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Abstract

In this paper the spatial behaviour of the steady-state solutions for an equation
of Kirchhoff type describing the motion of thin plates is investigated. Growth and
decay estimates are established associating some appropriate cross-sectional
line and area integral measures with the amplitude of the harmonic vibrations,
provided the excited frequency is lower than a certain critical value. The method
of proof is based on a second–order differential inequality leading to an alterna-
tive of Phragmèn–Lindelöf type in terms of an area measure of the amplitude
in question. The critical frequency is individuated by using some Wirtinger and
Knowles inequalities.

2000 Mathematics Subject Classification: 74K20, 74H45
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1. Introduction
The biharmonic equation has essential applications in the static Kirchhoff the-
ory of thin elastic plates. Many studies and various methods have been proposed
for researching the spatial behaviour for the solutions of the biharmonic equa-
tion in a semi–infinite strip inR2. We mention here the studies by Knowles
[11, 12], Flavin [4], Flavin and Knops [5], Horgan [6] and Payne and Schaefer
[16]. Additional references may be found in the review papers by Horgan and
Knowles [7] and Horgan [8, 9].

There is no information in the literature about the spatial behaviour of dy-
namical solutions in the Kirchhoff theory of thin elastic plates. We try to cover
this gap by starting in this paper with the study of the spatial behaviour for the
harmonic vibrations of thin elastic plates, while the transient solutions will be
treated in a future study. It has to be outlined that the interest in the construction
of theories of plates grew from the desire to treat vibrations of plates aimed at
deducing the tones of vibrating bells. Thus, in the present paper we consider
a semi–infinite strip for which the lateral boundary is fixed, while its end is
subjected to a given harmonic vibration of a prescribed frequencyω. Our ap-
proach is based on a differential equation proposed by Lagnese and Lions [13]
for modelling thin plates and generalising the Kirchhoff equation of classical
thin plates (see, for example, Naghdi [15]). We associate with the amplitude of
the harmonic oscillation an appropriate cross–sectional line–integral measure.
We individuate a critical frequency in the sense that for all vibration frequen-
cies lower than this one, we can establish a second–order differential inequality
giving information upon the spatial behaviour of the amplitude. In this aim we
use some Wirtinger and Knowles inequalities. Then we establish an alternative
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of Phragmèn–Lindelöf type: The measure associated with the amplitude of the
oscillation either grows at infinity faster than an increasing exponential or de-
cays toward zero faster than a decreasing exponential when the distance to the
end goes to infinity.

We have to note that some time–dependent problems concerning the bihar-
monic operator are considered in the literature, but these are different from those
furnished by the theories of plates. Thus, we mention the papers by Lin [14],
Knops and Lupoli [10] and Chiriţ̆a and Ciarletta [1] in connection with the spa-
tial behaviour of solutions for a fourth–order transformed problem associated
with the slow flow of an incompressible viscous fluid along a semi–infinite strip,
and a paper by Chiriţă and D’Apice [2] concerning the solutions of a fourth–
order initial boundary value problem describing the flow of heat in a non–simple
heat conductor.

http://jipam.vu.edu.au/
mailto:dapice@diima.unisa.it
http://jipam.vu.edu.au/


Spatial Behaviour for the
Harmonic Vibrations in Plates

of Kirchhoff Type

Ciro D’Apice and Stan Chirita

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 5 of 27

J. Ineq. Pure and Appl. Math. 4(4) Art. 65, 2003

http://jipam.vu.edu.au

2. Basic Formulation
Throughout this paper Greek and Latin subscripts take the values1, 2, summa-
tion is carried out over repeated indices,x = (x1, x2) is a generic point referred
to orthogonal Cartesian coordinates inR2. The suffix”, ρ” denotes ∂

∂x%
, that

is, the derivative with respect tox%. We consider a semi–infinite stripS in the
planex1Ox2 defined by

(2.1) S =
{
x = (x1, x2) ∈ R2 : 0 < x2 < l, 0 < x1

}
, l > 0.

In what follows we will consider the following differential equation

(2.2) α2ü− β2∆ü + γ2∆∆u = 0,

where∆u = u,ρρ is the ordinary two–dimensional Laplacian,α, β andγ are
positive constants and a superposed dot denotes the time derivative. If we set
α2 = %h, β2 = %h3

12
andγ2 = D, where% is the mass density,h is the uniform

thickness of the plate andD is the flexural rigidity, then we obtain the approach
of plate proposed by Lagnese and Lions [13]. We recall that the flexural rigidity
is given by the relationD = Eh3

12(1−ν2)
, whereE > 0 is the Young’s modulus and

ν is the Poisson’s ratio ranging over
(
−1, 1

2

)
. If we setα2 = %h, β2 = 0 and

γ2 = D in (2.2), then we obtain the equation occurring in the Kirchhoff theory
of thin plates (see [15]). The reader is referred to [13, Chapter I] for a heuristic
derivation of the present plate model.

We further assume that the lateral sides of the plate are fixed, while its end
is subjected to an excited vibration. Then we study the spatial behaviour of the
harmonic vibrations of the plate, that is we study the solution of the equation
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(2.2) of the typeu(x, t) = v(x)eiωt, whereω > 0 is the constant prescribed
frequency of the excited vibration on the end of the strip.

More precisely, we consider in the stripS the following boundary value
problemP defined by the equation:

(2.3) −ω2α2v + β2ω2∆v + γ2∆∆v = 0, in S,

the lateral boundary conditions:

(2.4)

{
v(x1, 0) = 0, v,2(x1, 0) = 0,
v(x1, l) = 0, v,2 (x1, l) = 0, x1 ∈ [0,∞),

and the end conditions:

(2.5) v(0, x2) = g1(x2), v,1(0, x2) = g2(x2), x2 ∈ [0, l],

whereg1 andg2 are prescribed continuous differentiable functions.
For future convenience we introduce the following notations:

(2.6) Dx∗1x1 =
{
y = (y1, y2) ∈ R2 : 0 ≤ x∗1 < y1 < x1, 0 < y2 < l

}
,

(2.7) Dx1 =
{
y = (y1, y2) ∈ R2 : 0 ≤ x1 < y1, 0 < y2 < l

}
.
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3. A Second–order Differential Inequality
Throughout the following we shall assume that the constant coefficientsα, β
andγ are strictly positive. A discussion will be made at the end for the limit
case whenβ tends to zero, that is for the Kirchhoff model of thin elastic plates.

We start our analysis by establishing a fundamental identity concerning the
solutionv(x) of the considered boundary value problemP. This identity will
give us an idea on the measure to be introduced.

Thus, in view of the equation (2.3), we have

(3.1) − ω2α2v2 + β2ω2
[
(vv,1),1 − v2

,1 + (vv,2),2 − v2
,2

]
+ γ2

[
(vv,111),1 − v,1v,111 + 2 (vv,112),2

−2v,2v,112 + (vv,222),2 − v,2v,222

]
= 0

from which we obtain

(3.2) − ω2
[
α2v2 + β2(v2

,1 + v2
,2)

]
+ β2ω2

[
(vv,1),1 + (vv,2),2

]
+ γ2

[
(vv,111),1 + 2 (vv,112),2 + (vv,222),2

]
− γ2

[
(v,1v,11),1 − v2

,11 + 2 (v,2v,12),1

−2v2
,12 + (v,2v,22),2 − v2

,22

]
= 0,
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and hence, we get

(3.3) − ω2
[
α2v2 + β2(v2

,1 + v2
,2)

]
+ γ2

(
v2

,11 + 2v2
,12 + v2

,22

)
+

{
β2ω2vv,1 + γ2vv,111 − γ2v,1v,11 − 2γ2v,2v,12

}
,1

+
{
β2ω2vv,2 + 2γ2vv,112 + γ2vv,222 − γ2v,2v,22

}
,2

= 0.

By integrating the relation (3.3) over [0, l] and by using the lateral boundary
conditions described in (2.4), we get the following identity

(3.4) − ω2

∫ l

0

[
α2v2 + β2(v2

,1 + v2
,2)

]
dx2 + γ2

∫ l

0

(
v2

,11 + 2v2
,12 + v2

,22

)
dx2

+

∫ l

0

[
1

2
β2ω2v2 + γ2(vv,11 − v2

,1 − v2
,2)

]
,11

dx2 = 0.

Before deriving our growth and decay estimates, we proceed to establish a
second–order differential inequality in terms of a cross–sectional line integral
measure which is fundamental in our analysis on the spatial behaviour. In this
aim we associate with the solutionv(x) of the considered boundary value prob-
lemP the following cross–sectional line integral measure

(3.5) I(x1) =

∫ l

0

[
γ2(v2

,1 + v2
,2 − vv,11)−

1

2
β2ω2v2

]
dx2, x1 > 0,
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so that the identity (3.4) furnishes

(3.6) I ′′
(x1) = γ2

∫ l

0

(
v2

,11 + 2v2
,12 + v2

,22

)
dx2

− ω2

∫ l

0

[
α2v2 + β2(v2

,1 + v2
,2)

]
dx2, x1 > 0.

Further, we use the lateral boundary conditions described by (2.4) in order
to write the following Wirtinger type inequalities

(3.7)
∫ l

0

v2
,1dx2 ≤

l2

π2

∫ l

0

v2
,12dx2,

(3.8)
∫ l

0

v2
,2dx2 ≤

l2

4π2

∫ l

0

v2
,22dx2,

(3.9)
∫ l

0

v2dx2 ≤
(

2

3

)4
l4

π4

∫ l

0

v2
,22dx2.

On the other hand, by using the same lateral boundary conditions in the
inequality established by Knowles [12] (see the Appendix), we deduce that

(3.10)
∫ l

0

(
β2v2

,2 + α2v2
)
dx2 ≤

β2

Λ(α, β)

∫ l

0

v2
,22dx2,
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whereΛ(α, β) is defined by

(3.11) Λ(α, β) = λ

(
α2

β2

)
,

andλ(t) is as defined in the Appendix. Therefore, we have

(3.12) Λ(α, β) =
4

l2
r4(τ)

τ + r2(τ)
, τ =

α2l2

4β2
,

andr(τ) is the smallest positive root of the equation

(3.13) tan r = −
√

τ

τ + r2
tanh

(
r

√
τ

τ + r2

)
, τ ≥ 0.

Thus, on the basis of the relations (3.7) and (3.10), we can conclude that

(3.14)
∫ l

0

[
α2v2 + β2(v2

,1 + v2
,2)

]
dx2 ≤

γ2

ω2
m

∫ l

0

(2v2
,12 + v2

,22)dx2,

whereωm = ωm(α, β, γ) is defined by

(3.15)
1

ω2
m

=
1

γ2
max

{
l2β2

2π2
,

β2

Λ(α, β)

}
.

By taking into account the relations (3.6) and (3.14), we obtain the following
estimate

(3.16) I ′′(x1) ≥ γ2

(
1− ω2

ω2
m

) ∫ l

0

(
v2

,11 + 2v2
,12 + v2

,22

)
dx2, x1 > 0.
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Throughout in this paper we shall assume that the prescribed frequencyω of
the excited vibration is lower than the critical valueωm defined by the relation
(3.15), that is we assume that

(3.17) 0 < ω < ωm.

This assumption then implies that

(3.18) I ′′(x1) ≥ 0 for all x1 > 0.

We proceed now to estimate the termI(x1) as defined by the relation (3.5).
We first note that

(3.19) |I(x1)| ≤ γ2

∣∣∣∣∫ l

0

(v2
,1 + v2

,2 − vv,11)dx2

∣∣∣∣ +
1

2
β2ω2

∫ l

0

v2dx2.

Further, we use an idea of Payne and Schaefer [16] for estimating the first
integral in (3.19). Thus, by means of the Cauchy–Schwarz and arithmetic–
geometric mean inequalities and by using the Wirtinger type inequalities (3.7),
(3.8) and (3.9), we deduce∣∣∣∣∫ l

0

(v2
,1 + v2

,2 − vv,11)dx2

∣∣∣∣(3.20)

≤
∫ l

0

(v2
,1 + v2

,2)dx2 +

(∫ l

0

v2dx2

∫ l

0

v2
,11dx2

) 1
2

≤ l2

2π2

{∫ l

0

(
2v2

,12 +
1

2
v2

,22

)
dx2 +

8

9

(∫ l

0

v2
,22dx2

∫ l

0

v2
,11dx2

) 1
2

}

http://jipam.vu.edu.au/
mailto:dapice@diima.unisa.it
http://jipam.vu.edu.au/


Spatial Behaviour for the
Harmonic Vibrations in Plates

of Kirchhoff Type

Ciro D’Apice and Stan Chirita

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 12 of 27

J. Ineq. Pure and Appl. Math. 4(4) Art. 65, 2003

http://jipam.vu.edu.au

≤ l2

2π2

∫ l

0

{
4

9ε
v2

,11 + 2v2
,12 +

(
1

2
+

4ε

9

)
v2

,22

}
dx2,

for some positive constantε. We now chooseε = 4
9

and note that1
2

+ 4ε
9

=
113
162

< 1. With this choice the relations (3.19) and (3.20) give

(3.21) |I(x1)| ≤ m2
0

∫ l

0

γ2
(
v2

,11 + 2v2
,12 + v2

,22

)
dx2 +

1

2
β2ω2

∫ l

0

v2dx2,

where

(3.22) m2
0 =

l2

2π2
.

On the basis of the inequality (3.9), we further deduce that

(3.23) |I(x1)| ≤ m̃2
0

∫ l

0

γ2
(
v2

,11 + 2v2
,12 + v2

,22

)
dx2, x1 > 0,

where

(3.24) m̃2
0 = m2

0 +
β2ω2

2γ2

(
2

3

)4
l4

π4
.

Finally, the relations (3.16) and (3.23) lead to the following estimate

(3.25) m̃2 |I(x1)| ≤ I ′′
(x1), x1 > 0,

wherem̃ is defined by

(3.26) m̃2 =
1

m̃2
0

(
1− ω2

ω2
m

)
.
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Consequently, we have established the following two second–order differential
inequalities

(3.27) I ′′
(x1) + m̃2I(x1) ≥ 0,

(3.28) I ′′
(x1)− m̃2I(x1) ≥ 0,

which will be used in the derivation of the alternatives that we will consider,
always under the condition that (3.17) holds true.
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4. Spatial Behaviour
In this section we will analyse the consequences of the second–order differential
inequalities on the spatial behaviour of the measureI(x1). In fact, in view of
the relation (3.18), it follows that we have only the two cases:

i) there exist a valuez1 ∈ [0,∞) such thatI ′
(z1) > 0,

ii) I ′
(x1) ≤ 0, ∀ x1 ∈ [0,∞).

4.1. Discussion of the Case i)

Since we haveI ′′
(x1) ≥ 0 for all x1 > 0, we deduce that

(4.1) I(x1) ≥ I(z1) + I ′(z1)(x1 − z1) for all x1 ≥ z1,

and hence it follows that, at least for sufficiently large values ofx1, I(x1) must
become strictly positive. That means there exists a valuez2 ∈ [z1,∞) so that
I(z2) > 0. Because we haveI ′(x1) ≥ I ′(z2) > 0 for all x1 ∈ [z2,∞), it
results thatI(x1) is a non–decreasing function on[z2,∞) and therefore, we
haveI(x1) ≥ I(z2) > 0 for all x1 ∈ [z2,∞). Further, the relation (3.25)
implies

(4.2)
d

dx1

{
e−m̃x1

[
I ′

(x1) + m̃I(x1)
]}

≥ 0, x1 ∈ [z2,∞),

(4.3)
d

dx1

{
em̃x1

[
I ′

(x1)− m̃I(x1)
]}

≥ 0, x1 ∈ [z2,∞).
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By an integration over[z2, x1], x1 > z2, the relations (4.2) and (4.3) give

(4.4) I ′
(x1) + m̃I(x1) ≥

[
I ′

(z2) + m̃I(z2)
]
em̃(x1−z2), x1 ≥ z2,

(4.5) I ′
(x1)− m̃I(x1) ≥

[
I ′

(z2)− m̃I(z2)
]
e−m̃(x1−z2), x1 ≥ z2,

and therefore, we get

(4.6) I ′
(x1) ≥ I ′

(z2) cosh[m̃(x1−z2)]+m̃I(z2) sinh[m̃(x1−z2)], x1 ≥ z2.

On the other hand, by taking into account the notation (2.6) and by integrat-
ing the relation (3.6) over [z2, x1], x1 > z2, we obtain

(4.7) I ′
(x1) = I ′

(z2) + γ2

∫
Dz2x1

(
v2

,11 + 2v2
,12 + v2

,22

)
da

− ω2

∫
Dz2x1

[
α2v2 + β2(v2

,1 + v2
,2)

]
da.

Consequently, the relations (4.6) and (4.7) give

(4.8) γ2

∫
Dz2x1

(
v2

,11 + 2v2
,12 + v2

,22

)
da

≥ ω2

∫
Dz2x1

[
α2v2 + β2(v2

,1 + v2
,2)

]
da

+ I ′
(z2) {cosh [m̃(x1 − z2)]− 1}

+ m̃I(z2) sinh [m̃(x1 − z2)] , x1 > z2,

http://jipam.vu.edu.au/
mailto:dapice@diima.unisa.it
http://jipam.vu.edu.au/


Spatial Behaviour for the
Harmonic Vibrations in Plates

of Kirchhoff Type

Ciro D’Apice and Stan Chirita

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 16 of 27

J. Ineq. Pure and Appl. Math. 4(4) Art. 65, 2003

http://jipam.vu.edu.au

and hence

(4.9) lim
x1→∞

{
e−m̃x1

∫
Dz2x1

γ2
(
v2

,11 + 2v2
,12 + v2

,22

)
da

}
≥ 1

2
e−m̃z2

[
I ′

(z2) + m̃I(z2)
]

> 0.

Thus, we can conclude that, within the class of amplitudesv(x) for which
there existsz1 ≥ 0 so thatI ′(z1) > 0, the following measure

(4.10) E(x1) =

∫
D∗

x1

(
v2

,11 + 2v2
,12 + v2

,22

)
da, D∗

x1
= [0, x1]× [0, l],

grows to infinity faster than the exponentialem̃x1 whenx1 goes to infinity.

4.2. Discussion of the Case ii)

In this case we have

(4.11) I ′(x1) ≤ 0 for all x1 ∈ [0,∞),

and therefore,I(x1) is a non–increasing function on[0,∞). We prove then that

(4.12) I(x1) ≥ 0 for all x1 ∈ [0,∞).

To verify this relation we consider somez0 arbitrary fixed in[0,∞) and note
that, by means of the relation (4.11), we have

(4.13) I(x1) ≤ I(z0) for all x1 ≥ z0.
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On the other hand, the relation (3.27), when integrated over[z0, x1], x1 > z0,
gives

0 ≤ I ′
(z0)− I

′
(x1)

≤ m̃2

∫ x1

z0

I(ξ)dξ

≤ m̃2

∫ x1

z0

I(z0)dξ = m̃2I(z0)(x1 − z0),(4.14)

and hence it results thatI(z0) ≥ 0. This proves that the relation (4.12) holds
true.

Now, on the basis of the relation (4.12) and by using the relations (3.5) and
(3.20) (with the appropriate choice forε), we deduce that

0 ≤ I(x1)(4.15)

= γ2

∫ l

0

(v2
,1 + v2

,2 − vv,11)dx2 −
1

2
β2ω2

∫ l

0

v2dx2

≤ γ2

∫ h

0

(v2
,1 + v2

,2 − vv,11)dx2

≤ m2
0

∫ l

0

γ2(v2
,11 + 2v2

,12 + v2
,22)dx2,

and hence, by using the inequality (3.16), we obtain

(4.16) I ′′(x1)−m2I(x1) ≥ 0, x1 > 0,
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where

(4.17) m̄2 =
1

m2
0

(
1− ω2

ω2
m

)
=

2π2

l2

(
1− ω2

ω2
m

)
.

To determinate the consequences of the second–order differential inequality
(4.16), we write it in the following form

(4.18)
d

dx1

{
emx1 [I ′(x1)−mI(x1)]

}
≥ 0,

and then integrate it over[0, x1] to obtain

(4.19) −I ′(x1) + mI(x1) ≤ e−mx1 [−I ′(0) + mI(0)] , x1 ≥ 0.

On the basis of this relation, we further can note that a successive integration
over [x1,∞) of the relation (3.16) gives

(4.20) −I ′(x1) ≥
(

1− ω2

ω2
m

) ∫
Dx1

γ2
(
v2

,11 + 2v2
,12 + v2

,22

)
da, x1 ≥ 0,

and

(4.21) I(x1) ≥
(

1− ω2

ω2
m

) ∫ ∞

x1

∫
Dξ

γ2
(
v2

,11 + 2v2
,12 + v2

,22

)
daξdξ, x1 ≥ 0.

Further, by using the estimate (4.19), from the relations (4.20) and (4.21), we
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deduce the following spatial estimates

(4.22)
∫

Dx1

(
v2

,11 + 2v2
,12 + v2

,22

)
da

≤ 1

γ2
(
1− ω2

ω2
m

) [−I ′(0) + mI(0)] e−mx1 , x1 ≥ 0,

and

(4.23)
∫ ∞

x1

∫
Dξ

(
v2

,11 + 2v2
,12 + v2

,22

)
daξdξ

≤ l

π
√

2γ2

(
1− ω2

ω2
m

)− 3
2

[−I ′(0) + mI(0)] e−mx1 , x1 ≥ 0.

Thus, we can conclude that in the class of amplitudesv(x) for whichI ′(x1) ≤
0 for all x1 ≥ 0 the measure

(4.24) F(x1) =

∫
Dx1

(v2
,11 + 2v2

,12 + v2
,22)da

decays toward zero faster than the exponentiale−mx1 whenx1 goes to infinity.
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5. Conclusion
On the basis of the above analysis we can conclude that, for an amplitudev(x),
solution of the boundary value problemP , we have the following alternative of
Phragmèn-Lindelöf type: either the measureE(x1) grows toward infinity faster
than the exponentialem̃x1 whenx1 goes to infinity and then the energy

(5.1) U(v) =

∫
S

(v2
,11 + 2v2

,12 + v2
,22)da

is unbounded, or the energyU(v) is bounded and then the measureF(x1) de-
cays toward zero faster than the exponentiale−m̄x1 , provided the excited fre-
quencyω is lower than the critical valueωm defined by the relation (3.15).
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6. The Kirchhoff Theory of Thin Plates
We consider here as a limit case the Kirchhoff theory of thin elastic plates, that
is the case whenβ tends to zero. It can be seen from the relation (A7) thatr(τ)
decreases monotonically with increasingτ , and that

(6.1) r(0+) = lim
τ→0+

r(τ) = π, r(∞) = lim
τ→∞

r(τ) = r0,

wherer0 = 2.365 is the smallest positive root of the equation

(6.2) tan r = − tanh r.

It follows then from the relations (A7) and (6.1) thatλ(t) is a decreasing func-
tion with respect tot, and that

(6.3) λ(0+) = lim
t→0+

λ(t) =
4π2

l2
, lim

t→∞
tλ(t) =

(
2r0

l

)4

.

In view of the relation (3.11) and by using the relation (6.3) it follows that

(6.4) lim
β→0

Λ(α, β)

β2
=

1

α2

(
2r0

l

)4

,

and hence the relation (3.15) furnishes that

(6.5) ω2
m =

γ2

α2

(
2r0

l

)4

=
Eh2

12(1− ν2)%

(
4.73

l

)4

.
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To this end we recall the critical value established by Ciarletta [3] for the
model of thin plates with transverse shear deformation

(6.6) ω∗2m =
h2π4

4l2
µ

%(h2π2 + l2)
,

that is

(6.7) ω∗2m =
Eh2

8(1 + ν)%

(π

l

)4 1

1 + h2

l2
π2

.

Therefore, we have

(6.8) Φ =
ω∗2m

ω2
m

= 0.29191
1− ν

1 + h2

l2
π2

,

and because we haveh � l and 1
2

< 1− ν < 2, it results that

(6.9) Φ < 0.58382.

This leads to the idea that for the Kirchhoff theory of thin plates we have an
interval of frequencies larger than that of the Reissner–Mindlin model for which
we can establish the spatial behaviour of the amplitudes.
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7. Appendix
In [12] Knowles has established the following result: for any functionu ∈
C2

0([0, l]) and for any real numbert ≥ 0, we have

(A1)
∫ l

0

u2
,22dx2 ≥ λ(t)

∫ t

0

(u2
,2 + tu2)dx2,

where

(A2) λ(t) =
4

l2
r4(τ)

τ + r2(τ)
, τ =

tl2

4
,

andr(τ) is the smallest positive root of the equation

(A3) tan r = −
√

τ

τ + r2
tanh

(
r

√
τ

τ + r2

)
, τ ≥ 0.

Moreover,λ(t) is the largest possible constant in (A1) in the sense that if, for
a givent, λ(t) is replaced by a smaller constant, there is au ∈ C2

0([0, l]) for
which (A1) fails to hold.

The proof of the result stated above is based on the fact that the variational
problem of finding the extremals inC2

0([0, l]) of the ratio

(A4) J {u} =

∫ l

0
u2

,22dx2∫ l

0
(u2

,2 + tu2)dx2

,

for fixed t ≥ 0 leads formally to the eigenvalue problem

(A5) u,2222 + λu,22 − λtu = 0 on [0, l],
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(A6) u(0) = u,2(0) = u(l) = u,2(l) = 0.

It can be proved that the eigenvaluesλ are given by

(A7) λ(t) =
4

l2
r4(τ)

τ + r2(τ)
, τ =

tl2

4
,

wherer is a positive root of either of the equations

(A8) tan r =

√
τ + r2

τ
tanh

(
r

√
τ

τ + r2

)
,

(A9) tan r = −
√

τ

τ + r2
tanh

(
r

√
τ

τ + r2

)
.

It is shown that the smallest eigenvalueλ(t) corresponds to the smallest positive
rootr(τ) of the equation (A9) and the corresponding eigenfunction has no zero
in (0, l) and realize the absolute minimum ofJ {u} onC2

0([0, l]).
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