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ABSTRACT. Let A and B be positive semidefinite matrices. Assuming that the eigenvalues of
B are less than one, we prove the following trace inequalities

Tr {(BAQB)UQ} <Tr {(BAﬂB)l/ﬁ}
and "
[0

Tr{(BAO‘B)l/O‘} < Tr{(Ba/ﬁAaBa/ﬂ) } :

forall 0 < o < 5. Moreover we prove that
1/«

Tr{(Ba/ﬁAaB“/ﬁ) }<Tr{(BAﬁB)”ﬁ} 7

forall0 < a < §and0 < a < 1. Furthermore we prove that
(BA®B)Y* < (BA®B)Y/”P

in the cases (a) < oo < gor (b)% < a < pgandg > 1. Further we present counterexamples
involving 2 x 2 matrices showing that the last inequality is, in general, violated in case that
neither (a) nor (b) is fulfilled.

Key words and phrasesTrace inequalities, Operator inequalities, Positive semidefinite matrix, Operator monotony, Operator
concavity.
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1. INTRODUCTION

Let M, be the space of x n complex matrices. We say thdt € M, is positive if A is
Hermitian, thatisA* = A, and its eigenvalues;(A) (: = 1, ..., n) are nonnegative. A positive
matrix A is denoted by) < A and we say thatl < B if 0 < B — A. The identity matrix is
denoted byl.
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2 MARCOSV. TRAVAGLIA

Our main result is the proof of the following inequalities involving the matixA® B)'/*
with o > 0:

Theorem 1.1.LetbeA, B € M, with0 < Aand0 < B < [. Defining
H(a) := (BA*B)Y and  h(a) =Tr{H(a)} ,
we prove the following operator and trace inequalities.
a) Forall 1 < a < g we have

(1.1) H(a) < H(B).
b’) Forall 1/2 <« <1andg = 1we have
(1.2) H(o) < H(B=1).
b") Forall 0 < o < 1/2and/3 = 1 we can find matricesl > 0 and0 < B < [ such that
(1.3) H(a) £ H(B=1).
b) Combining a) with b’)
(1.4) H(a) < H(B)

holds forall1/2 < o < fand( > 1.
c) Forall 0 < a <  we prove that

(1.5) h(a) < h(B), thatis, Tr{(BA*B)Y*} < Tr{(BA’B)"?} .
d) Forall 0 < a < 3 we have
(1.6) Te{(BasB)/e} < T {(Bofacpert) Y

e) Forall 0 < a < gand0 < a < 1 we prove that
(1.7) T { (Ban B L < T {(BA%B)' 7}

Remark 1.2. The item a) is the main inequality of Theor¢m]|1.1. As we will see, it is a direct
consequence of the following result of F. Hansen [8]:

“If f is an operator monotone function defined on the intef@abo), then K f(X)K* <
f(KXK*) holds for everyX > 0 and contractionk’.”

See also Lemma2.1.

A proof of ¢) can be obtained combining a) with d) and e). More precisely, c) follows from a)
in the casex > 1 and from d) and e) in the case< o < 1. The author would like to thank F.
Hansen for indicating a simpler proof of ¢) which does not make use of d) and e). This simpler
proof is presented below.

We would like to state our discussion, motivation and background of Thgorgém 1.1 as follows.

A motivation to prove the inequality (1.5) is the application of the well-known trace inequality
ITe{X}| < Tr{|X|}, X € M, for the particular case wher& = AB with 0 < A and
0 < B < I. Here we use the definitiof | := (X*X)'/?. Applying this trace inequality we
obtaini(1) < h(2), because:

(1.8) h(1) ;= Tr{BAB} = Tr{AB?} = Tr{AY2B%A"/?}
< Tr{AY?BAY?} = Tr{AB}
< Tr{|AB|} = Tr{(BA?B)Y?} =: h(2),
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where in the first inequality 0.8) we used tila B? < B since0 < B < I. We also used
that| Tr{ AB}| = Tr{AB} becausélr{AB} = Tr{AY2BA'Y?} > 0 since bothA and B are
positive matrices. Similar t.8), we can also show theg~) < h (5) fork =0,1,2,... .

Considering the special case= 1/2 and = 1 of (1.3) we can easily prove thaf(1/2) <
H(1), namely:

BAB — (BAY?B)? = BAY?AY2B — BA'Y?B?A'Y?B = BAV*(I — B*)AY?B >0,

becaus® < B < I and sol — B? > 0.

Now we put the inequalities presented in Theofer 1.1 in the context of known results. More
precisely, we will derive two particular cases [of (1.5) gnd|(1.1) from [1], [3], [11], [10] &hd [6].
However, we need to impose some restrictions4oand B in the hypothesis of theorem 1.1.
These restrictions are B is a projectionand 2) < B < A< [.

1) Considering the restriction that = P is a projection we can show the following two
particular cases of (1.5):
e The first particular case df (1.5) is

(1.9) h(1/k) < h(1) forall £=1,2,3,....

We can derive this trace inequality using the following result by Ando, Hiai and
Okubo [1]:
“For semidefinite matriced, B the inequaltity

Tr{AP*B% ... APN BN} < Tr{AB}
holds withp;, ¢; > 0and N p, =N ¢ =17
Applying this result toB = P andp; = ¢; = 1/k we have

h(1) = Te{ PAP} = Tt{AP} > Tr {A%P. . A%P}

_ { (PA%P) - (PA%P)}
= Te{(PAY*P)*} = h(1/k) |
which proves|[(1.9).
e The second particular case pf (1.5) is
(1.10) h(a) < h(1) forall 0<a<1.

This trace inequality can be derived from the Berezin-Lieb inequality ([3], [11]). To
understand this, recall that the Berezin-Lieb inequality statesi{gt( PX P)} <
Te{Pf(X)P} holds if P is a projection andf is a convex function on an interval
containing the spectrum of . Now takingX = A% andf(\) = A/ (0 < a < 1)

we obtain[(1.1ID), because

h(a) = Tr {(PAap)l/a} < Te{P(A")V/*P} = R(1).

2) Considering the restrictioh < B < A < I we will show the following two particular
cases of{(1]1):
e The first particular case df (1.1) is

(1.11) H(1) < H(2), thatis BAB < (BA’B)Y?.

Remark 1.3. Although we haveBA?B < (BA?B)'/? and BA?B < BAB (since0 < A, B <
I) we cannot conclude from these two operator inequalitiesiaB < (BA2B)Y/2,
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e We can derive the operator inequality (1.11) based on the following result in Kamei [10]
which is a variation of[5]:

(1.12) 0<B<A assures(BS/%élpJ}')’s/?)ﬁ > B*2AB*?forp > 1ands > 0.
To understand this, take= s = 2 in (1.12), namely, we obtain
(BA?B)' > BAB.
On the other hand,

e

(BA2B)* > (BAB)

becauseBA’B < BIB < Isince0 < A,B < I.

e The second particular case pf (1.1) is a generalization of the first one. More precisely
(1.13) H(1) < H(p), thatis,BAB < (BA*B)"? forall p > 1.

We can obtain the above operator inequality using the following result/(see [6]) which
is also a variant of [5] and a more precise estimation than](1.12):

(1.14) The function#, (p) = (BT APB" ) forp > 1, r >0
is operator increasing as a function pfwhenevef) < B < A.
Now the operator inequalit§Z (1) < H(p) follows from (1.14) setting = 1, that is,
(BAPB)#* = Fy(p) > Fi(1) = BAB.
On the other hand,
(BA"B)» > (BAPB)#+2
becauseBA’PB < BIB<IT(0<A,B<I)and3/(p+2)>1/pforp>1.

We shall state the following couterexamples associated with Thgorém 1.1.
Counterexamples. In order to show that we cannot generally drop "Tr" from the inequality
(1.8) apart from the cases B)< a < Jorb)1/2 < o < fandg > 1, consider the following
concrete example @fx 2 matrices: LetbeB := (), ) andA := 64P+Q with P :=1/2(} 1)
andQ := I — P orthogonal projections. Since we are working widtk 2 matrices, we observe
thatDet [H () — H(«)] < 0impliesH(3) # H(«) . Based on this observation we calculate
the following determinants:

1) Det [H(1) — H(1/3)] = —81/16 ~ —5.06 < 0

2) Det [H(2/3) — H(1/2)] =12 — /26 ~ —0.36 < 0

3) Det [H(2/3) — H(1/3)]=9— 2115 26 ~ —3.96 < 0

4) Det [H(1/3) — H(1/6)] = —9446625/2097152 ~ —4.5045 < 0
5) Det [H(1/2) — H(1/3)] = —225/128 ~ —1.76 < 0

6) Det [H(4/3) — H(1/3)] ~ —-3.5<0

and conclude that the respective affirmatives:

1) H(#) > H(a) holds forall0 < a < 1/2andg =1

2) H(#) > H(a) holdsforalll/2 <a < g <1

3) H(f) > H(a) holdsforalld < e < 1/2 < 3 < 1

4) H(B) > H(«) holds forall0 < v < 8 < 1/2

5) H(B) > H(a) holds forall0 < o < = 1/2

6) H(3) > H(«a) holds forall0 < v < 1/2andj > 1
arefalse
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2. PROOF OF THEOREM [1.1

Definition 2.1. We say that a real functiofiis operator concave on the intenalvhen for all
real numbery < A <1,

S =X +AY) = (1= f(X)+Af(Y)
for every pairX, Y € M, whose spectra lie in the interval Likewise we say thaf is operator
monotone wherf (X) < f(Y') for every pairX, Y € M, with X <Y.

Lemma 2.1. [Operator concavity, monotony and contractions, part of Theorems 2.1 and 2.5 of
F. Hansen and G. K. Peders¢®]]. Let f : [0,00) — [0, 00) be a continuous function then the
following conditions are equivalent:

(i) f is operator concave oft), oo) .
(i) f is operator monotone.
(i) Kf(X)K* < f(KXK*) for every contractionk (i.e. ||[K| < 1, where|| - || is the
operator norm) and for every matriX > 0.
(iv) Pf(X)P < f(PXP) for all projectionsP and matricesX > 0 .

A functionf is called operator convex if the functienf is operator concave.
As an example of a contraction we have a mafsix M, with0 < B < [.

Lemma 2.2. LetbeR, S € M, with0 < Rand0 < S < [ then the following estimate holds
forall & >0

(2.1) Tr {(SRS)Y"} < Tr RV}
In order to give a proof of Lemnja 2.2 and c) of Theofen 1.1, we state the following Lemma
[2.3 which is derived fronthe minimax principldor the sake of convenience for readers:

Lemma 2.3.[[7], Lemma 1.1]. IfA and B aren x n positive semidefinite matrices such that
A > B > 0, then their eigenvalues of and B are ordered as

)\](A)Z/\](B) forj:1,2,...,n.

Proof of Lemma 2]2First we observe that matricesY andY X have the same eigenvalues
with the same multiplicities folX,Y € M,,. Let be0 < R and0 < S < I and using this
observation withY = SR'/? andY = R'/2S we have

(2.2) XNi(SRS) = \(SRY?RY28) = \;(RY?S%*R'/?)

fori =1,2,...,n. SinceS? < S < I we have thatr'/25?R'/? < R'/?R'/? = R. From the
last operator inequality it follows from Lemnha .3 that the eigenvalueR'6tS>R'/? and R
are ordered as

(2.3) 0 < X(RY2S2RY%) < \i(R)
fori=1,2,...,n. From [2.2) and (2]3) we have for all> 0 that

Tr{(SRS)Y*} = Zn: Ai(SRS)Ye

=1

— Z )\i(Rl/QSlep)l/a

i=1

<D ARV =T RV},
=1

which proves the Lemnija 2.2. O
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Proof of &) of (1.1L) in Theorem 1. Definingr := o/ we have) < r < 1 sincel < a < f.
Since the functiorf(t) = t", 0 < r < 1 is operator concave (and monotone)[6roo) and the
matrix B is a contraction we conclude by Lemmal2.1, setilag- A’ andK = B that

(2.4) BA*B = B(A°)"B < (BA’B)".

holds for all0 < o < S3.
On the other hand using the fact that the functigt) = ¢*, 0 < s < 1 is operator monotone
and takings = 1/a < 1 (sincel < « ), it follows from (2.4) that

(2.5) (BA“B)"/* < (BA®B)"/* = (BA®B)"/”,
which proves a). O

Proof of b’) and b” ) in Theorem I]1In the casel/2 < o < 1 andf = 1 we havel < r :=
1/a < 2. Based on the fact that the functigi¢) = ¢" is operator convex off), co) if and only
if 1 <r < 2(seel[4] Theorem V.2.9) it follows by Lemra P.1 settiig= A'/" with 7 := 1/a
andK := B that

H(a):= (BA*B)Y* = (BAY"B)" = (KXK*)"
<KX'K*=BAB:=H({=1),

which proves b’).

In the casé) < a < 1/2 andf = 1 we haver = 1/a > 2 which means that the function
f(t) = t" is not operator convex. It follows from Lemrma P.1 that we can find a magrix 0
and a projectior” such tha{ PX P)Y/* £ PX/*P. TakingA = X/ andB = P we have

H(a) = (BA°B)"Y* = (PXP)V/"
¢ PX'Y*P=BAB=H(B=1),
which proves b”). O
Proof of ¢) in Theorern 1] 1First we recall that the operator inequality (2.4),
(2.6) BA°B < (BA’B)*” |

holds for all0 < o < 3. From [2.6) it follows from Lemmf 2|3 that the eigenvalueg3of* B
and(BA?B)""” are ordered as

(2.7) Ai(BA®B) < \i((BA’B)*?)

fori=1,.
From (2.4 ) .7) and since the functigiit) = t'/* is increasing we obtain

T {(BAB)/} = Z)\ (BA®B)Y/*

< Z)\ ( (BA’B a/")l/a
:Tr{(BAﬂB)W} ,

which proves c). O
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Proof of d) in Theorerf 1} 1Settingr = o/, S := B*™" andR := B"A*B" we have) < § <
I (becaus® < r < 1) and0 < R. Applying the inequality[(2]1) for this choice & and.S we
obtain

Tr {(BAQB)I/O‘} — Ty { (Blfr (B"A°B") Bl")l/a}

1/a
(2.8) <Tr { (BTA"‘BT> } ,
which proves d). O

. . 1/a
Proof of e) in Theorern 1] IFirst we note that we can expréﬁs{ (BTAQBT) } as a norm,

namely:

1/a
1/a

1/a
(2.9) Tv { (B’”A“B’") } = |BA°B||} = | B (A B

where|| - ||/, is thel/a-trace norm which is an unitarily invariant norm (note thate > 1
since in our hypothesis < a < 1).

On the other hand a result fron1 [4] (Theorem IX.2.10) states that for every unitarily invariant
norm||| - ||| we have

(2.10) B A" B[l < [[(BAB)|
forall0 <r < 1if AandB are positive matrices. It follows from (2.]L0) that
r r el 1/ ril/a
18" (4% B[l < [[(BA"B) ),

—ef|(a8) |}
~ Ty { (BA"B) T/a}

(2.11) = Tr{(BA®B)Y/"}

where we could drop the | within the trace in the above estimate becalis€’ B is a positive
matrix. Now the proof of e) in Theorejn 1.1 follows directly from (2.9) and (2.11). O
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