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ABSTRACT. In this paper we deal with a nonlinear singular integral inequality which arises in
the study of partial differential equations. The integral term is non local in time and space and
the kernel involved is also singular in both the time and the space variable. The estimates we
prove may be used to establish (global) existence and asymptotic behavior results for solutions
of the corresponding problems.
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1. I NTRODUCTION

We consider the following integral inequality

(1.1) ϕ(t, x) ≤ k(t, x) + l(t, x)

∫
Ω

∫ t

0

F (s)ϕm(s, y)

(t− s)1−β |x− y|n−αdyds, x ∈ Ω, t > 0,

whereΩ is a domain inRn (n ≥ 1) (bounded or possibly equal toRn), the functionsk(t, x),
l(t, x) andF (t) are given positive continuous functions int. The constants0 < α < n, 0 <
β < 1 andm > 1 will be specified below.

This inequality arises in the theory of partial differential equations, for example, when treat-
ing the heat equation with a source of polynomial type ut(t, x) = ∆u(t, x) + um(t, x), x ∈ Rn, t > 0, m > 1

u(0, x) = u0(x), x ∈ Rn.

If we write the (weak) solution using the fundamental solutionG(t, x) of the heat equation

ut(t, x) = ∆u(t, x),
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2 NASSER-EDDINE TATAR

namely,

u(t, x) =

∫
Rn

G(t, x− y)u0(y)dy +

∫ t

0

∫
Rn

G(t− s, x− y)um(s, y)dyds

and take into account the Solonnikov estimates of this fundamental solution (see [14] for in-
stance), then one is led to an inequality of type (1.1).

The features of this inequality, which make it difficult to deal with, are the singularities of
the kernel in both the space and time variables. It is also non integrable with respect to the
time variable. The standard methods one can find in the literature (see the recent books by
Bainov and Simeonov [1] and Pachpatte [12] and the references therein) concerning regular
and/or summable kernels cannot be applied in our situation. Indeed, these methods are based
on estimates involving the value of the kernels at zero and/or someLp−norms of the kernels.
In contrast, there are very few papers dealing explicitly with singular kernels similar to ours.
Let us point out, however, some works concerning integral equations with singularities in time.
In Henry [4, Lemmas 7.1.1 and 7.1.2], a similar inequality to (1.1) with only the integral with
respect to time, namely

ψ(t) ≤ a(t) + b

∫ t

0

(t− s)β−1sγ−1ψ(s)ds, β > 0, γ > 0

i.e. the linear case (m = 1) has been treated. The casem > 1 has been considered by Medved
in [9], [10]. More precisely, the following inequality

ψ(t) ≤ a(t) + b(t)

∫ t

0

(t− s)β−1sγ−1F (s)ψm(s)ds, β > 0, γ > 0

was discussed. The result was used to prove a global existence and an exponential decay result
for a parabolic Cauchy problem with a source of power type and a time dependent coefficient,
namely  ut + Au = f(t, u), u ∈ X,

u(0) = u0 ∈ X

with ‖f(t, u)‖ ≤ tκη(t) ‖u‖m
α , m > 1, κ ≥ 0, whereA is a sectorial operator (see [4]) and

‖·‖α stands for the norm of the fractional spaceXα associated to the operatorA (see also [11]).
This, in turn, has been improved and extended to integro-differential equations and functional
differential equations by M. Kirane and N.-E. Tatar in [6] (see also N.-E. Tatar [13] and S.
Mazouzi and N.-E. Tatar [7, 8] for more general abstract semilinear evolution problems).

Here, we shall combine the techniques in [9, 10], based on the application of Lemma 2.1
and the use of Lemma 2.3 below, with the Hardy-Littlewood-Sobolev inequality (see Lemma
2.2) to prove our result. We will give sufficient conditions yielding boundedness by continuous
functions, exponential decay and polynomial decay of solutions to the integral inequality (1.1).

The paper is organized as follows. In the next section we prepare some notation and lemmas
needed in the proofs of our results. Section 3 contains the statement and proof of our result and
two corollaries giving sufficient conditions for the exponential decay and the polynomial decay.
Finally we point out that our results hold (a fortiori) for weaklysingular kernels in time.

2. PRELIMINARIES

In this section we introduce some material necessary for our results. We will use the usual
Lp-space with its norm‖·‖p.
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ON AN INTEGRAL INEQUALITY WITH A KERNEL SINGULAR IN TIME AND SPACE 3

Lemma 2.1. (Young inequality) We have, for1
r

= 1
ρ

+ 1
q
, the inequality

‖fg‖r ≤ ‖f‖ρ · ‖g‖q .

Lemma 2.2. Letα ∈ [0, 1) andβ ∈ R. There exists a positive constantC = C(α, β) such that

∫ t

0

s−αeβsds ≤


Ceβt, if β > 0;

C(t+ 1), if β = 0;

C, if β < 0.

Lemma 2.3. (Hardy-Littlewood-Sobolev inequality)
Let u ∈ Lp(Rn) (p > 1), 0 < γ < n and γ

n
> 1 − 1

p
, then(1/ |x|γ) ∗ u ∈ Lq(Rn) with

1
q

= γ
n

+ 1
p
− 1. Also the mapping fromu ∈ Lp(Rn) into (1/ |x|γ) ∗ u ∈ Lq(Rn) is continuous.

See [5, Theorem 4.5.3, p. 117].

Lemma 2.4. Let a(t), b(t), K(t), ψ(t) be nonnegative, continuous functions on the interval
I = (0, T ) (0 < T ≤ ∞), ω : (0,∞) → R be a continuous, nonnegative and nondecreasing
function,ω(0) = 0, ω(u) > 0 for u > 0 and letA(t) = max0≤s≤t a(s), B(t) = max0≤s≤t b(s).
Assume that

ψ(t) ≤ a(t) + b(t)

∫ t

0

K(s)ω(ψ(s))ds, t ∈ I.

Then

ψ(t) ≤ W−1

[
W (A(t)) +B(t)

∫ t

0

K(s)ds

]
, t ∈ (0, T1),

where

W (v) =

∫ v

v0

dσ

ω(σ)
, v ≥ v0 > 0,

W−1 is the inverse ofW andT1 > 0 is such that

W (A(t)) +B(t)

∫ t

0

K(s)ds ∈ D(W−1)

for all t ∈ (0, T1).

See [2] (or [5]) for the proof.

Lemma 2.5. If δ, ν, τ > 0 andz > 0, then

z1−ν

∫ z

0

(z − ζ)ν−1 ζδ−1e−τζdζ ≤M (ν, δ, τ) ,

whereM (ν, δ, τ) = max (1, 21−ν) Γ (δ)
(
1 + δ

ν

)
τ−δ.

See [6] for the proof of this lemma.

3. ESTIMATION

In this section we state and prove our result on boundedness and also present an exponential
and a polynomial decay result.

Theorem 3.1. Assume that the constantsα, β andm are such that0 < α < βn, 0 < β < 1
andm > 1.
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4 NASSER-EDDINE TATAR

(i) If Ω = Rn, then for anyr satisfyingmax
(

(m−1)n
α

, m
β

)
< r < mn

α
, we have

‖ϕ(t, x)‖r ≤ Up,r,ρ(t)

with

Up,r,ρ(t) = 2
m(p−1)

r K(t)
1
p

×
[
1− 2m(p−1)(m− 1)Cp−1

1 Cp
2K(t)m−1L(t)eεpt

∫ t

0

e−εpsF p(s)ds

] m
(1−m)r

,

whereK(t) = max0≤s≤t ‖k(s, ·)‖p
r , L(t) = max0≤s≤t ‖l(s, ·)‖p

ρ , p = r
m

and ρ =
nr

αr−(m−1)n
for someε > 0. HereC1 andC2 are the best constants in Lemma 2.2 and

Lemma 2.3, respectively. The estimation is valid as long as

(3.1) K(t)m−1L(t)eεpt

∫ t

0

e−εpsF p(s)ds ≤ 1

2m(p−1)
(m− 1)Cp−1

1 Cp
2 .

(ii) If Ω is bounded, then

‖ϕ(t, x)‖r̃ ≤ Up,r,ρ(t)

for any r̃ ≤ r wherep, r andρ are as in (i). If moreover,r < n
nβ−α

(but not necessarily

r > (m−1)n
α

) that is m
β
< r < min

(
mn
α
, n

nβ−α

)
, then this estimation holds for any

1
β
< p ≤ r

m
provided thatρ > nr

n−(nβ−α)r
.

Proof. (i) Suppose thatΩ = Rn. By the Minkowski inequality and the Young inequality
(Lemma 2.1), we have

(3.2) ‖ϕ(t, x)‖r ≤ ‖k(t, x)‖r + ‖l(t, x)‖ρ

∥∥∥∥∫
Rn

∫ t

0

F (s)ϕm(s, y)

(t− s)1−β |x− y|n−αdsdy

∥∥∥∥
q

for r, ρ andq such that1
r

= 1
ρ

+ 1
q
.

Let p be such that1
p

= 1
q

+ α
n

andp′ its conjugatei.e. 1
p

+ 1
p′

= 1. Using the Hölder
inequality, we see that

(3.3)
∫ t

0

(t− s)β−1F (s)ϕm(s, y)ds

≤
(∫ t

0

(t− s)(β−1)p′eεp′sds

) 1
p′

(∫ t

0

e−εpsF p(s)ϕmp(s, y)ds

) 1
p

,

for any positive constantε. We have multiplied byeεs · e−εs before applying Hölder
inequality.

Choosingq = nr
(nm−αr)

, we see thatp = r
m

. By our assumption onr it is easy to see
thatq > 1, p > 1 and1 + (β − 1)p′ > 0. Therefore, we may apply Lemma 2.2 to get∫ t

0

(t− s)(β−1)p′eεp′sds < C1e
εp′t.

Hence, inequality (3.3) becomes∫ t

0

(t− s)β−1F (s)ϕm(s, y)ds ≤ C
1
p′
1 eεt

(∫ t

0

e−εpsF p(s)ϕmp(s, y)ds

) 1
p

.
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ON AN INTEGRAL INEQUALITY WITH A KERNEL SINGULAR IN TIME AND SPACE 5

It follows that

(3.4)

∥∥∥∥∫
Rn

∫ t

0

F (s)ϕm(s, y)

(t− s)1−β |x− y|n−αdsdy

∥∥∥∥
q

≤ C
1
p′
1 eεt

∥∥∥∥∥
∫

Rn

(∫ t

0

e−εpsF p(s)ϕmp(s, y)ds

) 1
p dy

|x− y|n−α

∥∥∥∥∥
q

.

As r < mn
α
, we may apply the results in Lemma 2.3 to obtain

(3.5)

∥∥∥∥∥
∫

Rn

(∫ t

0

e−εpsF p(s)ϕmp(s, y)ds

) 1
p dy

|x− y|n−α

∥∥∥∥∥
q

≤ C2

∥∥∥∥∥
(∫ t

0

e−εpsF p(s)ϕmp(s, ·)ds
) 1

p

∥∥∥∥∥
p

,

with p as above andC2 is the best constant in the result of Lemma 2.3. From (3.2), (3.4)
and (3.5) it appears that

‖ϕ(t, x)‖r ≤ ‖k(t, x)‖r + C3e
εt ‖l(t, x)‖ρ

∥∥∥∥∥
(∫ t

0

e−εpsF p(s)ϕmp(s, ·)ds
) 1

p

∥∥∥∥∥
p

or

(3.6) ‖ϕ(t, x)‖r ≤ ‖k(t, x)‖r + C3e
εt ‖l(t, x)‖ρ

(∫
Rn

∫ t

0

e−εpsF p(s)ϕmp(s, x)dsdx

) 1
p

,

whereC3 = C
1
p′
1 C2. Inequality (3.6) can also be written as

‖ϕ(t, x)‖r ≤ ‖k(t, x)‖r + C3e
εt ‖l(t, x)‖ρ

(∫ t

0

e−εpsF p(s) ‖ϕ(s, x)‖mp
mp ds

) 1
p

.

Observe that by our choice ofp we haver = mp. It follows that

(3.7) ‖ϕ(t, x)‖r ≤ ‖k(t, x)‖r + C3e
εt ‖l(t, x)‖ρ

(∫ t

0

e−εpsF p(s) ‖ϕ(s, x)‖r
r ds

) 1
p

.

Applying the algebraic inequality

(a+ b)p ≤ 2p−1(ap + bp), a, b ≥ 0, p > 1,

we deduce from (3.7) that

(3.8) ‖ϕ(t, x)‖p
r ≤ 2p−1 ‖k(t, x)‖p

r + C4e
εpt ‖l(t, x)‖p

ρ

∫ t

0

e−εpsF p(s) ‖ϕ(s, ·)‖r
r ds,

whereC4 = 2p−1Cp
3 . Let us putψ(t) = ‖ϕ(t, x)‖r/m

r , then (3.8) takes the form

ψ(t) ≤ 2p−1 ‖k(t, ·)‖p
r + C4e

εpt ‖l(t, x)‖p
ρ

∫ t

0

e−εpsF p(s)ψm(s)ds.
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6 NASSER-EDDINE TATAR

By the Lemma 2.4 withω(u) = um, W (v) = 1
1−m

(v1−m − v1−m
0 ) andW−1(z) =[

(1−m)z + v1−m
0

] 1
1−m , we conclude that

ψ(t) ≤ W−1

[
W

(
2p−1K(t)

)
+ C4e

εptL(t)

∫ t

0

e−εpsF p(s)ds

]
≤ 2p−1K(t)

[
1− (m− 1)C4

(
2p−1K(t)

)m−1
eεptL(t)

∫ t

0

e−εpsF p(s)ds

] 1
1−m

,

whereK(t) andL(t) are as in the statement of the theorem.
(ii) If Ω is bounded, then the first part in the assertion (ii) of the theorem follows from

the argument in (i) by an extension procedure and the application of the embedding
Lr(Ω) ⊂ Lr̃(Ω) for r̃ ≤ r. Now if r < n

nβ−α
we chooseq such thatr < q < n

nβ−α
and

ρ > nr
n−(nβ−α)r

. The Young inequality is therefore applicable. Also as1 < q < np
n−αp

, the
Hardy-Littlewood-Sobolev inequality (Lemma 2.3) applies (see also [3, p. 660] when
Ω is bounded).

�

In what follows, in order to simplify the statement of our next results, we definev := r or r̃
according to the cases (i) or (ii) in Theorem 3.1, respectively.

Corollary 3.2. Suppose that the hypotheses of Theorem 3.1 hold. Assume further thatk(t, x)

and l(t, x) decay exponentially in time, that isk(t, x) ≤ e−k̃tk̄(x) and l(t, x) ≤ e−l̃tl̄(x) for
some positive constants̃k and l̃. Thenϕ(t, x) is also exponentially decaying to zero i.e.,

(3.9) ‖ϕ(t, x)‖v ≤ C5e
−µt, t > 0

for some positive constantsC5 andµ provided that∥∥k̄(x)∥∥m−1

r

∥∥l̄(x)∥∥
ρ

∫ ∞

0

F p(s)ds ≤ 1

2m(p−1)
(m− 1)Cp−1

6 Cp
2 ,

whereC6 is the best constant in Lemma 2.2 (third estimation) and the other constants are as in
(i) and (ii) of Theorem 3.1.

Proof. From the inequality (1.1) we have

(3.10) ϕ(t, x) ≤ e−k̃tk̄(x) + e−l̃tl̄(x)

∫
Ω

∫ t

0

F (s)ϕm(s, y)

(t− s)1−β |x− y|n−αdsdy.

After multiplying bye−mµt · emµt, whereµ = min{k̃, l̃}, we use the Hölder inequality to get∫ t

0

(t− s)β−1F (s)ϕm(s, y)ds

≤
(∫ t

0

(t− s)(β−1)p′e−mp′µtds

) 1
p′

(∫ t

0

F p(s)empµtϕmp(s, y)ds

) 1
p

.

As in the proof of Theorem 3.1,0 < (1 − β)p′ < 1. If C6 is the best constant in Lemma 2.2,
then we may write

(3.11)
∫ t

0

(t− s)β−1F (s)ϕm(s, y)ds ≤ C6

(∫ t

0

F p(s)ϕmp(s, y)ds

) 1
p

.

J. Inequal. Pure and Appl. Math., 4(4) Art. 82, 2003 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


ON AN INTEGRAL INEQUALITY WITH A KERNEL SINGULAR IN TIME AND SPACE 7

From (3.10) and (3.11) it appears that

eµtϕ(t, x) ≤ k̄(x) + C6l̄(x)

∫
Ω

(∫ t

0

F p(s)empµtϕmp(s, y)ds

) 1
p dyds

|x− y|n−α .

Taking theLr−norm and applying the Minkowski inequality and then the Young inequality
(Lemma 2.1), we find

eµt ‖ϕ(t, x)‖r ≤
∥∥k̄(x)∥∥

r

+ C6

∥∥l̄(x)∥∥
ρ

∥∥∥∥∥
∫

Ω

(∫ t

0

F p(s)empµtϕmp(s, y)ds

) 1
p dyds

|x− y|n−α

∥∥∥∥∥
q

,

with 1
r

= 1
ρ

+ 1
q
. Applying Lemma 2.3, we arrive at

eµt ‖ϕ(t, x)‖r ≤
∥∥k̄(x)∥∥

r
+ C2C6

∥∥l̄(x)∥∥
ρ

∥∥∥∥∥
(∫ t

0

F p(s)empµtϕmp(s, y)ds

) 1
p

∥∥∥∥∥
p

or

(3.12) eµt ‖ϕ(t, x)‖r ≤
∥∥k̄(x)∥∥

r
+ C2C6

∥∥l̄(x)∥∥
ρ

(∫ t

0

F p(s)empµt ‖ϕ(s, x)‖mp
r ds

) 1
p

.

Taking both sides of (3.12) to the powerp, we obtain

(3.13) eµpt ‖ϕ(t, x)‖p
r ≤ 2p−1

∥∥k̄(x)∥∥p

r
+ C7

∥∥l̄(x)∥∥p

ρ

∫ t

0

F p(s)empµt ‖ϕ(s, x)‖mp
r ds.

Next, putting
χ(t) := eµpt ‖ϕ(t, x)‖p

r ,

the inequality (3.13) may be written as

χ(t) ≤ 2p−1
∥∥k̄(x)∥∥p

r
+ C7

∥∥l̄(x)∥∥p

ρ

∫ t

0

F p(s)χm(s)ds.

The rest of the proof is essentially the same as that of Theorem 3.1. �

In the following corollary we consider the somewhat more general inequality

(3.14) ϕ(t, x) ≤ k(t, x) + l(t, x)

∫
Ω

∫ t

0

sδF (s)ϕm(s, y)

(t− s)1−β |x− y|n−αdyds, x ∈ Ω, t > 0

for some specifiedδ.

Corollary 3.3. Suppose that the hypotheses of Theorem 3.1 hold. Assume further thatk(t, x) ≤
t−k̂k̄(x) and 1 + δp′ − mp′ min{k̂, 1 − β} > 0. Then anyϕ(t, x) satisfying (3.14) is also
polynomially decaying to zero

‖ϕ(t, x)‖v ≤ C8t
−ω, C8, ω > 0

provided that ∥∥k̄(x)∥∥m−1

r
L(t)

∫ t

0

eεpsF p(s)ds ≤ 1

2m(p−1)
(m− 1)Cp−1

9 Cp
2

whereC9 is the best constant in Lemma 2.5.
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8 NASSER-EDDINE TATAR

Proof. Let us consider the inequality

(3.15) ϕ(t, x) ≤ t−k̂k̄(x) + l(t, x)

∫
Ω

∫ t

0

sδF (s)ϕm(s, y)

(t− s)1−β |x− y|n−αdyds.

Multiplying by s−m min{k̂,1−β}e−εs · sm min{k̂,1−β}eεs, we obtain

(3.16)
∫ t

0

(t− s)β−1sδF (s)ϕm(s, y)ds

≤
(∫ t

0

(t− s)(β−1)p′sδp′−mp′ min{k̂,1−β}e−εp′sds

) 1
p′

×
(∫ t

0

smp min{k̂,1−β}epεsF p(s)ϕmp(s, y)ds

) 1
p

.

As 1 + δp′ − mp′ min{k̂, 1 − β} > 0, we may apply Lemma 2.5 to the first term in the right
hand side of (3.16) to get

(3.17)
∫ t

0

(t− s)β−1sδF (s)ϕm(s, y)ds

≤Mtβ−1

(∫ t

0

smp min{k̂,1−β}epεsF p(s)ϕmp(s, y)ds

) 1
p

.

Using (3.17) we infer from inequality (3.15) that

tmin{k̂,1−β}ϕ(t, x) ≤ k̄(x)

+Ml(t, x)

∫
Ω

(∫ t

0

smp min{k̂,1−β}epεsF p(s)ϕmp(s, y)ds

) 1
p dy

|x− y|n−α .

Next, after using the Hardy-Littlewood-Sobolev inequality and defining

φ(t, x) := tp min{k̂,1−β} ‖ϕ(t, x)‖p
r ,

we proceed as in Theorem 3.1 to find a (uniform) bound forφ(t, x). �

Remark 3.4. The investigation of (1.1) with aweakly singularkernel in time, that is

ϕ(t, x) ≤ k(t, x) + l(t, x)

∫
Ω

∫ t

0

e−γ(t−s)F (s)ϕm(s, y)

(t− s)1−β |x− y|n−αdyds, γ > 0

is simpler since this kernel is summable (in time).
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