathscr{A}-bimodule, $\varepsilon \geq 0, p, q, s, t \in[0,1)$ and k and l be integers greater than 1. Suppose that $f: X \rightarrow X$ and $g: \mathscr{A} \rightarrow \mathscr{A}$ are mappings such that $f(0)=0, \delta(z):=\lim _{n \rightarrow \infty} \frac{1}{k^{n}} g\left(k^{n} z\right)$ exists for all $z \in \mathscr{A}$ and

$$
\begin{equation*}
\left\|\Delta_{f, g}^{1}(x, y, z, w)\right\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{q}+\|z\|^{s}\|w\|^{t}\right) \tag{2.10}
\end{equation*}
$$

for all $x, y, w \in X$ and all $z \in \mathscr{A}\left(0^{0}:=1\right)$. Then f is a generalized module- \mathscr{A} left derivation and g is a module $-X$ left derivation.

Proof. It is easy to check that the function

$$
\varphi(x, y, z, w)=\varepsilon\left(\|x\|^{p}+\|y\|^{q}+\|z\|^{s}\|w\|^{t}\right)
$$

satisfies conditions (a), (b) and (c) of Theorem 2.1
Corollary 2.3. Let \mathscr{A} be a Banach algebra with unit $e, \varepsilon \geq 0$, and k and l be integers greater than 1. Suppose that $f, g: \mathscr{A} \rightarrow \mathscr{A}$ are mappings with $f(0)=0$ such that

$$
\left\|\Delta_{f, g}^{1}(x, y, z, w)\right\| \leq \varepsilon
$$

for all $x, y, w, z \in \mathscr{A}$. Then f is a generalized left derivation and g is a left derivation.
Proof. By taking $w=e$ in 2.8 , we see that the limit $\delta(z):=\lim _{n \rightarrow \infty} \frac{1}{k^{n}} g\left(k^{n} z\right)$ exists for all $z \in \mathscr{A}$. It follows from Corollary 2.2 and Remark 1 that f is a generalized left derivation and g is a left derivation. This completes the proof.
Lemma 2.4. Let X, Y be complex vector spaces. Then a mapping $f: X \rightarrow Y$ is linear if and only if

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

for all $x, y \in X$ and all $\alpha, \beta \in \mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$.

Proof. It suffices to prove the sufficiency. Suppose that $f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)$ for all $x, y \in X$ and all $\alpha, \beta \in \mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$. Then f is additive and $f(\alpha x)=\alpha f(x)$ for all $x \in X$ and all $\alpha \in \mathbb{T}$. Let α be any nonzero complex number. Take a positive integer n such that $|\alpha / n|<2$. Take a real number θ such that $0 \leq a:=e^{-i \theta} \alpha / n<2$. Put $\beta=\arccos \frac{a}{2}$. Then $\alpha=n\left(e^{i(\beta+\theta)}+e^{-i(\beta-\theta)}\right)$ and therefore

$$
\begin{aligned}
f(\alpha x) & =n f\left(e^{i(\beta+\theta)} x\right)+n f\left(e^{-i(\beta-\theta)} x\right) \\
& =n e^{i(\beta+\theta)} f(x)+n e^{-i(\beta-\theta)} f(x)=\alpha f(x)
\end{aligned}
$$

for all $x \in X$. This shows that f is linear. The proof is completed.
Theorem 2.5. Let \mathscr{A} be a Banach algebra, X a Banach \mathscr{A}-bimodule, k and l be integers greater than 1 , and $\varphi: X \times X \times \mathscr{A} \times X \rightarrow[0, \infty)$ satisfy the following conditions:
(a) $\lim _{n \rightarrow \infty} k^{-n}\left[\varphi\left(k^{n} x, k^{n} y, 0,0\right)+\varphi\left(0,0, k^{n} z, w\right)\right]=0 \quad(x, y, w \in X, z \in \mathscr{A})$.
(b) $\lim _{n \rightarrow \infty} k^{-2 n} \varphi\left(0,0, k^{n} z, k^{n} w\right)=0 \quad(z \in \mathscr{A}, w \in X)$.
(c) $\tilde{\varphi}(x):=\sum_{n=0}^{\infty} k^{-n+1} \varphi\left(k^{n} x, 0,0,0\right)<\infty \quad(x \in X)$.

Suppose that $f: X \rightarrow X$ and $g: \mathscr{A} \rightarrow \mathscr{A}$ are mappings such that $f(0)=0, \delta(z):=$ $\lim _{n \rightarrow \infty} \frac{1}{k^{n}} g\left(k^{n} z\right)$ exists for all $z \in \mathscr{A}$ and

$$
\begin{equation*}
\left\|\Delta_{f, g}^{3}(x, y, z, w, \alpha, \beta)\right\| \leq \varphi(x, y, z, w) \tag{2.11}
\end{equation*}
$$

for all $x, y, w \in X, z \in \mathscr{A}$ and all $\alpha, \beta \in \mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$, where $\Delta_{f, g}^{3}(x, y, z, w, \alpha, \beta)$ stands for

$$
f\left(\frac{\alpha x}{k}+\frac{\beta y}{l}+z w\right)+f\left(\frac{\alpha x}{k}-\frac{\beta y}{l}+z w\right)-\frac{2 \alpha f(x)}{k}-2 z f(w)-2 w g(z) .
$$

Then f is a linear generalized module- \mathscr{A} left derivation and g is a linear module- X left derivation.
Proof. Clearly, the inequality (2.1) is satisfied. Hence, Theorem 2.1 and its proof show that f is a generalized left derivation and g is a left derivation on \mathscr{A} with

$$
\begin{equation*}
f(x)=\lim _{n \rightarrow \infty} \frac{f\left(k^{n} x\right)}{k^{n}}, \quad g(x)=f(x)-x f(e) \tag{2.12}
\end{equation*}
$$

for every $x \in X$. Taking $z=w=0$ in (2.11) yields that

$$
\begin{equation*}
\left\|f\left(\frac{\alpha x}{k}+\frac{\beta y}{l}\right)+f\left(\frac{\alpha x}{k}-\frac{\beta y}{l}\right)-\frac{2 \alpha f(x)}{k}\right\| \leq \varphi(x, y, 0,0) \tag{2.13}
\end{equation*}
$$

for all $x, y \in X$ and all $\alpha, \beta \in \mathbb{T}$. If we replace x and y with $k^{n} x$ and $k^{n} y$ in (2.13) respectively, then we see that

$$
\begin{aligned}
& \left\|\frac{1}{k^{n}} f\left(\frac{\alpha k^{n} x}{k}+\frac{\beta k^{n} y}{l}\right)+\frac{1}{k^{n}} f\left(\frac{\alpha k^{n} x}{k}-\frac{\beta k^{n} y}{l}\right)-\frac{1}{k^{n}} \frac{2 \alpha f\left(k^{n} x\right)}{k}\right\| \\
& \leq k^{-n} \varphi\left(k^{n} x, k^{n} y, 0,0\right) \\
& \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ for all $x, y \in X$ and all $\alpha, \beta \in \mathbb{T}$. Hence,

$$
\begin{equation*}
f\left(\frac{\alpha x}{k}+\frac{\beta y}{l}\right)+f\left(\frac{\alpha x}{k}-\frac{\beta y}{l}\right)=\frac{2 \alpha f(x)}{k} \tag{2.14}
\end{equation*}
$$

for all $x, y \in X$ and all $\alpha, \beta \in \mathbb{T}$. Since f is additive, taking $y=0$ in (2.14) implies that

$$
\begin{equation*}
f(\alpha x)=\alpha f(x) \tag{2.15}
\end{equation*}
$$

for all $x \in X$ and all $\alpha \in \mathbb{T}$. Lemma 2.4 yields that f is linear and so is g. Next, similar to the proof of Theorem 2.3 in [15], one can show that $g(\mathscr{A}) \subset \mathrm{Z}(\mathscr{A}) \cap \operatorname{rad}(\mathscr{A})$. This completes the proof.

Corollary 2.6. Let \mathscr{A} be a complex semi-prime Banach algebra with unit $e, \varepsilon \geq 0, p, q, s, t \in$ $[0,1)$ and k and l be integers greater than 1 . Suppose that $f, g: \mathscr{A} \rightarrow \mathscr{A}$ are mappings with $f(0)=0$ and satisfy following inequality:

$$
\begin{equation*}
\left\|\Delta_{f, g}^{3}(x, y, z, w, \alpha, \beta)\right\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{q}+\|z\|^{s}\|w\|^{t}\right) \tag{2.16}
\end{equation*}
$$

for all $x, y, z, w \in \mathscr{A}$ and all $\alpha, \beta \in \mathbb{T}\left(0^{0}:=1\right)$. Then f is a linear generalized left derivation and g is a linear left derivation which maps \mathscr{A} into the intersection of the center $Z(\mathscr{A})$ and the Jacobson radical rad (\mathscr{A}) of \mathscr{A}.
Proof. Since \mathscr{A} has a unit e, letting $w=e$ in $\sqrt{2.8}$, shows that the limit $\delta(z):=\lim _{n \rightarrow \infty} \frac{1}{k^{n}} g\left(k^{n} z\right)$ exists for all $z \in \mathscr{A}$. Thus, using Theorem 2.5 for $\varphi(x, y, z, w)=\varepsilon\left(\|x\|^{p}+\|y\|^{q}+\|z\|^{s}\|w\|^{t}\right)$ yields that f is a linear generalized left derivation and g is a linear left derivation since \mathscr{A} has a unit. Similar to the proof of Theorem 2.3 in [15], one can check that the mapping g maps \mathscr{A} into the intersection of the center $\mathrm{Z}(\mathscr{A})$ and the Jacobson radical $\operatorname{rad}(\mathscr{A})$ of \mathscr{A}. This completes the proof.
Corollary 2.7. Let \mathscr{A} be a complex semiprime Banach algebra with unit $e, \varepsilon \geq 0, k$ and l be integers greater than 1. Suppose that $f, g: \mathscr{A} \rightarrow \mathscr{A}$ are mappings with $f(0)=0$ and satisfy the following inequality:

$$
\left\|\Delta_{f, g}^{3}(x, y, z, w, \alpha, \beta)\right\| \leq \varepsilon
$$

for all $x, y, z, w \in \mathscr{A}$ and all $\alpha, \beta \in \mathbb{T}$. Then f is a linear generalized left derivation and g is a linear left derivation which maps \mathscr{A} into the intersection of the center $Z(\mathscr{A})$ and the Jacobson radical $\operatorname{rad}(\mathscr{A})$ of \mathscr{A}.

Remark 2. Inequalities (2.10) and (2.16) are controlled by their right-hand sides by the "mixed sum-product of powers of norms", introduced by J. M. Rassias (in 2007) and applied afterwards by K. Ravi et al. (2007-2008). Moreover, it is easy to check that the function

$$
\varphi(x, y, z, w)=P\|x\|^{p}+Q\|y\|^{q}+S\|z\|^{s}+T\|w\|^{t}
$$

satisfies conditions (a), (b) and (c) of Theorem 2.1] and Theorem 2.5, where $P, Q, T, S \in[0, \infty)$ and $p, q, s, t \in[0,1)$ are all constants.

References

[1] T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, $\mathbf{2}$ (1950), 64-66.
[2] M. AMYARI, F. RAHBARNIA, AND Gh. SADEGHI, Some results on stability of extended derivations, J. Math. Anal. Appl., 329 (2007), 753-758.
[3] M. AMYARI, C. BAAK, And M.S. MOSLEHIAN, Nearly ternary derivations, Taiwanese J. Math., 11 (2007), 1417-1424.
[4] C. BAAK, and M.S. MOSLEHIAN, On the stability of J^{*}-homomorphisms, Nonlinear Anal., 63 (2005), 42-48.
[5] R. BADORA, On approximate derivations, Math. Inequal. \& Appl., 9 (2006), 167-173.
[6] R. BADORA, On approximate ring homomorphisms, J. Math. Anal. Appl., 276 (2002), 589-597.
[7] J.A. BAKER, The stability of the cosine equation, Proc. Amer. Soc., 80 (1980), 411-416.
[8] D.G. BOURGIN, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J., 16 (1949), 385-397.
[9] M. BREŠAR, AND J. VUKMAN, On left derivations and related mappings, Proc. Amer. Math. Soc., 110 (1990), 7-16.
[10] P. GǍVRUTǍ, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.
[11] D.H. HYERS, G. ISAC, AND Th.M. RASSIAS, Stability of the Functional Equations in Several Variables, Birkhäuser Verlag, 1998.
[12] D.H. HYERS, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U. S. A., 27 (1941), 222-224.
[13] D.H. HYERS, AND Th.M. RASSIAS, Approximate homomorphisms, Aeqnat. Math., 44 (1992), 125-153.
[14] G. ISAC, AND Th.M. RASSIAS, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theory, 72 (1993), 131-137.
[15] S.Y. KANG, AND I.S. CHANG, Approximation of generalized left derivations, Abstr. Appl. Anal. Art., 2008 (2008), Art. ID 915292.
[16] T. MIURA, G. HIRASAWA, AND S.-E. TAKAHASI, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl., 319 (2006), 522-530.
[17] M.S. MOSLEHIAN, Ternary derivations, stability and physical aspects, Acta Appl. Math., $\mathbf{1 0 0}$ (2008), 187-199.
[18] M.S. MOSLEHIAN, Hyers-Ulam-Rassias stability of generalized derivations, Inter. J. Math. Sci., 2006 (2006), Art. ID 93942.
[19] C.-G. PARK, Homomorphisms between C^{*}-algebras, linear*-derivations on a C^{*}-algebra and the Cauchy-Rassias stability, Nonlinear Func. Anal. Appl., 10 (2005), 751-776.
[20] C.-G. PARK, Linear derivations on Banach algebras, Nonlinear Func. Anal. Appl., 9 (2004) 359368.
[21] Th.M. RASSIAS AND J. TABOR, Stability of Mappings of Hyers-Ulam Type, Hadronic Press Inc., Florida, 1994.
[22] J.M. RASSIAS, Refined Hyers-Ulam approximation of approximately Jensen type mappings, Bull. Sci. Math., 131 (2007), 89-98.
[23] J.M. RASSIAS, Solution of a quadratic stability Hyers-Ulam type problem, Ricerche Mat., 50 (2001), 9-17.
[24] J.M. RASSIAS, On the Euler stability problem, J. Indian Math. Soc. (N.S.), 67 (2000), 1-15.
[25] J.M. RASSIAS, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126-130.
[26] Th.M. RASSIAS, On the stability of the linear mapping in Banach Spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
[27] P. ŠEMRL, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations and Operator Theory, 18 (1994), 118-122.
[28] S.M. ULAM, Problems in Modern Mathematics, Science Editions, Chapter VI, John Wiley \& Sons Inc., New York, 1964.

[^0]: This subject is supported by the NNSFs of China (No. 10571113, 10871224).
 013-09

