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ABSTRACT. Equivalent conditions are given for the nonnegativity of the coefficients of both the
Chebyshev expansions and inversions of the first n polynomials defined by a certain recursion
relation. Consequences include sufficient conditions for the coefficients to be positive, bounds
on the derivatives of the polynomials, and rates of uniform convergence for the polynomial
expansions of power series.
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1. INTRODUCTION

In the classical theory of orthogonal polynomials a standard problem is to expand one set of
orthogonal polynomials as a linear combination of another with nonnegative coefficients (see
[4], [6], [8], [L2]). R. Askey [2] and R. Szwarc [13] give general conditions ensuring non-
negativity in terms of underlying recurrence relations, while Askey [1] and W. F. Trénch [14]
determine when connection coefficients are positive. It is often desirable, especially in numeri-
cal analysis (e.g., see [9], [10], [15]), to express orthogonal polynomials in terms of Chebyshev
polynomialsT,, or cosine polynomials with nonnegative coefficients. In this note, we derive
inequalities [(2.R) on the connection coefficients of certain Chebyshev expansions that imply
positivity. Consequently, we obtain bounds on polynomial derivatives, estimate uniform con-
vergence of polynomial expansions of power series, and illustrate the optimality of Chebyshev
polynomials in these contexts.

For given real sequences, 3, and nonzero,, we consider the sequence of polynomigls
defined byP_, = 0, P, = 1, and forn > 0,

(11) l’Pn = 'VnPn—i-l + 6nPn + O‘npn—l‘
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2 JAMES GUYKER

For example the Jacobi polynomia’l’éo"ﬁ) (a, B > —1) are defined bl) with
2(a+n)(B+n) g, - B —a?
(a+B+2n+1)(a+ B+ 2n) " (a4 B+2n+2)(a+ B+ 2n)
2+ 1)(a+pB+n+1)
(a+pB+2n+1)(a+8+2n+2)

In [5] (see alsol[B]), Askey and G. Gasper characterize those Jacobi polynomials that are
combinations of Chebyshev polynomials with nonnegative coefficients. Szwarc ([13, Corol-
lary 1]) gives conditions on sequences of polynomials satisfying (1.1) which imply that their
Chebyshev connection coefficients are nonnegative. Our results are based on this work and
the following classical expansions of the normalized ultraspherical or Gegenbauer polynomials

pit = Pfﬁi;()l). We recall the factorial functiofw),, := a(a+1)--- (a+n—1) whenn > 1,

and(«)p := 1 for a # 0. ThenPi_%} =T, and

(1.2) pPlet = mZ::[)c(n,m)Tm <a # —%) :

wherec(n, m) = 0 if n — m is odd, and otherwise

2= 6) <a+%>n2m<a+%>ngm( ")
(2a + 1), nom J-

2
It follows that if « > —1 andn — m is even, ther:(n, m) > 0 and the sequende(n,n)) is
monotonically decreasing. Moreover, we have the inversions

]
n 2_571,21@ n -1
=y 2 (V) P

Ay =

and Y =

c(n,m) =

k=0
([-] is the greatest integer function) and
= 1
1. no_ pla} _Z
1.3 =Y dn Pl (a3,

whered(n, m) = 0 if n — m is odd, and otherwise
2a+1+2m)2a+1)m (%52 +1) pom <n)

on+1 (CV + %) b2

d(n,m) = o

is positive andd(n,n)) is decreasing. The polynomial%i“} satisfy ) for sequences such
thata,, > 0 andg, = 0. Furthermoreq > —1 if and only if a,, < 1.
2. THE CHEBYSHEV EXPANSION OF P,

The following characterizes those polynomials that satjsfy (1.1) and enjoy similar expansions

(T2) and[([TB).

Theorem 2.1.Let P, be defined by (1] 1) for given sequenagsf,, and-,,, and be normalized
by P,(1) = 1. Withn fixed, we have that

k k
(2.1) Py =Y a(k,m)T, and z*=> bk,m)P, (0<k<n)
m=0

m=0
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for nonnegative coefficientgk, m) and b(k, m) such that the coefficientg k, k) and b(k, k)
are monotonically decreasing if and onlyif< a; < % andg; =0fori=0,...,n — 1. In this
case, the following properties hold.
() a(k,m)="0b(k,m)=0if £k —mis odd.
(i) If ay > 0, thenb(k, m) > 0 whenevek — m is even.
(iiiy If n >3 andK is any subset of0, ..., [%51]}, then

(2.2) Z a(n—2,m—2) < Z a(n—3,m—1)

n—m ’ n—m
S ER SEK”

whereK' :={k € K : k+1 € K}U{%2}if 22 isin K, andK' := {k € K :
k+1 € K} otherwise; and™* := K'U{ke€ K :k—1€ K}.
(iv) If n>2anda; < %forz’ =1,...,n— 1, thena(k,m) > 0 whenevek — m is even.
V) If o; < % fori =1,...,n — 3, then equality holds i.2) if and only if eithéf is the
whole set{0, ..., [%51]} itself (i.e., [2.2) is just®, (1) = P,_5(1) = 1) or K’ and K*
are the empty sets.

Proof. Suppose that, ..., P, satisfy [1.1) and[(2]1) with nonnegative coefficients such that
P.(1) = 1, anda(k, k) andb(k, k) are decreasing)(< k& < n). It follows thata(0,0) =
a(1,1) =1and

(23) Vka(k + 17]) = _aka(k - 17]) - 6ka(k7j) + %(a(kaj =+ 1) + (1 + 51j>a’(k7j - 1))

for k =0, ...,n— 1 (We use the convention that entries of vectors or matrices with any negative
indices are zero; and(7, j) = 0 if i < j. We also assume, = 0.). Similarly, by substituting
(2.1) into both sides af*+! = zz* we haveb(0,0) = 1 and

(2.4) b(k +1,5) = 7j—1b(k,j — 1) + B;b(k, j) + bk, j +1).

With j = k& + 1 we concludey, a(k, k) andb(k, k) are positive; and withy = k, 5, =
alk+1,k) =b(k+1,k) =0fork =0,...,n — 1. Similarly property (i) follows by induction.

By the normalization we have, + oy, = 1. Thus by [(2.B) and (2]4) with = k + 1, it follows
that] <7, < 1,500 < oy, < 5 (0 < k <n—1),sincea(k, k) andb(k, k) are decreasing.

Conversely suppose tha}, ..., P, are normalized and given by (1.1) for constants such that
0<a; <landsd =0(0 <i < n-—1). Itfollows that the degree oP, is k£ and thus
P, satisfiesl) for coefficients(k, m) andb(k, m) generated by (2]3) anfd (2.4) respectively.
Sincey, = 1 — o > 0, the above argument shows that property (i) holdstahdn) > 0; and
sincel < v, <1, a(k, k) andb(k, k) are decreasing fdr = 0, ..., n.

We will show thata(k, m) > 0 simultaneously with inequality (2.2) by induction enNow
a(0,0) = a(1,1) = 1, a(2,0) = 152, a(2,2) = 5=, 12a(3,1) = (a2 + 3) + a(2,0) and
a(3, ?;)) = m Hencea(k, m) > 0 whenn is either 2 or 3. AIsoZ) is easily checked when
n = o.

Henceforth let» > 3 and suppose that(i,i —2k) > 00 <i<n—-1;0< k < [g]) and
that ) is true for all integens’ such that < n’ < n. Letj be given0 < j < [7], and letk
be a subset of0, ..., [*5]}. We show thati(n,n — 2j) > 0 and that

(2.5) d an-2n-2k-2)< > a(n—3n-2k-1)
keK’ keK*
beginning with the latter.
We may assume that’ is not the whole sef0, ..., [*5]} since in the contrary cas.5)
reduces taP, »(1) = 1 < P,_3(1) = 1. Observe that< may be written as a disjoint union
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of sets of the form{k, ..., k + m} such that there is at least one integer between any two such
sets. Sincek’ and K* are then corresponding disjoint unions of subsets of these sets, and
both sides of{(2]5) may be separated into sums over these subsets accordingly, we may assume
K ={k,...k+m}.

Thus we wish to show

(2.6) i5k+m;za(n —2,n—2(k+i)—2) < ia(n —3,n—2(k+1i)—1).
i=0

i=0
By (2.3) we have
Yn_za(n —2,n — 2(k +1i) — 2)

= —ay_3a(n—4,n—2(k+1i) —2)+ %(a(n—B,n— 2(k+1i)—1)

+ (14 03 n—2(k4s))a(n — 3,n — 2(k + i) — 3)),

whereds ,,_ox+i) = 1 ifand only if n is odd andk +i + 1 = ”T‘l =k + m (¢ K). Moreover,
a(n —3,n —2(k +i) — 3) = 0if nis even and2 = k + m. Hence the left side of (2.6) may

be combined as follows:

m

Z(Skﬂ-’%—za(n —2,n—2k+1i)—2)

i=0
_ _Gn3 Z5k+i n—2a(n —4,n—2(k+1i) —2)
Tn=3 20 -
1 m—1
+ a(n—3,n—2(k+1i)—1)
Tn—3 i=1
1

+

s (a(n —3,n—2k—1)+ (1 + (Sk_,'_m’[nT—l}) a(n—3,n—2(k+m)— 1)) )

Therefore[(2.6) becomes

2.7y - In <Z5k+.n ca(n —4,n—2(k+1i)—2) — mz_a(n—?),n—2(k+i)—l)>

Tn—3 -0 i=1

+

1+ n7> —3n—2(k 1
2%_3< + 0,251 ) a(n —3,n = 2(k +m) —1)
1—20zn_3
<—

<5 an—3,n—2k—1)+a(n—3,n—2(k+m)—1).
n—3

Let us suppose first that+ m # [“71]. Then [2.J) may be rearranged as follows:

m—1 m—1
(2.8) —an3<2an—4n—2k+z ) —2) Zan—3,n—2(k+i)—1))
=0 i=1

< (%_an_?)) (a(n—3,n—2k —1) +a(n —3,n—2(k +m) — 1)),
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which is clearly true itv, 3 = 0 so we assuma,,_3 # 0. Withn’ = n — 1, replacingi by i + 1
in the second sum, we seek to show

m—2 m—1
(2.9) d am =20 —2k+i)—-2) <> a(n =30 =2k +i) - 1).
i=0 =0

Sincek +m < [%52], we haveK’ = {k, ...,k +m — 1} C {0,..., [%51]} . Moreover,(K') =
{k, ...,k +m — 2} where the second prime is with respectto Hence[(2.p) follows from the
induction hypothesis

(2.10) Z a(n' —2,n — 2k —2) < Z a(n’' —3,n—2k—1).

ke(K') ke(K')*

Finally suppose that + m = [*5*] so that[(2.]}) becomes

(211) —ay_3 (Zm: 5k+i7nT—za(n —4n-2k+1i)—-2)— Zm:a(n —3,n—2(k+1)— 1))

=0 i=1

IN

1
(5 - O./n_g) a(n—3,n—2k—1).

As above we may assume,_ 3 # 0 and wish to show

m—1 m
(2.12) Z a(n' —2,n" —2(k+1i) —2) < Z (5,6“7%@(71' —3,n —=2(k+1i)—1).
i=0 i=0

If n is even them' is odd and(K’)" (with respect tov) is {k, ...,k + m — 1}. Thus (2.1P)
is a consequence of the induction hypothesis as above. On the other hand,atld, then
(K'Y ={k,...,k +m — 1} and [2.1P) again reduces to the hypothesis

Next we verifya(n,n — 2j) > 0. Sincea(n,n) = [[}_, m > 0 suppose further that
7> 1. Let

] -1
KO = {k:klnteger,OSkS |:TLT:| s k#]_lvj}

If nis even and = =2, definek; := K,; otherwise let

. —2
Klzz{k:klnteger,ogkg [nTl,k%j—l}.

Note thata(n — 2, n — 2k — 2) = 0if k = [%1] > [252]. Furthermore, the SUR ¢k, a(n—

k+1€Kq

2,n — 2k — 2) is zero unlesg + 1 is in K, (in which case the sum is(n — 2,n — 2j — 2)).
Solving the equations),,_»(1) = 1 andP,_(1) = 1 for a(n — 2, n — 2j) anda(n —1,n—2j+
1)+ a(n—1,n—2j — 1) respectively, and substituting them intp_,a(n,n — 2j) as given by
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(2.3), we have the following identities.
’Vn—la(nv n— 2.])

(1—m))a(n—2,n—2k—2)

2771,—2

+ ap_10n2j42a(n — 2,0) + 20[”72 a(n—3,n—2k —1)
Tn=2 fek,
1 1— 2an_2>
- Qpg+ —— a(n —2,n — 2k — 2)
272 ( 2 k;(:{)

1
+ 5(517,1,2]‘01(” - 17n - 2] - 1)

_ (%—anl) S a(n - 2,n— 2% - 2)

k¢ Ky

1 (%—O‘H) S aln—2,n— 2k —2)

27’”’_2 keEK
k¢ K|

1
+ p_10p2j42a(n — 2,0) + §5l,n—2ja(n —1,n—2j-1)

Op—2
+ an—3,n—2k—1)— an—2,n—2k—2
ool PILL )= Y )
0 keK,
Each of the terms in the last expression is nonnegative, the final one a result of the induction

assumption or{ (2| 2). Therefougn, n — 2;) > 0.

Property (i) has already been shown so for (ii), assume> 0. Sinceb(0,0) = 1 and
b(k+1,0) = aryob(k — 1,0) + a1a0b(k — 1,2), we have thabt(k + 1,0) > 0 for k& + 1 even.

But alsob(k + 1,0) = ayb(k, 1) sob(k,1) > 0 for odd k. Hence (ii) is now straightforward
from (2.4).

For property (iv), suppose; < % (i = 1,...,n — 1). By the induction argument above, the
first term of the last identity fofy, _;a(n,n — 2j) is positive sincé: = j — 1 ¢ K. Since the
other terms are nonnegative, n — 25) > 0.

Next leta; < % (i = 1,...,n — 3) and suppose that equality holds 2.2) for some subset
K of {0,...,[%5*]}. As above, it follows that equality holds i.2) over each subsé{ aff
the form{k, ...,k + m}. Hence assum& = {k,....k +m}. If m = 0 andk # =32 thenK’
and K* are empty. IfK = {32}, then by equality in[(2.11) we havea,_sa(n — 4,0) =
(% — Oén_g) a(n — 3, 1) which is impossible since the left side is nonpositive and the right side
is positive by property (iv).

Therefore, letn > 1. If k +m # [27}] then equality holds irf (2|8), and by (.9) ahd (2.10)

we have

— Q3 Z a(n'—3,n" =2k —1) — Z a(n’ —2,n" — 2k — 2)

ke(K')* ke(K')
1
= (5 —an_g) (a(n—3,n—2k—1)+aln—3,n—-2(k+m)—1)).

This is impossible since both sides must be zero which implies-3,n —2(k+m)—1) = 0.
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Finally, if & + m = [23%] then equality holds iff (2.11) and a similar argument sha{us—
3,n — 2k — 1) = 0 which by property (iv) impliest = 0 and thusk” must be the whole set
{0, ..., [%52]}. O

3. BOUNDS ON POLYNOMIAL DERIVATIVES

It is well known [9] that7,, is bounded by one and far< £ <n
n2(n? = 1)(n> —4) - (n® — (k = 1)?)
1-3:5---(2k—1)

T30 (@) < TP (1) =

when—1 < z < I;andifl < k < n and|T\"(z)| = T"(1), thenz = +1. More

generally, it follows from a result of R.J. Duffin and A.C. Schaeffér ([7], [9, Thm. 2.24])
that if P, is any polynomial of degree that is bounded by one ir-1,1] and1 < k < n,

then‘Pﬁk)(a:)) < T£k>(1) with equality holding only wherP, = +7,, andx = +1. For the
polynomials in Theorern 2.1, we may be more precise.
Corollary 3.1. Let P, ..., P, be defined by (1}1) with < o; < 3, 5 = 0, and~; = 1 — o for
1=0,....,n—1.Then
@) |P.(z)] <1 = P,(1) = T,(1); and if n > 1, [P,(x)] = 1,andq; < 5 fori =
1,...,n—1, thenzr = £1.
(b) If 1 < k < n,then
[P ()] < PP (1) < TP(1)
for all z in [—1, 1]. Moreover in this case:
(i) If k < nand ‘P,E’“(I)‘ — PM(1), thenz = +1.

(i) 1f PV(1) = TM(1), then P, = T,,. In particular, ifn > 2 anda, < 1 (i =
1,...,n—1), thenP" (1) < T (1).

Proof. By Theorem 2[LP, = > _ a(n,m)T,, wherea(n, m) > 0. Therefore
|[Pa(@)] <> a(n,m) [T ()] < Pa(1) = 1.

m=0

Suppose that > 1 and|P,(z)| = 1. If n = 1, thenz = +1, so assume. > 2 anda; < 3
(t=1,...,n—1). ThenP,(z) = +F,(1) and hence(n, m)(1 + T,,(z)) = 0 for all m. Since

Ty =1, Ty = x andT, = 2% — 1, property (iv) of Theorerh 21 implies that= 1.
Next assumeé > 1. Since<T,§L’“)(1)> is increasing,

n

> aln,m)TP(x)

m=k

|Pi(a)] =

J. Inequal. Pure and Appl. Math?(2) Art. 67, 2006 http://jipam.vu.edu.au/
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Assumel < k < n and

p» (x)’ — PP (1). Then

n

0= 3 atn,m) (T() - |Z0(a)]).

m=k
where each term is nonnegative. Sin¢e, n) > 0 we have that7 " (x)’ = T"(1) sox = +1.

Finally suppose that > 1 andP{" (1) = 7" (1). ThenX" _, a(n,m) = 1 soa(n,m) = 0
for m < k. Also a(n,m)T,(,f)(l) = a(n,m)T,&k)(l) soa(n,m) = 0form = k,...,n — 1.
ThereforeP,, = a(n,n)T,, and thusi(n,n) = 1.

However the previous case is impossible:it> 2 anda; < % (: =1,....,n — 1) since by
property (iv) of Theorerh 2|1 we would hawén, 0) > 0 or a(n, 1) > 0. O

Remark 3.2. For fixed k the sequencePék)(l) of bounds is increasing. In fact b.l),
P,E”“)(l) may be generated recursively as follows: Initially we haRfé)(l) =1, P,gk)(l) =

—E—pEY(1) (k > 2) and seky, == 22 PP (1). Then forn > 1,

P (1) = PR(1) + e > P(1) > 0,
where the differences,, are defined by

o k
" e P¥*=1(1),
1—ozne 1’k—i_l—ozn w1

Cnk - —

Ultraspherical polynomialg = Pl with o > —% satisfy the differential equation
(1—2?)y" —2(a+ Day +nn+2a+1)y =0
and thus a closed form fd?,gk)(l) is possible in this case since

nn+2a+1)—(k—1)2a+1) — (k- 1>2P7(Lk’1)(1).
2(a+ k)
This extends known Chebyshev and Legendre identitiés ([9, p.[33], [11, p. 251]).

PO =

4. POLYNOMIAL EXPANSIONS OF POWER SERIES

A standard application of the theory of orthogonal polynomials is the least squares or uni-
form approximation of functions by partial sums of generalized Fourier expansions in terms of
orthogonal polynomials, especially Chebyshev polynomials. The coefficients of the expansion
are given by an inner product used in generating the polynomials. In our case, we may define
Fourier coefficients for expansions of power series in terms of the polynomials that satisfy (1.1):
Let > a;x° be a convergent power series @Al, 1), and for everyn let P, be a polynomial of
degreen. Thenz™ = " _ b(n,m)P,, for some numberg(n, m); and we define the Fourier
coefficientc; of >~ a;2" with respect to the sequen¢g,) by

Cj = Z Cl,ib(i, j)

whenever this sum converges. Note thgt:= "  a;b(i, j) is then thejth coefficient in the
expansion of the partial suln;"_ a;z": sinceb(i, j) = 0 for j > 1,

n

doaa' = a;y b6, )P =) P
i=0 =0 =0

J=0
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We have the following estimate whefig|| denotes the uniform normmax{|f(z)| : —1 <
x < 1}. The optimal property of Chebyshev expansions extends a result of T.J. Rivlin and
M.W. Wilson ([10], [S, Thm. 3.17]).

Corollary 4.1. Let(P,) be given by[(1]1) with,), (8,) and (v,,) nonnegative, and suppose
that P,(1) = 1 for all n. If 3 a; converges absolutely, then the coefficienof Y a,z’ with
respect to{ P,,) exists for every and

Cj — Z Gib(iJ)
=0
Moreover, i) ia; converges absolutely, then

‘Z a’ =) ¢ Pi(x)
=0

forall z in [—1,1]. In this case, ity; < % andg; =0fori=0,...,n—1,and ifa; > 0 forall i
andd;, is thekth Chebyshev coefficient ®f a;z*, then

(4.1) HZ a;xt — z”: c; P; Z a;xt — z": di Ty,
j=0 k=0

In addition, ifo; < § (i = 1,...,n — 1), then equality holds ir] (41) if and only Jf, a;2" is a
polynomial of degree at most

i>n
i—j even

< 3 (la + Jias)

i>n

>

Proof. Asume thata,,), (5,) and(y,) are nonnegative, antl,(1) = 1 for all n. By (1.1) the
degree ofP, is n for all n. Thusz™ = >"" _, b(n,m)P,, whereb(n,m) > 0 by (2.4), and
b(n,m) < 1 by the normalization since we havé & " _ b(n,m).

Suppose thap | |a;| converges. The . a;b(i, j) converges absolutely by the comparison
test soc; exists and

> aib(i, j)

>n

< Z |ai .

i>n
i—j even

Next assumé_ |ia;| < oo. Then}_ |a;| < oo soc; exists for everyj. Thus by Corollary 3]1
we have

n

> (e = caj) Py(x)

j=0

< +

E a;z"

i>n

‘Z a;ir’ = ¢;Py(x)
=0

n

§Z|Qi|+2|cj_cnj|,

i>n =0
where

n

n
D le—cul =
§=0

J=0

<SS el < S S ia.

7=0 i>n+1 i>n

>n

Suppose further that; < %, 3, = 0 (i = 0,...,n — 1) anda; is nonnegative for all. Then
¢; > 0 for all 7 and by Theorell?j = > 7 _,a(j, k)T, wherea(j, k) > 0. Since we also
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have}" a;z* = >~ ¢; P; uniformly on[—1, 1] in this case, it follows that

HZaixi—chPj ZC]'PJ’ :ZCj
j=0

i>n i>n
and similarly
k=0 k>n
But
Z dka = Z CLILEZ
= P
= Z Cj Z (l(j, k)Tk
7 k=0
= Z ( CjCL(j, k)) Tk
E \j>k
since

< ch SchPj(l) :Zai < 00.

Jj=k

> cialj,k)

jzk

Since the coefficients in a uniformly convergent Chebyshev expansion are unigue,
> isk ¢jalj, k). Therefore

S =Y e Yatih

k>n i>n k>n
j n

= ch (Za(], k’) - a(j, k))
i>n k=0 k=0

= ZCj — chja<j7 k)
i>n k=0 j>n

S ZCJ'.
Jj>n

Finally, assume that; < § (i = 1,...,n — 1). By property (iv) of Theorem 2}14(j,0) +
a(j,1) > 0 for j > n so if equality holds in the last inequality then= 0 for all j > n. Thus
> a;xt =3 ¢;P; is a polynomial of degree at most O

Remark 4.2. If (P,) is defined as in Corollary 4.1 and, more generally(ia;)? converges,
then by the Schwarz inequality it follows that

S ol < (Z(m»?)é (Z 1)

>n >n >n
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AN INEQUALITY FOR CHEBYSHEV CONNECTION COEFFICIENTS 11

S0 |a;| < oo andc; exists for everyj. Moreover in this case we have

'Z aix’ — Z%‘Pj(l’)

i>n 7=0 [i>n
1

< (;(mf)Q (; (‘%)2) + 'no (;(ia»z)% (; (b(z‘;j>>2)5

< (n+2) <Z Z%) <Z(mi)2) < n\;r; (Z(iai>2>

i>n >n >n

<

where the last inequality follows from the proof of the integral test.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

REFERENCES

R. ASKEY, Orthogonal expansions with positive coefficie®gc. Amer. Math. Sogc16 (1965),
1191-1194.

R. ASKEY, Orthogonal expansions with positive coefficients SIAM J. Math. Anal.2 (1971),
340-346.

R. ASKEY, Jacobi polynomial expansions with positive coefficients and imbeddings of projective
spacesBull. Amer. Math. So¢74 (1968), 301-304.

R. ASKEY, Orthogonal Polynomials and Special Functioh®egional Conference Series in Ap-
plied Mathematics21, SIAM, Philadelphia, PA, 1975.

R. ASKEY AND G. GASPER, Jacobi polynomial expansions of Jacobi polynomials with non-
negative coefficientdProc. Camb. Phil. Soc70(1971), 243-255.

H. BATEMAN, Higher Transcendental Function¥. 2, Bateman Manuscript Project, McGraw-
Hill, New York, 1953.

R.J. DUFFINAND A.C. SCHAEFFER, A refinement of an inequality of the brothers Markoff,
Trans. Amer. Math. Socs0(1941), 517-528.

E.D. RAINVILLE, Special FunctionsMacmillan, New York, 1960.

[9] T.J. RIVLIN, The Chebyshev Polynomialiley, New York, 1974.

[10]

[11]
[12]

[13]

[14]

[15]

T.J. RIVLIN AND M.W. WILSON, An optimal property of Chebyshev expansiohsApprox. The-
ory, 2 (1969), 312-317.

G. SANSONE Orthogonal Functionsinterscience, New York, 1959.

G. SZEGO Orthogonal PolynomialsAmer. Math. Soc. Collog. PubR3, Amer. Math. Soc., Prov-
idence, RI, 1939.

R. SZWARC, Connection coefficients of orthogonal polynomi@lanad. Math. Bull.35 (1992),
548-556.

W.F. TRENCH, Proof of a conjecture of Askey on orthogonal expansions with positive coefficients,
Bull. Amer. Math. So¢81 (1975), 954-956.

M.W. WILSON, Nonnegative expansions of polynomidspc. Amer. Math. Soc24 (1970), 100—
102.

J. Inequal. Pure and Appl. Math?(2) Art. 67, 2006 http://jipam.vu.edu.au/


http://jipam.vu.edu.au/

	1. Introduction
	2. The Chebyshev Expansion of Pn
	3. Bounds on Polynomial Derivatives
	4. Polynomial Expansions of Power Series
	References

