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ABSTRACT. In this paper we deal with a nonlinear singular integral inequality which arises in
the study of partial differential equations. The integral term is non local in time and space and
the kernel involved is also singular in both the time and the space variable. The estimates we
prove may be used to establish (global) existence and asymptotic behavior results for solutions
of the corresponding problems.
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1. INTRODUCTION

We consider the following integral inequality
(s,9)

(1.1) p(t,z) < k(t,z) +l(t’$)/ﬂ/0 (t —igfzﬁ z -yl

where(2 is a domain inR™ (n > 1) (bounded or possibly equal ®"), the functionsk(t, x),
I(t,x) and F'(t) are given positive continuous functionstinThe constant§ < a < n, 0 <
G < 1andm > 1 will be specified below.
This inequality arises in the theory of partial differential equations, for example, when treat-
ing the heat equation with a source of polynomial type

w(t,x) = Au(t,z) + u™(t,z), t e R", t >0, m > 1

—dyds, v € Q,t >0,

m

u(0,z) = up(x), x € R™
If we write the (weak) solution using the fundamental solutig, =) of the heat equation
w(t, ) = Ault, ),
mnic): 1443-5756
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namely,

u(t,z) = /n G(t,x — y)uo(y)dy + /Ot / Gt —s,x —y)u™(s,y)dyds

and take into account the Solonnikov estimates of this fundamental solution (See [14] for in-
stance), then one is led to an inequality of tyjpe](1.1).

The features of this inequality, which make it difficult to deal with, are the singularities of
the kernel in both the space and time variables. It is also non integrable with respect to the
time variable. The standard methods one can find in the literature (see the recent books by
Bainov and Simeonov [1] and Pachpaitel[12] and the references therein) concerning regular
and/or summable kernels cannot be applied in our situation. Indeed, these methods are based
on estimates involving the value of the kernels at zero and/or d@m@orms of the kernels.

In contrast, there are very few papers dealing explicitly with singular kernels similar to ours.
Let us point out, however, some works concerning integral equations with singularities in time.
In Henry [4, Lemmas 7.1.1 and 7.1.2], a similar inequality] to](1.1) with only the integral with
respect to time, namely

Y(t) < alt) + b/t(t —5) 17 (s)ds, B> 0, v >0
0

i.e. the linear casenfg = 1) has been treated. The case> 1 has been considered by Medved
in [9], [10]. More precisely, the following inequality

»(t) < alt) + b(zf)/O (t — s) L7 R (s)y™(s)ds, B3>0,y >0

was discussed. The result was used to prove a global existence and an exponential decay result
for a parabolic Cauchy problem with a source of power type and a time dependent coefficient,
namely

u + Au = f(t,u), u e X,

U(O) =uy € X

with || f(t,w)|| < t*n(t) |||, m > 1, x > 0, where A is a sectorial operator (se€ [4]) and
|||, stands for the norm of the fractional spaké associated to the operatdr(see also [11]).

This, in turn, has been improved and extended to integro-differential equations and functional
differential equations by M. Kirane and N.-E. Tatar in [6] (see also N.-E. Tatar [13] and S.
Mazouzi and N.-E. Tataf [7 8] for more general abstract semilinear evolution problems).

Here, we shall combine the techniqueslin[[9, 10], based on the application of Lemma 2.1
and the use of Lemnja 2.3 below, with the Hardy-Littlewood-Sobolev inequality (see Lemma
[2.7) to prove our result. We will give sufficient conditions yielding boundedness by continuous
functions, exponential decay and polynomial decay of solutions to the integral inequality (1.1).

The paper is organized as follows. In the next section we prepare some notation and lemmas
needed in the proofs of our results. Secfipn 3 contains the statement and proof of our result and
two corollaries giving sufficient conditions for the exponential decay and the polynomial decay.
Finally we point out that our results hold {ortiori) for weaklysingular kernels in time.

2. PRELIMINARIES

In this section we introduce some material necessary for our results. We will use the usual
LP-space with its nornfj-|| .
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Lemma 2.1. (Young inequality) We have, fér= 1 + 1, the inequality

1fall, < 111, lgll, -
Lemma 2.2. Leta € [0,1) and 5 € R. There exists a positive constafit= C(«, 3) such that

Ce’t, if 3> 0;
t
/ sT%Pds < { C(t+1), if3=0;
0

C, if 3<0.

Lemma 2.3. (Hardy-Littlewood-Sobolev inequality)
Letu € LP(R") (p > 1),0 <y <nandl >1— _ then(1/]z|") * u € LI(R") with

é =14 % — 1. Also the mapping from € LP(R") into (1/ |z|”) x w € L?(R™) is continuous.

Seelb, Theorem 4.5.3, p. 117].

Lemma 2.4. Leta(t), b(t), K(t), ¢ (t) be nonnegative, continuous functions on the interval
I=(0,7T)0<T < x),w: (0,00) — R be a continuous, nonnegative and nondecreasing
function,w(0) = 0, w(u) > 0 for u > 0 and letA(t) = maxo<s<; a(s), B(t) = maxo<s<; b($).
Assume that

Y(t) < alt) 4+ b(t) /OtK(s)w(w(s))ds, tel.

Then .
Y(t) < Wt {W(A(t)) +B(t)/0 K(s)ds} ,t€(0,T1),
where vy
W (v) :/vo m,v > vg > 0,

W—tis the inverse of¥ and7} > 0 is such that
t
W(A(t)) + B(t)/ K(s)ds € D(W™)
0
forall t € (0,71).

Seel[2] (orl[5]) for the proof.

Lemma2.5.1f 6, v, 7 > 0 andz > 0, then
ZH/ (2= Q)" "¢ e < M (v,6,7),
0
whereM (v, 8, 7) = max (1,27") ' (6) (1 + &) 77°.
See|[6] for the proof of this lemma.

3. ESTIMATION

In this section we state and prove our result on boundedness and also present an exponential
and a polynomial decay result.

Theorem 3.1. Assume that the constants g andm are such thab < a < gn,0 < § < 1
andm > 1.
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1n

@) If 2 =R, then for anyr satisfyingmax (“”; ) <r < ™= we have

B
[t )], < Uprp(t)
with

m(p—1)

Up,r,p(t) =2 K@);

(1—m)r

¢
X ll — =Yy — 1)Cf_lC§K(t)m_1L(t)e€pt/ e_apst(s)ds] :
0

whereK() = maxo<s<t [|k(s, )|}, L() = maxo<s<e [[I(s,)]I;, p = ;5 andp =
— (m o, for somes > 0. Here01 and C, are the best constants in Lemu@z 2 and
Lemm , respectively. The estimation is valid as long as
t
(3.1) K ()™ L(#)e™ / P EY(s)ds < oo (m — 1)CLCY.
0

(ii) If 2 is bounded, then

le(t, x)H W(t)
for anyr < r wherep,

ro> M) thatis % < r < mm(";”,
= < p < - provided thatp >

n;ﬂ), then this estimation holds for any

n— (nﬂ a)r’

Proof. (i) Suppose thaf2 = R". By the Minkowski inequality and the Young inequality
(Lemmdg2.1), we have

X)) —dsdy

B2 et )|, <[kt )], t—slﬁ\x yl"

q

for r, p andq such that: =
Let p be such thaf = _ +

1

2

andyp’ its conjugats.e. ]l? + pi = 1. Using the Holder
inequality, we see that

(3.3) /Ot(t — 5)P R (8) ™ (s, y)ds

t o t N
< ([e-saerera)” ([ermoemsmas),
0 0

for any positive constart. We have multiplied by=* - ¢e==* before applying Holder
inequality.

Choosingg = —) we see thap = =. By our assumption onit is easy to see
thatg > 1,p > landl + (3 —1)p’ > 0. Therefore, we may apply Lemrpa .2 to get

t
/ (t — 5)P= P eP's s < 0P,
0

Hence, inequality] (3]3) becomes

3 =

[a=srreersais <t e ([empgems)
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It follows that

. Y)
—dsd
// t—s ﬂ\x N
1
t P d
/ </ egpst(S)gpmp(S,y)dS) %
n \Jo \x—y\ q

Asr < ™% we may apply the results in LemriaR.3 to obtain

t P
/ ( / e-EPSF%s)wp(s,y)ds) 4y
n 0 ]m—y[

q

t .

([ e reea)
0

P

with p as above and, is the best constant in the result of Lemimd 2.3. Fion] (3.2), (3.4)
and [3.5) it appears that

1
v
S Clp est

< (Cy

1
p

lot. ), < k(.2 + Cae™ 12, 2], H ( | e ->ds)

p
or

(D), < 1kt ), + Coe 12, 2)] (/ / s F () g s, x)dsdas),

1
whereCs = Cf' Cy. Inequality ) can also be written as

lo(t. D), < Ik )], + Coe® 1 D), ( [ e sl pd5>

Observe that by our choice pfwe haver = mp. It follows that

t
le(t, @), < Ikt 2)ll, + Cse™ [li(t, 2)], (/0 e (s) H@(S,x)l\:dS)

Applying the algebraic inequality
(a+ b <2071 (a? +bF), a,b >0, p> 1,

we deduce fron (3]7) that
t
lo(t,2)[I7 < 207 [[k(t, @)} + Cae™ Ill(t,x)!\ﬁ/ e P FP(s) [le(s, )l ds,
0
whereC, = 2°~1CT. Let us put)(t) = ||go(t,x)||:/m, then ) takes the form

(t) < PK(E, P+ Cae™ 1t )| / &P P ()™ (s)ds.
0
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By the Lemmd 24 witho(u) = ™, W(v) = (0! —v5™) and W™(z) =

1-m

1
[(1—m)z + v} m] = we conclude that

Pt) < Wt [W (22T K () + Cae™ L(2) /0 t egpSFp(s)ds}

1-m

< 271K (1) {1 — (m = 1)Cy (27K (1)) e L(t) /0 t e_apSFp(s)ds} :

whereK (t) andL(t) are as in the statement of the theorem.

(i) If © is bounded, then the first part in the assertion (ii) of the theorem follows from
the argument in (i) by an extension procedure and the application of the embedding
L"(Q) C LF(Q) form <r. Now if r < ﬂ and
P> iy
Hardy-Littlewood-Sobolev inequality (Lemnja P.3) applles (see also [3, p 660] when
Q2 is bounded).

O

In what follows, in order to simplify the statement of our next results, we definer or
according to the cases (i) or (ii) in Theorém|3.1, respectively.

Corollary 3.2. Suppose that the hypotheses of Thedrem 3.1 hold. Assume furthg(that
and!(t, ) decay exponentially in time, that igt, z) < e *k(x) andi(t,z) < e "I(z) for
some positive constantsandi. Theny(t, z) is also exponentially decaying to zero i.e.,

(3.9) et ), < Cse™, £>0
for some positive constant and . provided that
7 m—1 |17 * 1 —
[E@I ™ W@, [ F(s)ds < gy m - DCECE
0

whereCj is the best constant in Lemrna 2.2 (third estimation) and the other constants are as in
(i) and (ii) of Theorem 3]1.

Proof. From the inequality{ (1|1) we have

(3.10) olt,2) < e M E(x) + e (x / / (s, y>n _dsdy.
(t—s) 5 |z — y

After multiplying by e~ . ¢™#* whereu = min{k, [}, we use the Hélder inequality to get

/0 (t — )71 F(s)™ (5, )ds

t I t P
< (/ (t — s)(ﬁ_l)p,e_mp/“tds> (/ Fp(s)emp’”gomp(s,y)ds)
0 0

As in the proof of Theorerh 3.1, < (1 — 3)p’ < 1. If Cs is the best constant in Lemrpa .2,
then we may write

P

@) [ (- s < (/ () y)is)
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From (3.10) and (3.11) it appears that
Mot r) < k(z) + Cgl_(:v)/

Q

1
t v dyd
(/ FP(S)emp“twmp(s,y)dS) Ln_a
0 |33—y|

Taking the L"—norm and applying the Minkowski inequality and then the Young inequality
(Lemmd2.1), we find

e ot o), < [|k(@)],
> dyds
v =y "

+C%W@MLH[;(AﬂwuwmwwWWawdﬁ

with - = > + -. Applying Lemm, we arrive at

1
P

et [lp(t, @), < Hl%(x)”r + Cy,Cs HRx)Hp H (/0 Fp(s)emp“t¢mp(s,y)ds)

or

t p
(3.12) eHt | p(t, x)HT < Hk(:L‘)HT + CyCs HZ(I)HP (/ Fp(s)emput (s, x)n;np ds)
0
Taking both sides of (3.12) to the powgrwe obtain
t
(3.13) dwwwmws%HW@M+&WMM/Pﬂmwmwwmww&
0

Next, putting
X(t) = e oot )7,
the inequality[(3.13) may be written as
t
x(t) <2071 Hk(m)”f + Cy Hl(x)H];/ FP(s)x™(s)ds.
0
The rest of the proof is essentially the same as that of Theforem 3.1. O

In the following corollary we consider the somewhat more general inequality

(3.14) o(t,x) < k(t,z) +ltx// (5,9) ~dyds, z €, t>0
t—slﬁ\x—y\

for some specified.

Corollary 3.3. Suppose that the hypotheses of Thegrein 3.1 hold. Assume furthieftthat<

Fi(z) and 1 + 6p' — mp/ min{k,1 — 8} > 0. Then anygo(t x) satisfying |(3 -4) is also
ponnomiaIIy decaying to zero

lo(t, )], < Cst™, Cg,w >0
provided that

t
Bl 20) [ e s)s < st = g3

where( is the best constant in Lemina2.5.
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Proof. Let us consider the inequality

(3.15) o(t,x) < tFk(z) + (¢, ) // (S’ylfadyds.
(t—s)! 5|x Y|

Multiplying by s—mmin{k1=8}c—es . gmmin{k1-5}ces \ye obtain

(3.16) / 55150 P (s)™ (5, y)ds

1
v

' . P
< (/ (t— S)(ﬁ—l)Pls5P'—mp/ min{k,l—,@}e_gp/sds)
0

t .
% (/ P min{k,l—ﬁ}epfsl_jvp(s)me(S7 y)dS)
0

As 1+ 6p — mp min{k,1 — 5} > 0, we may apply Lemm@.S to the first term in the right
hand side of[(3.76) to get

1
P

(3.17) /Ot(t — )L F(s) ™ (s, y)ds

P

t ~
< Mtﬂ—l (/ Smpmin{k,l—ﬂ}6p€sFP(S)()OmP(&y)ds)
0
Using (3.17) we infer from inequality (3.15) that

R P R 1)

' mpmin{k,1—-8} pes m g dy
s P (5) ™ (s, y)ds | g
0

7z —yl
Next, after using the Hardy-Littlewood-Sobolev inequality and defining
o(t,x) = I o, 2) |17,
we proceed as in Theorgm B.1 to find a (uniform) boundsfor ). O

+Ml(t,x)/

Q

Remark 3.4. The investigation of (1]1) with weakly singularkernel in time, that is

o(t,x) < k(t,z) +lt:1:// (Sy)dyds v >0
t—slﬁ\l’ y|"

is simpler since this kernel is summable (in time).
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