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ABSTRACT. In this paper we summarize the known results and the main tools concerning com-
plete systems of inequalities for families of convex sets. We discuss also the possibility of using
these systems to determine particular subfamilies of planar convex sets with specific geometric
significance. We also analyze complete systems of inequalities for 3-rotationally symmetric pla-
nar convex sets concerning the area, the perimeter, the circumradius, the inradius, the diameter
and the minimal width; we give a list of new inequalities concerning these parameters and we
point out which are the cases that are still open.
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1. INTRODUCTION

For many years mathematicians have been interested in inequalities involving geometric
functionals of convex figures[([11]). These inequalities connect several geometric quantities
and in many cases determine the extremal sets which satisfy the equality conditions.

Each new inequality obtained is interesting on its own, but it is also possible to ask if a finite
collection of inequalities concerning several geometric magnitudes is large enough to determine
the existence of the figure. Such a collection is calletbmplete system of inequalitiea
system of inequalities relating all the geometric characteristics such that for any set of numbers
satisfying those conditions, a convex set with these values of the characteristics exists.

Historically the first mathematician who studied this type of problems was Blaschke ([1]).
He considered a compact convex set K in the Euclidean 3-spaceith volumeV = V(K),
surface ared” = F(K), and integral of the mean curvatutré = M (K). He asked for a
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characterization of the set of all pointslifi of the form (/' (K), F(K), M(K)) asK ranges on
the family of all compact convex setsliE¥. Some recent progress has been made by Sangwine-
Yager ([9]) and Martinez-Maure([8]), but the problem still remains open.

A related family of problems was proposed by Santal6!([10]): for a compact convéXiset
E2, letA = A(K),p = p(K),d = d(K),w = w(K), R = R(K) andr = r(K) denote the
area, perimeter, diameter, minimum width, circumradius and inradids, éspectively. The
problem is to find a complete system of inequalities for any tripléAfp, d,w, R, r}.

Santalo provided the solution foA( p, w), (4, p, ), (A4, p, R), (4, d, w), (p, d, w) and {, r,

R). Recently ([4], [%], [6]) solutions have been found for the casesH, ), (d, w, R), (d, w,
r), (A, d, R), (p, d, R). There are still nine open casest, @, d), (4, d, r), (A, w, R), (A4, w, 1),
(A, R,7), (p,d, ), (p,w, R), (p,w, ), (p, R, T).

Let (a1, as, az) be any triple of the measures that we are considering. The problem of finding
a complete system of inequalities for;, as, a3) can be expressed by mapping each compact
convex setk to a point(x,y) € [0,1] x [0,1]. In this diagramz andy represent particular
functionals of two of the measures, a, andas; which are invariant under dilatations.

Blaschke convergence theorem states that an infinite uniformly bounded family of compact
convex sets converges in the Hausdorff metric to a convex set. So by Blaschke theorem, the
range of this ma@(K) is a closed subset of the squabel] x [0, 1]. It is also easy to prove
that D(K) is arcwise connected. Each of the optimal inequalities relating., a3 determines
part of the boundary oD (K) if and only if these inequalities form a complete system; if one
inequality is missing, some part of the boundaryafi’) remains unknown.

In order to knowD(K) at least four inequalities are needed, two of them to determine the
coordinate functions andy; the third one to determine the “upper” part of the boundary and the
fourth one to determine the “lower" part of the boundary. Sometimes, either the “upper” part,
or the “lower" part or both of them require more than one inequality. So the number of four
inequalities is always necessary but may be sometimes not sufficient to determine a complete
system.

Very often the easiest inequalities involving three geometric functionals,, as are the
inequalities concerning pairs of these functionals of the type:

m(i,j)

a;

< a5 aj,
the exponentn (i, j) guarantees that the image of the sets is preserved under dilatations.

So, although there is not a unique choice of the coordinate functiargly, there are at
most six canonical choices to express these coordinates as quotients of thé”(f‘gibmijaj
which guarantee thdd (k) C [0, 1] x [0, 1]. The difference among these six choices (when the
six cases are possible) does not have any relevant geometric significance.

Ifinstead of consideringiplesof measures we consideairs of measures, then the Blaschke-
Santal6 diagram would be a segment of a straight line. On the other hand, if we consider groups
of four magnitudes (or more) the Blaschke-Santalo diagram would be part of the unit cube (or
hypercube).

2. AN EXAMPLE : THE COMPLETE SYSTEM OF INEQUALITIES FOR (A, d, w)

For the area, the diameter, and the width of a compact convék,gbe relationships between
pairs of these geometric measures are:

(2.1) 4A < rwd*  Equality for the circle
(2.2) w? < V34  Equality for the equilateral triangle
(2.3) w <d Equality for sets of constant width
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Figure 2.1: Blaschke-Santal6 Diagram for the cask {,w).

And the relationships between three of those measures are:

(2.4) 2A < wVd? — w? + d? arcsin(%),
equality for the intersection of a disk and a symmetrically placed strip,
(2.5) dw < 24, if 2w < V3d

equality for the triangles,

3 .
(2.6) A>3wVd? —w?+ w(arcsin(%) — %)] — ng, if 2w > V/3d
equality for the Yamanouti sets.
Let
L w and o — 4A
T YT e

Clearly, from [2.8) and (2]1)) < z < 1 and0 < y < 1. From inequality[(2.4) we obtain
2
y < —(xv1—2a%+arcsinz) forall0 <z <1.
™

The curve 5
y=—(xv1— 2%+ arcsinz)
T

determines the upper part of the boundary/afK’). This curve connects poir®? = (0,0)
(corresponding to line segments) with po@it= (1, 1) (corresponding to the circle), and the
intersections of a disk and a symmetrically placed strip are mapped to the points of this curve.
The lower part of the boundary is determined by two curves obtained from inequalities (2.5)
and [2.6). The first one is the line segment

V3

2
y=—x Wwhere 0<z<—,
T 2

which joins the point$) andT = (v/3/2,v/3/) (equilateral triangle), and its points represent
the triangles. The second curve is
V3

12 3
y=—z[V1— 22+ z(arcsinx — %)] —2— Where\/T_ <z <1,
7r m
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This curve completes the lower part of the boundary, from the gototR = (1,2(1 —+/3/7))
(Reuleaux triangle). The Yamanouti sets are mapped to the points of this curve.

The boundary ofD(K) is completed with the line segmeRC which represents the sets of
constant width, from the Reuleaux triangle (minimum area) to the circle (maximum area).

Finally we have to see that the domdX K) is simply connected, i.e., there are convex sets
which are mapped to any of its interior points.

Let us consider the following two assertions:

(1) Let K be a compact convex set in the plane dntd= %(K — K) (the centrally sym-
metral set ofK'). If we consider

Ky= MK+ (1 - \)K®

then, for all0 < X\ < 1 the convex sek, has the same width and diameterfagsee
[5]).

(2) Let K be a centrally symmetric convex set. ThEns contained in the intersection of a
disk and a symmetrically placed strify, with the same width and diameter As Let

Ky=AK+ (1-X)S.
Then for all0 < A\ < 1, the convex sel{, has the same width and diameterfas

Then it is easy to find examples of convex sets which are mapped into any of the interior points
of D(K).

So, the inequalitie$ (2.1], (2.3), (2.4), (2.5), (2.6) determine a complete system of inequalities
for the caseA, d, w).

3. GooD FAMILIES FOR COMPLETE SYSTEMS OF |NEQUALITIES

Although the concept of complete system of inequalities was developed for general convex
sets, itis also interesting to characterize other families of convex sets. Burago and Zalgaller ([2])
state the problem as: “Fixingny classof figures and any finite set of numerical characteristics
of those figures... finding a complete system of inequalities between them".

Soitisinteresting to ask if all the classes of figures can be characterized by complete systems
of inequalities. In general the answer to this question turns out to be negative. For instance, if we
consider the family of all convex regular polygons and any triple of the classical geometric mag-
nitudes{ A, p,d,w, R, r}, the image of this family under Blaschke-Santalé map is a sequence
of points inside the unit square, which certainly cannot be determined by a finite number of
curves (inequalities). On the other hand, if we consider the family of all convex polygons, by
the polygonal approximation theorem, any convex set can be approximated by a sequence of
polygons. Then the image of this family under the Blaschke-Santalé map is not very much
different from the image of the family of general convex sets (in many cases the difference is
only part of the boundary of the diagram); so it does not involve the number of inequalities con-
sidered, but only if these inequalities are strict or not. The question makes sense if we consider
general (not necessarily convex) sets, but in this case there are some technical difficulties:

I) The classical functionals have nice monotonicity properties for convex sets, but not in
the general cases.

i) Geometric symmetrizations behave well for convex sets; these tools are important to
obtain in some cases the inequalities.

So, which kind of families can be characterized in an interesting way by complete systems of
inequalities? Many well-known families are included here. For instance, it is possible to obtain
good results for families with special kinds of symmetry (centrally symmetric convex sets, 3-
rotationally symmetric convex sets, convex sets which are symmetric with respect to a straight
line...).
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It seems also interesting (although no result has been yet obtained) to consider families of
sets which satisfy some lattice constraints.

For some of the families that we have already mentioned we are going to make the following
remarks:

1) Centrally symmetric planar convex sets:
If we consider the six classic geometric magnitudes in this family, then

w=2r and d=2R,

So, instead of having 6 free parameters we just have 4, and there are only 4 possible
cases of complete systems of inequalities. These cases have been solved in [7].

2) 3-rotationally symmetric planar convex sets:
This family turns out to be very interesting because there is no reduction in the number
of free parameters, and so there apecases. The knowledge of the Blaschke-Santalo
diagram for these cases helps us understand the problem in the cases that are still open
for general planar convex sets.

Because of this reason we are going to summarize in the next section the known results for this
last case.

4. COMPLETE SYSTEMS OF INEQUALITIES FOR 3-ROTATIONALLY SYMMETRIC
PLANAR CONVEX SETS

Besides being a good family to be characterized for complete systems of inequalities, 3-
rotationally symmetric convex sets are also interesting in their own right.

i) They provide extremal sets for many optimization problems for general convex sets.
i) 3-rotational symmetry is preserved by many interesting geometric transformations, like
Minkowski addition and others.
iii) They provide interesting solutions for lattice problems or for packing and covering prob-
lems.

If we continue considering pairs of titeclassical geometric magnitudéd, p, w, d, R, r}, then
the 15 cases of complete systems of inequalities are completely solved. In th¢ tgble 4.1 we
provide the inequalities that determine these cases and the extremal sets for these inequalities.
Let us remark that for the 3-rotationally symmetric case we have two (finite) inequalities
for each pair of magnitudes (which is completely different from the general case in which
this happens only in four cases) ([10]); this is because 3-rotational symmetry determines more
control on the convex sets in the sense that it does not allow “elongated” sets. The proofs of
these inequalities can be found in secfipn 5.
If we now consider triples of the magnitudes, the situation becomes more interesting.
Tablg[4.2 lists all the known inequalities and the corresponding extremal sets. Proofs of these
inequalities can be found in sectiph 5.
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Parameters Inequalities Extremal Sets
1) A w ;—ggAg%%? T|H
2) A r a2 < A < 3v/3r? C|T
3)| AR 3V3R? < A< R T|C
4) A, p 4T A < p? < 12V/3A C|T
5) Ad AP < A C|T
6) D, T o2mr < p < 6V/3r C|T
7) p, R 3vV3R < p < 27R T|C
8) D, W w < p < 2v/3w W |H,T
9) p,d 3d <p<mnd H,T|W
10) d,r 2r < d < 2/3r C|T
11) d, R VB3R <d<2R Y* | Rg*
12) d, w wgdg\%w WI|H,T
13) w, T 2r < w < 3r Re* | T
14)|  w,R SR<w<2R T|C
15) R, 7 r<R<2r c|T

Table 4.1: Inequalities for 3-rotationally symmetric convex sets relating 2 parameters.

* There are more extremal sets

Note on Extremal Sets:The sets which are at the left of the vertical bar are extremal sets for the left inequality;
the sets which are at the right of the vertical bar are extremal sets for the right inequality. The sets are described
after Tablé 4.

Param. Condition Inequality Ext. Sets
16)| A, d, p 8A < 3V3d? + i(p — 3d cos ) (1) He
17)| A, d,r | 2r<d< \%T A > 3r[Vd® — 4r% + (5 — 2arccos(%))] sy
18)| A,d, R A > 3B(d - 2R?) H,T

A <3BR213 h VA2 = 4A(z + a)? do+
arn @ W
+6 V@ = (z + R)2dx
19)| A, d, w A> 3w[\/h +wlaresin(2) — T)] — L2 Y
A<3EVP —w?+ dzz(g — 2arccos(4))] HNC
20)| A, p,r pr < 2A Cg*
4(3v3 — m)A < 12V/3r(p — 7r) — p? Tr
21)| A, p, R A< 3ER2 4 P (p— 3v3Rcos ¢) @ To
22)| A, p,w 2A > wp — V3w?sec? ) Y
4(2v3 — m)A < 2¢/3w(2p — Tw) — p? Hr
23)| AR, r A>3[rvR? -2 + r (5 — arcsin(‘/R;_TQ))] C3
A < R*(3arcsin(%) + 35 VR? — 12 — 1) ncC
24)| A,R,w | 3R <w < 3R A<VBW? - 2LER? H,T
V3R <w <2R| A<3[4VAR? —w? + R*(E — 2arccos(5%))] HNC
25)| p,d,r p > 6vV/d* — 4r% + 2r(m — G arccos(%)) s

J. Inequal. Pure and Appl. Math2(1) Art. 10, 2001 http://jipam.vu.edu.au/
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Param. Condition Inequality Ext. Sets
26) | p, d,w p < 6[Vd® —w? + d(F — arccos(%))] HNC
p> 6\/m+w(7r—6arccos(§)) C4
27)| d, R,r | E<r<(V3-1)R d> /3R Y*
(V3—-1)R<r<R d>R+r W
E<r<¥R d<+3r+vR2—r2 TNnC,H*
BR<r<R d<2R Ry
28)| d,r,w w—r < ¥ Y
29)| p, R, p > 6[V/R2 =12 + (% — arcsin(YE=2))] 3,
p < 6[VR? —r? + R(Z — arcsin( R;_Tz))] TncC
30)| p,R,w %ngg\/gR p§2\/§w H,T
V3R <w < 2R p < 6[VAR? — w? + R(Z — 2arccos(s%))] HNC
%R <w<+V3R p > 6[m—|—w(% — arccos(ﬁ))] Y
31)| p,r,w 3+2\/37~ <w<3r |p>6[y3w—r)?—w+wE - arccos(\/g(:‘jir)))] Y
32)| w, R, T 7’§R§\%r w > 2r R
%T’SRSQT w_%g(\/gr+\/m) C%, H
w<R+r W+

Table 4.2: Inequalities for 3-rotationally symmetric convex sets relating 3 parameters.

* There are more extremal sets
1) psina = 3ad

(3) psiné = 3V3R¢

V@Z—3RZ—R
(2) a = YEEEA,

2d?—3R%*—R\/d2—3R?
2(3R—VdZ—3R?)

o =

(4) 6w(tand — ) = p — Tw

Extremal Sets:

C Disk T Equilateral triangle

H Regular hexagon W Constant width sets

Cp 3-Rotationally symmetric cap H 3-Rotationally symmet-
bodies (convex hull of the cir- ric hexagon with parallel
cle and a finite number of opposite sides
points)

c3 Cap bodies with three vertices  C% Cap bodies with six vertices

TNC Intersection ofl” with a disk H N C Intersection ofH with a disk
with the same center with the same center

Tc Convex sets obtained froffi He Convex sets obtained frofd
replacing the edges by three replacing the edges by six
equal circular arcs equal circular arcs

Tr Convex set obtained frori’ Hr Convex set obtained fror
replacing the vertices by three replacing the vertices by six
equal circular arcs tangent to equal circular arcs tangent to
the edges the edges

Rg 6-Rotationally symmetric Y Yamanouti sets

convex sets

J. Inequal. Pure and Appl. Math2(1) Art. 10, 2001
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5. PROOFS OF THE INEQUALITIES

In this section we are going to give a sketch of the proofs of the inequalities collected in
tabled 4.11 and 412.

For the sake of brevity we will label the inequalities of taljleg 4.1[and 4.2 in the following
way:

In table/4.1, for each numbered case we will label witthe inequality corresponding to the
left-hand side and witlR the inequality corresponding to the right-hand side.

In table[4.2, for each numbered case we will enumerate in order the corresponding inequal-
ities (for instance, (27.1) corresponds to the inequality /3R, (27.2) corresponds to the
inequalityd > R + r, and so on).

First, we are going to list a number of properties that verify the 3-rotationally symmetric
convex sets. They will be useful to prove these inequalities.

Let K C R? be a 3-rotationally symmetric convex set. THgrhas the following properties:

1) The incircle and circumcircle ok are concentric.

2) If R is the circumradius of{ then K contains an equilateral triangle with the same
circumradius agy.

3) If ris the inradius of then it is contained in an equilateral triangle with inradtus

4) If w is the minimal width of K, then it is contained in a 3-rotationally symmetric
hexagon with parallel opposite sides and minimal widtlwhich can degenerate to
an equilateral triangle).

5) If d is the diameter ofi<, then it contains a 3-rotationally symmetric hexagon with
diameterd (that can degenerate to an equilateral triangle).

The centrally symmetral set at, K¢, is a 6-rotationally symmetric convex set, and the
following properties hold:

6) w(K®) = w(K)
7) p(K°) = p(K)
8) d(K°) = d(K)
9) A(K*) > A(K)
10) r(K°) > r(K)
11) R(K®) < R(K)

Let K C R? be a 6-rotationally symmetric convex set with minimal widtland diameted.
Then:

12) K is contained in a regular hexagon with minimal width
13) K contains a regular hexagon with diamefer

INEQUALITIES OF TABLE [4.7]

The inequalities 1L, 2L, 3R, 4L, 5L, 6L, 7R, 8L, 9R, 10L, 11L, 11R, 12L, 13L, 13R, 14R
and 15L are true for arbitrary planar convex sets (see [10]).

The inequalities 2R, 6R and 10R are obtained from 3). Inequalities 3L, 7L, 14L and 15R
follow from 2). 8R and 12R are obtained from 4).

From 8R and 1L we can deduce 4R and from 12R and 1L we can obtain 5R. 1L is a conse-
guence of 9) and 12).

9L is obtained from 5). An analytical calculation shows that for 3-rotationally symmetric
hexagons with diametetand perimetep, p > 3d, and the equality is attained for the hexagon
with parallel opposite sides.

INEQUALITIES OF TABLE [4.2

The inequalities (18.2), (19.1), (20.1), (22.1), (27.1), (27.2), (27.4), (28.1), (32.1) and (32.3)
are true for arbitrary planar convex sets (see [5], [6] and [10]).

J. Inequal. Pure and Appl. Math2(1) Art. 10, 2001 http://jipam.vu.edu.au/
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Inequalities (23.1), (29.1), (32.2): Lét be the incircle ofK andz,, z,, z3 € K be the
vertices of the equilateral triangle with circumradighat is contained irk. Then

C3 = conv{xy, 19, 13,0} C K.

Inequalities (23.2), (27.3), (29.2): Lét be the circumcircle of andT' be the equilateral
triangle with inradius- that containg<. ThenK c T n C.

Inequalities (20.2), (21.1): They are obtained from 3) and 2) respectively, and the isoperimet-
ric properties of the arcs of circle.

Inequalities (24.1), (24.2): K is contained in the intersection of a circle with radiasd
a 3-rotationally symmetric hexagon with parallel opposite sides. An analytical calculation of
optimization completes the proof.

Inequalities (30.1), (30.2): The proofs are similar to the ones of (24.1) and (24.2).

Inequality (31.1): It is obtained from (30.3) and (32.3).

From 6), 7), 8), 9) and 10) it is sufficient to check that the inequalities (16.1), (19.2), (22.2),
(25.1), (26.1) and (26.2) are true for 6-rotationally symmetric convex sets.

So, from now on, K will be a 6-rotationally symmetric planar convex set.

Inequality (16.1): Let” be the circumcircle o andH be the regular hexagon with diameter
d contained inK. ThenH C K C C and because of the isoperimetric properties of the arcs of
circle, the set with maximum areaté: (H C Hq C O).

Inequality (19.2): LetH be the regular hexagon with minimal widthsuch that ¢ H, and
let C' be the circle with radiud/2 that contaings. ThenK ¢ H N C.

Inequality (22.2): This inequality is obtained from 12) and the isoperimetric properties of the
arcs of circle.

Inequality (25.1): LetC be the incircle of’ and H be the regular hexagon with diametér
contained inK. Then

C% =conv(HUC) C K.

Inequality (26.1): K lies in a regular hexagon with minimal width and in a circle with
radiusd/2.

Inequality (26.2): It is obtained from the inequality (25.1) and the equality 2r.

Inequality (17.1): It is obtained from (20.1) and (25.1).

Inequality (18.1): We prove the following theorem.

Theorem 5.1.Let K C R? be a 3-rotationally symmetric convex set. Then

3v/3
A> " (d? —2R?
> 20 (@ - 2R?),
with equality when and only whek is a 3-rotationally symmetric hexagon with parallel oppo-
site sides.

Proof. We can suppose that the center of symmetry<ois the origin of coordinate®. Let
Cr be the circle whose center is the origin and with radiisThen there exist, z,, x5 €
bd(Cr) N K such thatonv(z1, 25, x3) is an equilateral triangle (see figlre]5.1).

Let P, € bd(K) such that the diameter df is given by the distance betweéhand @,
d(K) = d(P.Q).

Now, let P andP” ()’ and@” respectively) be the rotations &f(rotations of)) with angles
27 /3 and4 /3 respectively.

If Ky = conv{xy,zy, 23, PP, P" Q,Q,Q"}, thenK; C K, and hencel(K) > A(K}).

Without lost of generality we can suppose thiaf, O) > d(Q,0). Let P, be intersec-
tion point, closest taP, of the straight line that passes throughand Q" with bd(C). Let

J. Inequal. Pure and Appl. Math2(1) Art. 10, 2001 http://jipam.vu.edu.au/
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Figure 5.1: Reduction to 3-rotationally symmetric hexagons

P} and P/ be the rotations ofP, with angles27/3 and 4x/3 respectively, and lef, =
conv{P;, P{, P, Q,Q',Q"}. The trianglesconv {P,Q’,z,} andconv {P,(’, P} have the
same basis but different heights, sb(conv {P, @', z,1}) > A(conv{P,Q’, P,}). Therefore,
A(Ky) > A(K).

Also, we have thatl(K,) = d(P,,Q) > d(K) > d(P,, P/) = v/3R. Then there exists a
point @, lying in the straight line segme P’ such thatl( P, Q) = d(K).

Now, let @] and @’ be the rotations of); with angles2r/3 and4r/3 respectively and let
K3 = conv{Py, P/, P/, Q,Q),Q7}. Then, K; is a 3-rotationally symmetric hexagon with
diameterd and circumradiug? that lies intoX,. So, A(K3) < A(K,).

Therefore it is sufficient to check that the inequality is true for the family of the 3-rotationally
symmetric hexagons.

To this end, letK' = conv{P, P", P",Q,Q’,Q"} be a 3-rotationally symmetric hexagon
(with respect ta)) with diameterd and circumradiug. We can suppose thdtP, O) = R and
d(Q,0) = a < R (see figur¢ 5]2).

Then it is easy to check that

_3V3
4

A(K) (d* — R* — a®).

Sincel < a < R, we obtain that
A> 3%5(% —2R?),
where the equality is attained whéhis a hexagon with parallel opposite sides. O

Inequality (30.3): We prove the following theorem.

Theorem 5.2. Let C be a circle with radiusk and 7" an equilateral triangle inscribed it
Let K be a planar convex set (not necessarily 3-rotationally symmetric)yaadramanouti set
both of them with minimal widtly and such thal” ¢ K ¢ C andT C Y c C. LetQ and{
be the breadth functions & andY” respectively. Then

Q(0) < Q0) VO e [0, 2n).

Proof. Let x4, x5 andxs be the vertices df .
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Figure 5.2: Obtaining the extremal sets

w(K) = w(Y) = w, henceR(§) > w andQ(d) > w. Therefore it is sufficient to check that
Q) < Q) whend is an angle such that(d) > w.

Q(0) is given by the distance between two parallel support lineg af the directiond (1.
ands?). Then, sinc&)(#) > w, there exist, j € {1,2, 3} such that;; € ), andz; € 5.

Let % ands% be the two parallel support lines &f in the directiond. Sincez;, z; € K,
thenz;, z; lie in the strip determined by}, andsf.. Therefore

d(ry, sy) < d(r, sk)
Then,Q(#) < Q(#). With this result and the equality
21
i) =5 [ s,
2 0
the inequality (30.3) is obtained. O

6. THE COMPLETE SYSTEMS OF I NEQUALITIES FOR THE 3-ROTATIONALLY
SYMMETRIC CONVEX SETS

We have obtained complete systems of inequalities for fourteen ca$eg, ¢), (d, R, r),
», R, 1), (w, R, 7), (A, p, 1), (d, w, R), (d,w, 1), (p, d, R), (A, p, w), (A, d,w), (p, d, w), (A, d,
R), (p, w, R) and @, w, 7).

The six casesA, p, R), (A, w, 1), (A, w, R), (p, d, ), (A, p, d), (A, d, r) are still open.

The inequalities listed above determine complete systems for each of the cases. Blaschke
diagram shows that for that choice of coordinates, the curves representing these inequalities
bound a region. It is easy to see that this region is simply connected: with a suitable choice of
extremal setg and K, the linear family\ K + (1 — \) K” fills the interior of the diagram.
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