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Abstract

Equivalent conditions are given for the nonnegativity of the coefficients of both
the Chebyshev expansions and inversions of the first n polynomials defined by
a certain recursion relation. Consequences include sufficient conditions for the
coefficients to be positive, bounds on the derivatives of the polynomials, and
rates of uniform convergence for the polynomial expansions of power series.
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sion.
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1. Introduction
In the classical theory of orthogonal polynomials a standard problem is to ex-
pand one set of orthogonal polynomials as a linear combination of another with
nonnegative coefficients (see [4], [6], [8], [12]). R. Askey [2] and R. Szwarc
[13] give general conditions ensuring nonnegativity in terms of underlying re-
currence relations, while Askey [1] and W. F. Trench [14] determine when con-
nection coefficients are positive. It is often desirable, especially in numerical
analysis (e.g., see [9], [10], [15]), to express orthogonal polynomials in terms
of Chebyshev polynomialsTn or cosine polynomials with nonnegative coeffi-
cients. In this note, we derive inequalities (2.2) on the connection coefficients
of certain Chebyshev expansions that imply positivity. Consequently, we obtain
bounds on polynomial derivatives, estimate uniform convergence of polynomial
expansions of power series, and illustrate the optimality of Chebyshev polyno-
mials in these contexts.

For given real sequencesαn, βn and nonzeroγn we consider the sequence of
polynomialsPn defined byP−1 = 0, P0 = 1, and forn ≥ 0,

(1.1) xPn = γnPn+1 + βnPn + αnPn−1.

For example the Jacobi polynomialsP
(α,β)
n (α, β > −1) are defined by (1.1)

with

αn =
2(α + n)(β + n)

(α + β + 2n + 1)(α + β + 2n)
,

βn =
β2 − α2

(α + β + 2n + 2)(α + β + 2n)
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and γn =
2(n + 1)(α + β + n + 1)

(α + β + 2n + 1)(α + β + 2n + 2)
.

In [5] (see also [3]), Askey and G. Gasper characterize those Jacobi polyno-
mials that are combinations of Chebyshev polynomials with nonnegative coeffi-
cients. Szwarc ([13, Corollary 1]) gives conditions on sequences of polynomials
satisfying (1.1) which imply that their Chebyshev connection coefficients are
nonnegative. Our results are based on this work and the following classical ex-
pansions of the normalized ultraspherical or Gegenbauer polynomialsP

{α}
n :=

P
(α,α)
n

P
(α,α)
n (1)

. We recall the factorial function(α)n := α(α+1) · · · (α+n−1) when

n ≥ 1, and(α)0 := 1 for α 6= 0. ThenP
{− 1

2
}

n = Tn and

(1.2) P {α}
n =

n∑
m=0

c(n, m)Tm

(
α 6= −1

2

)
,

wherec(n, m) = 0 if n−m is odd, and otherwise

c(n, m) =
(2− δm0)

(
α + 1

2

)
n−m

2

(
α + 1

2

)
n+m

2

(2α + 1)n

(
n

n−m
2

)
.

It follows that if α > −1
2

andn−m is even, thenc(n, m) > 0 and the sequence
〈c(n, n)〉 is monotonically decreasing. Moreover, we have the inversions

xn =

[n
2 ]∑

k=0

2− δn,2k

2n

(
n

k

)
P
{− 1

2
}

n−2k
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([·] is the greatest integer function) and

(1.3) xn =
n∑

m=0

d(n,m)P {α}
m

(
α 6= −1

2

)
,

whered(n,m) = 0 if n−m is odd, and otherwise

d(n,m) =
(2α + 1 + 2m)(2α + 1)m

(
n−m

2
+ 1
)

n−m
2

2n+1
(
α + 1

2

)
n+m+2

2

(
n

m

)

is positive and〈d(n, n)〉 is decreasing. The polynomialsP {α}
n satisfy (1.1) for

sequences such thatαn > 0 andβn = 0. Furthermore,α > −1
2

if and only if
αn < 1

2
.
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2. The Chebyshev Expansion ofPn

The following characterizes those polynomials that satisfy (1.1) and enjoy sim-
ilar expansions (1.2) and (1.3).

Theorem 2.1. Let Pn be defined by (1.1) for given sequencesαn, βn and γn,
and be normalized byPn(1) = 1. Withn fixed, we have that

(2.1) Pk =
k∑

m=0

a(k,m)Tm and xk =
k∑

m=0

b(k, m)Pm (0 ≤ k ≤ n)

for nonnegative coefficientsa(k,m) andb(k,m) such that the coefficientsa(k, k)
andb(k, k) are monotonically decreasing if and only if0 ≤ αi ≤ 1

2
andβi = 0

for i = 0, ..., n− 1. In this case, the following properties hold.

(i) a(k,m) = b(k,m) = 0 if k −m is odd.

(ii) If α1 > 0, thenb(k,m) > 0 wheneverk −m is even.

(iii) If n ≥ 3 andK is any subset of{0, ..., [n−1
2

]}, then

(2.2)
∑

n−m
2

∈K′

a(n− 2, m− 2) ≤
∑

n−m
2

∈K∗

a(n− 3, m− 1)

whereK ′ := {k ∈ K : k + 1 ∈ K} ∪ {n−2
2
} if n−2

2
is in K, andK ′ :=

{k ∈ K : k + 1 ∈ K} otherwise; andK∗ := K ′ ∪ {k ∈ K : k − 1 ∈ K}.

(iv) If n ≥ 2 andαi < 1
2

for i = 1, ..., n−1, thena(k,m) > 0 wheneverk−m
is even.
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(v) If αi < 1
2

for i = 1, ..., n − 3, then equality holds in (2.2) if and only if
eitherK is the whole set{0, ..., [n−1

2
]} itself (i.e., (2.2) is justPn−2(1) =

Pn−3(1) = 1) or K ′ andK∗ are the empty sets.

Proof. Suppose thatP0, ..., Pn satisfy (1.1) and (2.1) with nonnegative coeffi-
cients such thatPk(1) = 1, anda(k, k) andb(k, k) are decreasing (0 ≤ k ≤ n).
It follows thata(0, 0) = a(1, 1) = 1 and

(2.3) γka(k + 1, j) = −αka(k − 1, j)− βka(k, j)

+
1

2
(a(k, j + 1) + (1 + δ1j)a(k, j − 1))

for k = 0, ..., n − 1 (We use the convention that entries of vectors or matrices
with any negative indices are zero; anda(i, j) = 0 if i < j. We also assume
α0 = 0.). Similarly, by substituting (2.1) into both sides ofxk+1 = xxk we have
b(0, 0) = 1 and

(2.4) b(k + 1, j) = γj−1b(k, j − 1) + βjb(k, j) + αj+1b(k, j + 1).

With j = k+1 we concludeγk, a(k, k) andb(k, k) are positive; and withj = k,
βk = a(k + 1, k) = b(k + 1, k) = 0 for k = 0, ..., n− 1. Similarly property (i)
follows by induction.

By the normalization we haveγk + αk = 1. Thus by (2.3) and (2.4) with
j = k + 1, it follows that 1

2
≤ γk ≤ 1, so0 ≤ αk ≤ 1

2
(0 ≤ k ≤ n − 1), since

a(k, k) andb(k, k) are decreasing.
Conversely suppose thatP0, ..., Pn are normalized and given by (1.1) for

constants such that0 ≤ αi ≤ 1
2

andβi = 0 (0 ≤ i ≤ n− 1). It follows that the
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degree ofPk is k and thusPk satisfies (2.1) for coefficientsa(k, m) andb(k, m)
generated by (2.3) and (2.4) respectively. Sinceγk = 1 − αk > 0, the above
argument shows that property (i) holds andb(k,m) ≥ 0; and since1

2
≤ γk ≤ 1,

a(k, k) andb(k, k) are decreasing fork = 0, ..., n.
We will show thata(k, m) ≥ 0 simultaneously with inequality (2.2) by in-

duction onn. Now a(0, 0) = a(1, 1) = 1, a(2, 0) = 1−2α1

2γ1
, a(2, 2) = 1

2γ1
,

γ2a(3, 1) =
(
−α2 + 1

2

)
+ 1

2
a(2, 0) anda(3, 3) = 1

4γ1γ2
. Hencea(k,m) ≥ 0

whenn is either 2 or 3. Also (2.2) is easily checked whenn = 3.
Henceforth letn > 3 and suppose thata(i, i − 2k) ≥ 0 (0 ≤ i ≤ n − 1;

0 ≤ k ≤ [ i
2
]) and that (2.2) is true for all integersn′ such that3 ≤ n′ < n. Let

j be given,0 ≤ j ≤ [n
2
], and letK be a subset of{0, ..., [n−1

2
]}. We show that

a(n, n− 2j) ≥ 0 and that

(2.5)
∑
k∈K′

a(n− 2, n− 2k − 2) ≤
∑
k∈K∗

a(n− 3, n− 2k − 1)

beginning with the latter.
We may assume thatK is not the whole set{0, ..., [n−1

2
]} since in the con-

trary case (2.5) reduces toPn−2(1) = 1 ≤ Pn−3(1) = 1. Observe thatK may
be written as a disjoint union of sets of the form{k, ..., k + m} such that there
is at least one integer between any two such sets. SinceK ′ andK∗ are then
corresponding disjoint unions of subsets of these sets, and both sides of (2.5)
may be separated into sums over these subsets accordingly, we may assume
K = {k, ..., k + m}.

Thus we wish to show

(2.6)
m∑

i=0

δk+i, n−2
2

a(n− 2, n− 2(k + i)− 2) ≤
m∑

i=0

a(n− 3, n− 2(k + i)− 1).
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By (2.3) we have

γn−3a(n− 2, n− 2(k + i)− 2)

= −αn−3a(n− 4, n− 2(k + i)− 2)

+
1

2
(a(n− 3, n− 2(k + i)− 1)

+ (1 + δ3,n−2(k+i))a(n− 3, n− 2(k + i)− 3)),

whereδ3,n−2(k+i) = 1 if and only if n is odd andk + i + 1 = n−1
2

= k + m
(∈ K). Moreover,a(n− 3, n− 2(k + i)− 3) = 0 if n is even andn−2

2
= k +m.

Hence the left side of (2.6) may be combined as follows:

m∑
i=0

δk+i, n−2
2

a(n− 2, n− 2(k + i)− 2)

= −αn−3

γn−3

m∑
i=0

δk+i, n−2
2

a(n− 4, n− 2(k + i)− 2)

+
1

γn−3

m−1∑
i=1

a(n− 3, n− 2(k + i)− 1)

+
1

2γn−3

(
a(n− 3, n− 2k − 1)

+
(
1 + δk+m,[n−1

2
]

)
a(n− 3, n− 2(k + m)− 1)

)
.

http://jipam.vu.edu.au/
mailto:guykerj@buffalostate.edu
http://jipam.vu.edu.au/


An Inequality for Chebyshev
Connection Coefficients

James Guyker

Title Page

Contents

JJ II

J I

Go Back

Close

Quit

Page 10 of 25

J. Ineq. Pure and Appl. Math. 7(2) Art. 67, 2006

http://jipam.vu.edu.au

Therefore (2.6) becomes

(2.7) − αn−3

γn−3

(
m∑

i=0

δk+i, n−2
2

a(n− 4, n− 2(k + i)− 2)

−
m−1∑
i=1

a(n− 3, n− 2(k + i)− 1)

)
+

1

2γn−3

(
1 + δk+m,[n−1

2
]

)
a(n− 3, n− 2(k + m)− 1)

≤ 1− 2αn−3

2γn−3

a(n− 3, n− 2k − 1) + a(n− 3, n− 2(k + m)− 1).

Let us suppose first thatk + m 6= [n−1
2

]. Then (2.7) may be rearranged as
follows:

(2.8) − αn−3

(
m−1∑
i=0

a(n− 4, n− 2(k + i)− 2)

−
m−1∑
i=1

a(n− 3, n− 2(k + i)− 1)

)

≤
(

1

2
− αn−3

)
(a(n− 3, n− 2k − 1) + a(n− 3, n− 2(k + m)− 1)),

which is clearly true ifαn−3 = 0 so we assumeαn−3 6= 0. With n′ = n − 1,

http://jipam.vu.edu.au/
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replacingi by i + 1 in the second sum, we seek to show

(2.9)
m−2∑
i=0

a(n′ − 2, n′ − 2(k + i)− 2) ≤
m−1∑
i=0

a(n′ − 3, n′ − 2(k + i)− 1).

Sincek + m < [n−1
2

], we haveK ′ =
{
k, ..., k + m− 1} ⊆ {0, ..., [n′−1

2
]
}

.
Moreover,(K ′)′ = {k, ..., k + m − 2} where the second prime is with respect
to n′. Hence (2.9) follows from the induction hypothesis

(2.10)
∑

k∈(K′)′

a(n′ − 2, n′ − 2k − 2) ≤
∑

k∈(K′)∗

a(n′ − 3, n− 2k − 1).

Finally suppose thatk + m = [n−1
2

] so that (2.7) becomes

(2.11) − αn−3

(
m∑

i=0

δk+i, n−2
2

a(n− 4, n− 2(k + i)− 2)

−
m∑

i=1

a(n− 3, n− 2(k + i)− 1)

)

≤
(

1

2
− αn−3

)
a(n− 3, n− 2k − 1).

As above we may assumeαn−3 6= 0 and wish to show

(2.12)
m−1∑
i=0

a(n′−2, n′−2(k+i)−2) ≤
m∑

i=0

δk+i, n−2
2

a(n′−3, n′−2(k+i)−1).
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If n is even thenn′ is odd and(K ′)′ (with respect ton′) is {k, ..., k + m − 1}.
Thus (2.12) is a consequence of the induction hypothesis as above. On the other
hand, ifn is odd, then(K ′)′ = {k, ..., k + m − 1} and (2.12) again reduces to
the hypothesis.

Next we verifya(n, n−2j) ≥ 0. Sincea(n, n) =
∏n

j=2
1

2γn−j+1
> 0 suppose

further thatj ≥ 1. Let

K0 :=

{
k : k integer,0 ≤ k ≤

[
n− 1

2

]
, k 6= j − 1, j

}
.

If n is even andj = n−2
2

, defineK1 := K0; otherwise let

K1 :=

{
k : k integer,0 ≤ k ≤

[
n− 2

2

]
, k 6= j − 1

}
.

Note thata(n − 2, n − 2k − 2) = 0 if k = [n−1
2

] > [n−2
2

]. Furthermore, the
sum

∑
k/∈K0

k+1∈K0

a(n − 2, n − 2k − 2) is zero unlessj + 1 is in K0 (in which

case the sum isa(n − 2, n − 2j − 2)). Solving the equationsPn−2(1) = 1 and
Pn−1(1) = 1 for a(n−2, n−2j) anda(n−1, n−2j +1)+a(n−1, n−2j−1)
respectively, and substituting them intoγn−1a(n, n − 2j) as given by (2.3), we
have the following identities.

γn−1a(n, n− 2j)

=
1

2
− αn−1 +

∑
k∈K1

(
αn−1 −

1

2

(
1− 1− 2αn−2

2γn−2

))
a(n− 2, n− 2k − 2)

+ αn−1δn,2j+2a(n− 2, 0) +
αn−2

2γn−2

∑
k∈K0

a(n− 3, n− 2k − 1)
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− 1

2γn−2

(
αn−2 +

1− 2αn−2

2

) ∑
k∈K′

0

a(n− 2, n− 2k − 2)

+
1

2
δ1,n−2ja(n− 1, n− 2j − 1)

=

(
1

2
− αn−1

) ∑
k/∈K1

a(n− 2, n− 2k − 2)

+
1

2γn−2

(
1

2
− αn−2

) ∑
k∈K1
k/∈K′

0

a(n− 2, n− 2k − 2)

+ αn−1δn,2j+2a(n− 2, 0) +
1

2
δ1,n−2ja(n− 1, n− 2j − 1)

+
αn−2

2γn−2

∑
k∈K0

a(n− 3, n− 2k − 1)−
∑
k∈K′

0

a(n− 2, n− 2k − 2)

 .

Each of the terms in the last expression is nonnegative, the final one a result of
the induction assumption on (2.2). Thereforea(n, n− 2j) ≥ 0.

Property (i) has already been shown so for (ii), assumeα1 > 0. Since
b(0, 0) = 1 andb(k + 1, 0) = α1γ0b(k − 1, 0) + α1α2b(k − 1, 2), we have that
b(k + 1, 0) > 0 for k + 1 even. But alsob(k + 1, 0) = α1b(k, 1) sob(k, 1) > 0
for oddk. Hence (ii) is now straightforward from (2.4).

For property (iv), supposeαi < 1
2

(i = 1, ..., n − 1). By the induction ar-
gument above, the first term of the last identity forγn−1a(n, n− 2j) is positive
sincek = j− 1 /∈ K1. Since the other terms are nonnegative,a(n, n− 2j) > 0.

Next letαi < 1
2

(i = 1, ..., n − 3) and suppose that equality holds in (2.2)
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for some subsetK of {0, ..., [n−1
2

]}. As above, it follows that equality holds in
(2.2) over each subset ofK of the form{k, ..., k + m}. Hence assumeK =
{k, ..., k+m}. If m = 0 andk 6= n−2

2
thenK ′ andK∗ are empty. IfK = {n−2

2
},

then by equality in (2.11) we have−αn−3a(n− 4, 0) =
(

1
2
− αn−3

)
a(n− 3, 1)

which is impossible since the left side is nonpositive and the right side is positive
by property (iv).

Therefore, letm ≥ 1. If k + m 6= [n−1
2

] then equality holds in (2.8), and by
(2.9) and (2.10) we have

− αn−3

 ∑
k∈(K′)∗

a(n′ − 3, n′ − 2k − 1)−
∑

k∈(K′)′

a(n′ − 2, n′ − 2k − 2)


=

(
1

2
− αn−3

)
(a(n− 3, n− 2k − 1) + a(n− 3, n− 2(k + m)− 1)).

This is impossible since both sides must be zero which impliesa(n − 3, n −
2(k + m)− 1) = 0.

Finally, if k+m = [n−1
2

] then equality holds in (2.11) and a similar argument
showsa(n− 3, n− 2k − 1) = 0 which by property (iv) impliesk = 0 and thus
K must be the whole set{0, ..., [n−1

2
]}.
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3. Bounds on Polynomial Derivatives
It is well known [9] thatTn is bounded by one and for1 ≤ k ≤ n

∣∣T (k)
n (x)

∣∣ ≤ T (k)
n (1) =

n2(n2 − 1)(n2 − 4) · · · (n2 − (k − 1)2)

1 · 3 · 5 · · · (2k − 1)

when−1 ≤ x ≤ 1; and if 1 ≤ k < n and
∣∣∣T (k)

n (x)
∣∣∣ = T

(k)
n (1), thenx = ±1.

More generally, it follows from a result of R.J. Duffin and A.C. Schaeffer ([7],
[9, Thm. 2.24]) that ifPn is any polynomial of degreen that is bounded by one

in [−1, 1] and1 ≤ k < n, then
∣∣∣P (k)

n (x)
∣∣∣ ≤ T

(k)
n (1) with equality holding only

whenPn = ±Tn andx = ±1. For the polynomials in Theorem2.1, we may be
more precise.

Corollary 3.1. LetP0, ..., Pn be defined by (1.1) with 0 ≤ αi ≤ 1
2
, βi = 0, and

γi = 1− αi for i = 0, ..., n− 1. Then

(a) |Pn(x)| ≤ 1 = Pn(1) = Tn(1); and if n ≥ 1, |Pn(x)| = 1, andαi < 1
2

for
i = 1, ..., n− 1, thenx = ±1.

(b) If 1 ≤ k ≤ n, then ∣∣P (k)
n (x)

∣∣ ≤ P (k)
n (1) ≤ T (k)

n (1)

for all x in [−1, 1]. Moreover in this case:

(i) If k < n and
∣∣∣P (k)

n (x)
∣∣∣ = P

(k)
n (1), thenx = ±1.
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(ii) If P
(k)
n (1) = T

(k)
n (1), thenPn = Tn. In particular, if n ≥ 2 andαi < 1

2

(i = 1, ..., n− 1), thenP
(k)
n (1) < T

(k)
n (1).

Proof. By Theorem2.1, Pn =
∑n

m=0 a(n,m)Tm wherea(n, m) ≥ 0. There-
fore

|Pn(x)| ≤
n∑

m=0

a(n,m) |Tm(x)| ≤ Pn(1) = 1.

Suppose thatn ≥ 1 and |Pn(x)| = 1. If n = 1, thenx = ±1, so assume
n ≥ 2 and αi < 1

2
(i = 1, ..., n − 1). ThenPn(x) = ±Pn(1) and hence

a(n,m)(1 ± Tm(x)) = 0 for all m. SinceT0 = 1, T1 = x andT2 = 2x2 − 1,
property (iv) of Theorem2.1 implies thatx = ±1.

Next assumek ≥ 1. Since
〈
T

(k)
m (1)

〉
m

is increasing,

∣∣P (k)
n (x)

∣∣ =

∣∣∣∣∣
n∑

m=k

a(n, m)T (k)
m (x)

∣∣∣∣∣
≤

n∑
m=k

a(n, m)
∣∣T (k)

m (x)
∣∣

≤
n∑

m=k

a(n, m)T (k)
m (1) = P (k)

n (1)

≤ T (k)
n (1)

n∑
m=k

a(n, m) ≤ T (k)
n (1).
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Assume1 ≤ k < n and
∣∣∣P (k)

n (x)
∣∣∣ = P

(k)
n (1). Then

0 =
n∑

m=k

a(n, m)
(
T (k)

m (1)−
∣∣T (k)

m (x)
∣∣) ,

where each term is nonnegative. Sincea(n, n) > 0 we have that
∣∣∣T (k)

n (x)
∣∣∣ =

T
(k)
n (1) sox = ±1.

Finally suppose thatk ≥ 1 andP
(k)
n (1) = T

(k)
n (1). Then

∑n
m=k a(n, m) =

1 so a(n,m) = 0 for m < k. Also a(n,m)T
(k)
m (1) = a(n, m)T

(k)
n (1) so

a(n,m) = 0 for m = k, ..., n−1. ThereforePn = a(n, n)Tn and thusa(n, n) =
1.

However the previous case is impossible ifn ≥ 2 andαi < 1
2

(i = 1, ..., n−
1) since by property (iv) of Theorem2.1we would havea(n, 0) > 0 ora(n, 1) >
0.

Remark 1. For fixedk the sequenceP (k)
n (1) of bounds is increasing. In fact

by (1.1), P
(k)
n (1) may be generated recursively as follows: Initially we have

P
(1)
1 (1) = 1, P

(k)
k (1) = k

1−αk−1
P

(k−1)
k−1 (1) (k ≥ 2) and setekk := k+αk

1−αk
P

(k)
k (1).

Then forn ≥ 1,

P
(k)
n+1(1) = P (k)

n (1) + enk ≥ P (k)
n (1) ≥ 0,

where the differencesenk are defined by

enk :=
αn

1− αn

en−1,k +
k

1− αn

P (k−1)
n (1).
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Ultraspherical polynomialsy = P
{α}
n with α ≥ −1

2
satisfy the differential

equation
(1− x2)y′′ − 2(α + 1)xy′ + n(n + 2α + 1)y = 0

and thus a closed form forP (k)
n (1) is possible in this case since

P (k)
n (1) =

n(n + 2α + 1)− (k − 1)(2α + 1)− (k − 1)2

2(α + k)
P (k−1)

n (1).

This extends known Chebyshev and Legendre identities ([9, p. 33], [11, p.
251]).
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4. Polynomial Expansions of Power Series
A standard application of the theory of orthogonal polynomials is the least
squares or uniform approximation of functions by partial sums of generalized
Fourier expansions in terms of orthogonal polynomials, especially Chebyshev
polynomials. The coefficients of the expansion are given by an inner product
used in generating the polynomials. In our case, we may define Fourier coef-
ficients for expansions of power series in terms of the polynomials that satisfy
(1.1): Let

∑
aix

i be a convergent power series on(−1, 1), and for everyn let
Pn be a polynomial of degreen. Thenxn =

∑n
m=0 b(n,m)Pm for some num-

bersb(n, m); and we define the Fourier coefficientcj of
∑

aix
i with respect to

the sequence〈Pn〉 by
cj :=

∑
i

aib(i, j)

whenever this sum converges. Note thatcnj :=
∑n

i=0 aib(i, j) is then thejth
coefficient in the expansion of the partial sum

∑n
i=0 aix

i: sinceb(i, j) = 0 for
j > i,

n∑
i=0

aix
i =

n∑
i=0

ai

n∑
j=0

b(i, j)Pj =
n∑

j=0

cnjPj.

We have the following estimate where‖f‖ denotes the uniform norm
max{|f(x)| : −1 ≤ x ≤ 1}. The optimal property of Chebyshev expansions
extends a result of T.J. Rivlin and M.W. Wilson ([10], [9, Thm. 3.17]).

Corollary 4.1. Let〈Pn〉 be given by (1.1) with 〈αn〉, 〈βn〉 and〈γn〉 nonnegative,
and suppose thatPn(1) = 1 for all n. If

∑
ai converges absolutely, then the
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coefficientcj of
∑

aix
i with respect to〈Pn〉 exists for everyj and∣∣∣∣∣cj −

n∑
i=0

aib(i, j)

∣∣∣∣∣ ≤ ∑
i>n

i−j even

|ai| .

Moreover, if
∑

iai converges absolutely, then∣∣∣∣∣∑ aix
i −

n∑
j=0

cjPj(x)

∣∣∣∣∣ ≤∑
i>n

(|ai|+ |iai|)

for all x in [−1, 1]. In this case, ifαi ≤ 1
2

andβi = 0 for i = 0, ..., n− 1, and if
ai ≥ 0 for all i anddk is thekth Chebyshev coefficient of

∑
aix

i, then

(4.1)

∥∥∥∥∥∑ aix
i −

n∑
j=0

cjPj

∥∥∥∥∥ ≥
∥∥∥∥∥∑ aix

i −
n∑

k=0

dkTk

∥∥∥∥∥ .

In addition, ifαi < 1
2

(i = 1, ..., n− 1), then equality holds in (4.1) if and only
if
∑

aix
i is a polynomial of degree at mostn.

Proof. Asume that〈αn〉, 〈βn〉 and〈γn〉 are nonnegative, andPn(1) = 1 for all
n. By (1.1) the degree ofPn is n for all n. Thusxn =

∑n
m=0 b(n, m)Pm where

b(n, m) ≥ 0 by (2.4), andb(n,m) ≤ 1 by the normalization since we have
1n =

∑n
m=0 b(n, m).

Suppose that
∑
|ai| converges. Then

∑
i aib(i, j) converges absolutely by

the comparison test socj exists and∣∣∣∣∣∑
i>n

aib(i, j)

∣∣∣∣∣ ≤ ∑
i>n

i−j even

|ai| .
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Next assume
∑
|iai| < ∞. Then

∑
|ai| < ∞ socj exists for everyj. Thus by

Corollary3.1we have∣∣∣∣∣∑ aix
i −

n∑
j=0

cjPj(x)

∣∣∣∣∣ ≤
∣∣∣∣∣∑

i>n

aix
i

∣∣∣∣∣+
∣∣∣∣∣

n∑
j=0

(cj − cnj)Pj(x)

∣∣∣∣∣
≤
∑
i>n

|ai|+
n∑

j=0

|cj − cnj| ,

where

n∑
j=0

|cj − cnj| =
n∑

j=0

∣∣∣∣∣∑
i>n

aib(i, j)

∣∣∣∣∣ ≤
n∑

j=0

∑
i≥n+1

1

i
|iai| ≤

n + 1

n + 1

∑
i>n

|iai| .

Suppose further thatαi ≤ 1
2
, βi = 0 (i = 0, ..., n− 1) andai is nonnegative for

all i. Thencj ≥ 0 for all j and by Theorem2.1, Pj =
∑j

k=0 a(j, k)Tk where
a(j, k) ≥ 0. Since we also have

∑
aix

i =
∑

cjPj uniformly on [−1, 1] in this
case, it follows that∥∥∥∥∥∑ aix

i −
n∑

j=0

cjPj

∥∥∥∥∥ =

∥∥∥∥∥∑
j>n

cjPj

∥∥∥∥∥ =
∑
j>n

cj

and similarly ∥∥∥∥∥∑ aix
i −

n∑
k=0

dkTk

∥∥∥∥∥ =
∑
k>n

dk.
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But ∑
dkTk =

∑
aix

i

=
∑

cjPj

=
∑

j

cj

∞∑
k=0

a(j, k)Tk

=
∑

k

(∑
j≥k

cja(j, k)

)
Tk

since ∣∣∣∣∣∑
j≥k

cja(j, k)

∣∣∣∣∣ ≤∑
j≥k

cj ≤
∑

cjPj(1) =
∑

ai < ∞.

Since the coefficients in a uniformly convergent Chebyshev expansion are unique,
dk =

∑
j≥k cja(j, k). Therefore∑

k>n

dk =
∑
j>n

cj

∑
k>n

a(j, k)

=
∑
j>n

cj

(
j∑

k=0

a(j, k)−
n∑

k=0

a(j, k)

)

=
∑
j>n

cj −
n∑

k=0

∑
j>n

cja(j, k) ≤
∑
j>n

cj.
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Finally, assume thatαi < 1
2

(i = 1, ..., n− 1). By property (iv) of Theorem2.1,
a(j, 0) + a(j, 1) > 0 for j > n so if equality holds in the last inequality then
cj = 0 for all j > n. Thus

∑
aix

i =
∑

cjPj is a polynomial of degree at most
n.

Remark 2. If 〈Pn〉 is defined as in Corollary4.1and, more generally,
∑

(iai)
2

converges, then by the Schwarz inequality it follows that

∑
i>n

|ai| ≤

(∑
i>n

(iai)
2

) 1
2
(∑

i>n

1

i2

) 1
2

so
∑
|ai| < ∞ andcj exists for everyj. Moreover in this case we have∣∣∣∣∣∑ aix

i −
n∑

j=0

cjPj(x)

∣∣∣∣∣
≤

∣∣∣∣∣∑
i>n

aix
i

∣∣∣∣∣+
n∑

j=0

∣∣∣∣∣∑
i>n

aib(i, j)

∣∣∣∣∣
≤

(∑
i>n

(iai)
2

) 1
2
(∑

i>n

(
xi

i

)2
) 1

2

+
n∑

j=0

(∑
i>n

(iai)
2

) 1
2
(∑

i>n

(
b(i, j)

i

)2
) 1

2

≤ (n + 2)

(∑
i>n

1

i2

) 1
2
(∑

i>n

(iai)
2

) 1
2

≤ n + 2√
n

(∑
i>n

(iai)
2

) 1
2

where the last inequality follows from the proof of the integral test.
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