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Abstract

We study multiplicatively perfect, superperfect and analogous numbers . Con-
nection to various arithmetic functions is pointed out. New concepts, inequali-
ties and asymptotic evaluations are introduced.
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It is well-known that a numbern is said to be perfect if theum of aliquot
divisors ofn is equal ton. By introducing the functiom (sum of divisors), this
can be written equivalently as

(1.1) o(n) = 2n.

The Euclid-Euler theorem gives the form of even perfect numbets:2¥p,
wherep = 2¥+1 — 1 is prime (“Mersenne prime”). No odd perfect numbers are
known. The number is said to be super-perfect if

1.2) o(o(n)) = 2n.

The Suryanarayana-Kanold theoreni]| [4] gives the general form of even
super-perfect numbers: = 2¥, where2**+! — 1 = pis a prime. No odd super-
perfect numbers are known. For new proofs of these results,1sge[I1].
Many open problems are stated e.g.ih [10].
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Let T'(n) denote theproduct of all divisors ofn. There are many numbers
with the propertyl'(n) = n?, but none satisfyin@’(7'(n)) = n?. Let us call the
numbern > 1 multiplicatively perfect (or, for short,m-perfect) if

(2.1) T(n) = n?
andmultiplicatively super-perfect (m-super-perfect), if
(2.2) T(T(n)) =n?.

To begin with, we prove the following little result:

Theorem 2.1. All m-perfect numbers have one of the following forms: =
p1p2 OF n = p3, wherep,, p, are arbitrary, distinct primes. There are ne-
super-perfect numbers.

Proof. Firstly, we note that ifl,, ds, . . . , d, are all divisors ofz, then
n n n
dy,dyy....ds} =< —,—,...,— ¢,
{ 1, U2, ) } {dl dg ds}
implying that
n n n
didy...dg=— " —...—,
2 dy dy " d,
i.e.

(2.3) T(n) =n*?,
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wheres = d(n) denotes the number of (distinct) divisorsrof
Letn = pi*...p% be the prime factorisation of > 1. It is well-known
thatd(n) = (a1 + 1) ... (e, + 1), S0 equationq.1) combined with 2.3) gives

(2.4) (a1 +1)... (o + 1) =4.

Sincea; +1 > 1,forr > 2we can have onlyy; + 1 = 2, as + 1 = 2,
implying a; = ap = 1, i.e. n = pips. Forr = 1 we havea; + 1 = 4, i.e.
a; = 3, givingn = p3. There are no other solutioms> 1 (n = 1 is a trivial
solution) of equation4.1).

On the other hand, let us remark that fop 2 one hasi(n) > 2, so
(2.5) T(n)>n
with equality only forn = prime. If n # prime, then it is immediate that
d(n) > 3, giving

(2.6) T(n) >n3? for n # prime

Now, relations 2.5) and @.6) together give
(2.7) T(T(n)) >n"* n# prime

Thus, by9/4 > 2, there are no non-trivial (i.en # 1) m-super-perfect num-
bers.
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In fact, we have found that the equation

(2.8) T(T(n)) = n°, ac (17 9)

has no nontrivial solutions. O

Note. According to the referee the notion of“perfect numbers”, as well
as Theoren2.1appears ind].

On Multiplicatively Perfect

Corollary 2.2. n = 6 is the only perfect number, which is alseperfect. Numbers
Indeed;: cannot be odd, since by a result of Sylvester, an odd perfect number 2 Sl
must have at least five prime divisors.fis even, them = 2p = p;p, <
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In a similar manner, one can defihen-perfect numbers by

(3.1) T(n) =n"

wherek > 2 is given. Since the equatiofay; + 1)...(a, + 1) = 2k has a
finite number of solutions, the general form/eMmultiply perfect numbers can
be determined. We collect certain particular cases in the following.

] On Multiplicatively Perfect
Theorem 3.1. 1) All tri- m-perfect numbers have the forms= p,p3 or n = Numbers

5.
b1, J. Sandor

2) All 4-m-perfect numbers have the forms= p,p3 or n = p1psps Or n =

pz; Title Page
3) All 5-m-perfect numbers have the forms= p;pj or n = p?; Contents
4) All 6-m-perfect numbers have the forms= p,p.p2, n = p1p3, n = pi'; 4 »
5) All 7-m-perfect numbers have the forms= p;pS, or n = p}3; 4 d
6) All 8-m-perfect numbers have the forms= p;pspsps OF n = p1pap? or Go Back
n = piph, n = p’; Close
7) All 9-m-perfect numbers have the forms= p,p2p3, n = pip3, n = pi’; Quit
Page 7 of 16

8) All 10-m-perfect numbers have the forms= p,pspi, n = p1p3, n = pi?,

etc.
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Proof. We prove only the case 6). By relatioh §) we must solve the equation
(3.2) (1 4+1)... (o +1) =16
in o, andr. Itis easy to see that the following four cases are possible:
Dar+1=2,a0+1=2,a3+1=2,a4+1=2;
) a1 +1=2,a0+1=2,a3+1=4, a4 +1 =4
i) a1 +1=4,as +1=4;
iv) a; + 1 = 16.

This gives the general forms of alh8-perfect numbers, namely; = a, =
s =y = 1) n = pipopspa; (1 = 1, a2 = 1, a3 = 3) n = pipaps; (o1 = 3,
ay = 3)n = pip3; (g = 15) n = pi°. O

Corollary 3.2. 1) n = 28 is the single perfect and tri-perfect number.
2) There are no perfect and 4-perfect numbers;
3) n = 496 is the only perfect number which isrb-perfect;
4) There are no perfect numbers which are6perfect;
5) n = 8128 is the only perfect number which isnz-perfect.
In fact, we have:

Theorem 3.3.Letp be a prime, withi2? — 1 prime too (i.e.2? — 1 is a Mersenne
prime). Ther2r=1(2P — 1) is the only perfect number, whichjisn-perfect.
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Proof. By writing (a; + 1) ... (o, + 1) = 2p (p prime), the following cases are
only possible:

) og+1=2,a0+1=p;
i) a; +1=2p.

Thenn = pph ' orn = p?~' are the general forms gkm-perfect num-

bers. By the Euclid-Euler theorepph ' = 2¢-1(2¢ — 1) iff p, = 2 and

pr=2—1is prime- ] On Multiplicatively Perfect
Numbers
Remark 3.1. For p < 10000 the following Mersenne primes are known; namely | Sandor
forp=2,3,5,7,13,17,19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, '
3217, 4253, 4423, 9689, 9941. It is an open problem to show the existence of _
infinitely many Mersenne primesl{]). Title Page
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As we have seen, the equatiohd), i.e. T(T'(n)) = n? has no nontrivial
solutions. A similar problem arises for the equation

(4.1) T(T(n)) =n" n>1

(k > 2, fixed). By (2.3) we can see that this is equivalent to

(4_2) w = L. On MUItipll\;E?rtwil\:)/:z Perfect
Letn = pS'...p™ > 1 be the canonical representationsof By d(n) = - sander
(o +1)...(vr + 1), and €.3) we have
Title Page
ai(ar1+1)...(ar+1)/2 ar(a (o
T(n) = py O pprlent Do, Contents
SO (4.2) becomes equivalent to <4 >
< | 2
aj(a;+1).. . (. + 1)
(4.3) (a1 +1)...(a, +1) { 5 +1 Go Back
' |:O-/r(a/1 + 1)2 o +1) n 1} — 4k, Close
Quit
and this, clearly has at most a finite number of solutions. Page 10 of 16
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3) For k = 7 the solutions are, = p?;

4) For k = 9 the solutions aren = pip, (p1 # po2 primes).

Proof. For k = 4,5, 6, from (4.3) we must solve the corresponding equations

for 16, 20, 24. It is a simple exercise to verify these impossibilities.A~er3
we have the single equaliy2 = 3 - 4, whena; = 2, M +1 = 4. For
k=70 =3by%+1="7and4 -7 =28. Fork =9wehave2-2-3-3 = 36
anda; = ay = 1. O

Corollary 4.2. n = 6 is the single perfect number which is also 9-super-
perfect.

Indeedp;p, = 2- (22— 1) = 2-3 = 6 by Theoremt.1and the Euclid-Euler
theorem.

Remark 4.1. By relation @.6), by consecutive iteration we can deduce

T(T(...T(n)...)) > 3t/

(. 7
v~
k

for n # prime. Since3* > 2% . k for all & > 1 (induction: 3**! = 3. 3k >
3-28.k > 2.2F(k+1) = 2¥*1(k+1)) we can obtain the following generalization
of equation 2.2):

T(T(...T(n)...)) =n*

~
k

has no nontrivial solutions.
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By relation @.3) we have

(5.1) logT(n) _ d(n)

logn 2
Clearly, this implies
log T log T
lim inf og—(n) =1, lim sup og—(n) =+
n—oo logn n—oo logn

(take e.g.n = p (prime);n = 2% (k € N)). Since2 < d(n) < 2/n (see e.g.
[13]) for n > 2 we get

| < logT'(n) < Vi
logn

By 2¢() < d(n) < 2%™ (see e.g.[7]) we can deduce:

log T
R 7(1") <2 (> 9).

Since it is known by a theorem of Hardy and Ramanuigntat the normal
order of magnitude af(n) andQ(n) is log log n, the above double inequality
implies that:
the normal order of magnitude of

(5.2) loglog T'(n) — loglog nis(log 2)(loglogn — 1).
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By a theorem of Wiegert {[/]) we have

logd(n)loglogn

lim sup
n—oo log n

=log 2,
so by 6.1) we get:

loglog T log1
(5.3) lim sup (loglog T'(n))(loglog n)
n—oo IOgTL

= log 2.

In fact, by a result of Nicolas and Robin], for n > 3 one has

logd(n) < logn

~ 1,5379...
log 2 _Cloglogn (e~ 1, )

we can obtain the following inequality:

1
(5.4) loglogT'(n) < loglogn + Flogn log 2,
loglogn
wherek = clog 2 andn > 3. This gives
. loglogT(n)

(5.5) lim —=—2>" " =

n—oo f(n)
for any positive function withe 75— — 0 (n — o).

By ¢(n)d(n) > n (see [4]) andp(n)d?*(n) < n? for n # 4 (see F]) we get

n n

o =M=

for n >4,
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and this, by §.1) yields

n_ log T'(n) o_n
2¢(n) p(n)
Herey is the usual Euler totient function.

Hence, the arithmetic functiofi is connected to the other classical arith-
metic functions.

5.6
(5.6) logn = 2

By in < 33 < "3t (see 4], [5], [6]), we get
o(n) _logT(n) _o(n)
®.7) n+1 = logn — 2y/n’

For infinitely many prime® we have

1
dip—1) > exp c—8P
log log p

(c > 0, constant, se€’]), so we have:

1
(5.8) loglogT'(p — 1) > loglog(p — 1) + C08P log 2
loglog p
for infinitely many primeg, implying, e.g.
loglogT(p — 1
(5.9 lim sup oglog T(p — 1) =400
porime loglog p
and
loglog T log1
(5.10) lim int (08108 T () (oglogn)

n—oo

logn
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