Journal of Inequalities in Pure and Applied Mathematics

SOME REMARKS ON A PAPER BY A. MCD. MERCER

IOAN GAVREA
Department of Mathematics
Technical University of Cluj-Napoca
Cluj-Napoca, Romania
EMail: ioan.gavrea@math.utcluj.ro
volume 6, issue 1, article 26, 2005.

Received 15 January, 2005; accepted 10 February, 2005.
Communicated by: A. Lupaş

Abstract
Contents
Gome Page
Go Back
Close

Abstract

In this note we give a necessary and sufficient condition in order that an inequality established by A. McD. Mercer to be true for every convex sequence.

2000 Mathematics Subject Classification: Primary: 26D15.
Key words: Convex sequences, Bernstein operator.

Contents

1 Introduction 3
2 A Result of Tiberiu Popoviciu 4
3 Main Result 6
4 Another Proof of (1.1) 9
References

Some Remarks on a Paper by A. McD. Mercer

Ioan Gavrea

Title Page
Contents
Go Back
Close
Page 2 of 10

[^0]http://jipam.vu.edu.au

1. Introduction

In [1] A. McD. Mercer proved the following result:
If the sequence $\left\{u_{k}\right\}$ is convex then

$$
\begin{equation*}
\sum_{k=0}^{n}\left[\frac{1}{n+1}-\frac{1}{2^{n}}\binom{n}{k}\right] u_{k} \geq 0 \tag{1.1}
\end{equation*}
$$

In [2] this inequality was generalized to the following:
Suppose that the polynomial

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} x^{k} \tag{1.2}
\end{equation*}
$$

Some Remarks on a Paper by A. McD. Mercer

Ioan Gavrea
has $x=1$ as a double root and the coefficients $c_{k}, k=0,1, \ldots, n-2$ of the polynomial

$$
\begin{equation*}
\frac{\sum_{k=0}^{n} a_{k} x^{k}}{(x-1)^{2}}=\sum_{k=0}^{n-2} c_{k} x^{k} \tag{1.3}
\end{equation*}
$$

are positive. Then

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} u_{k} \geq 0 \tag{1.4}
\end{equation*}
$$

if the sequence $\left\{u_{k}\right\}$ is convex.
The aim of this note is to show that the inequality (1.4) holds for every convex sequence $\left\{u_{k}\right\}$ if and only if the polynomial given by (1.2) has $x=1$ as a double root and the coefficients $c_{k}(k=0,1, \ldots, n-2)$ of the polynomial given by (1.3) are positive.

2. A Result of Tiberiu Popoviciu

Let n be a fixed natural number and

$$
\begin{equation*}
x_{0}<x_{1}<\cdots<x_{n} \tag{2.1}
\end{equation*}
$$

$n+1$ distinct points on the real axis. We denote by S the linear subspace of the real functions defined on the set of the points (2.1). If $a_{0}, a_{1}, \ldots, a_{n}$ are $n+1$ fixed real numbers we define the linear functional $A, A: S \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
A(f)=\sum_{k=0}^{n} a_{k} f\left(x_{k}\right) \tag{2.2}
\end{equation*}
$$

T. Popoviciu ([3]) proved the following results:

Theorem 2.1.

(a) The functional A is zero for every polynomial of degree at the most one if and only if there exist the constants $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-2}$ independent of the function f, such that the following equality holds:

$$
\begin{equation*}
A(f)=\sum_{k=0}^{n-2} \alpha_{k}\left[x_{k}, x_{k+1}, x_{k+2} ; f\right] \tag{2.3}
\end{equation*}
$$

where $\left[x_{k}, x_{k+1}, x_{k+2} ; f\right]$ is divided difference of the function f.
(b) If there exists an index $k(0 \leq k \leq n-2)$ such that $\alpha_{k} \neq 0$, then

$$
\begin{equation*}
A(f) \geq 0 \tag{2.4}
\end{equation*}
$$

for every convex function f if and only if

$$
\begin{equation*}
\alpha_{i} \geq 0, \quad i=0,1, \ldots, n-2 \tag{2.5}
\end{equation*}
$$

3. Main Result

Theorem 3.1. Let $a_{0}, a_{1}, \ldots, a_{n}$ be $n+1$ fixed real numbers such that $\sum_{k=0}^{n} a_{k}^{2}>$ 0 . The inequality

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} u_{k} \geq 0 \tag{3.1}
\end{equation*}
$$

holds for every convex sequence $\left\{u_{k}\right\}$ if and only if the polynomial given by (1.2) has $x=1$ as a double root and all coefficients c_{k} of the polynomial given by (1.3) are positive.

Proof. The sufficiency of the theorem was proved by A. Mc D. Mercer in [2].
We suppose that the inequality (3.1) is valid for every convex sequence. The sequences $\{1\},\{-1\},\{k\}$ and $\{-k\}$ are convex sequences. By (3.1) we get

$$
\begin{align*}
\sum_{k=0}^{n} a_{k} & =0 \tag{3.2}\\
\sum_{k=1}^{n} k a_{k} & =0 .
\end{align*}
$$

We denote by $f, f:[0,1] \rightarrow \mathbb{R}$, the polygonal line having its vertices $\left(\frac{k}{n}, u_{k}\right)$,

Some Remarks on a Paper by A.
McD. Mercer

Ioan Gavrea

Title Page
Contents
Go Back
Close
Quit

Let us denote by

$$
A(f)=\sum_{k=0}^{n} a_{k} f\left(\frac{k}{n}\right)
$$

The inequality (3.1) holds for every convex sequence $\left\{u_{k}\right\}$ if and only if

$$
\begin{equation*}
A(f) \geq 0 \tag{3.3}
\end{equation*}
$$

for every function f which is convex on the set $\left\{0, \frac{1}{n}, \ldots, \frac{n}{n}\right\}$.
By (3.2) we have

$$
A(P)=0
$$

for every polynomial P having its degree at the most one. Using Popoviciu's Theorem 2.1, it follows that there exist the constants $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-2}$, independent of the function f such that

$$
\begin{equation*}
A(f)=\sum_{k=0}^{n-2} \alpha_{k}\left[\frac{k}{n}, \frac{k+1}{n}, \frac{k+2}{n} ; f\right] \tag{3.4}
\end{equation*}
$$

for every function f defined of the set $\left\{0, \frac{1}{n}, \ldots, \frac{n}{n}\right\}$.
By the equality

$$
\sum_{k=0}^{n} \alpha_{k}\left[\frac{k}{n}, \frac{k+1}{n}, \frac{k+2}{n} ; f\right]=\sum_{k=0}^{n} a_{k} f\left(\frac{k}{n}\right)
$$

Some Remarks on a Paper by A. McD. Mercer

Ioan Gavrea

Title Page
Contents
Go Back
Close
Quit
Page 6 of 10

we get $\alpha_{k}=\frac{2}{n^{2}} c_{k}, k=0,1, \ldots, n-2$.

Because $x=1$ is a double root for the polynomial given by (1.2) we have

$$
\sum_{k=0}^{n} c_{k} \neq 0
$$

Using again Popoviciu's Theorem (b), $A(f) \geq 0$ if and only if $c_{k} \geq 0, k=$ $0, \ldots, n-2$, and our theorem is proved.

Some Remarks on a Paper by A. McD. Mercer

Ioan Gavrea

Title Page
Contents
Go Back
Close
Quit 7 of 10

4. Another Proof of (1.1)

Let us consider the Bernstein operator B_{n},

$$
\begin{equation*}
B_{n}(f)(x)=\sum_{k=0}^{n} p_{n, k}(x) f\left(\frac{k}{n}\right), \tag{4.1}
\end{equation*}
$$

where $p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k}, k=0,1, \ldots, n$.
It is well known that for every convex function f, B_{n} is a convex function too. For such a function, we have, by Jensen's inequality,

$$
\begin{equation*}
\int_{0}^{1} B_{n}(f)(x) d x \geq B_{n}(f)\left(\frac{1}{2}\right) . \tag{4.2}
\end{equation*}
$$

On the other hand we have

$$
\begin{gather*}
\int_{0}^{1} p_{n, k}(x) d x=\frac{1}{n+1}, \tag{4.3}\\
p_{n, k}\left(\frac{1}{2}\right)=\binom{n}{k} \frac{1}{2^{n}}, \quad k=0,1, \ldots, n
\end{gather*}
$$

Now, the inequality (1.1) follows by (4.2) and (4.3).
Some Remarks on a Paper by A. McD. Mercer

Ioan Gavrea

Title Page
Contents
Go Back
Close
Quit
Page 8 of 10

References

[1] A. McD. MERCER, An elementary inequality, Internat. J. Math. and Math. Sci., 63 (1983), 609-611.
[2] A. McD. MERCER, Polynomials and convex sequence inequalities, J. Inequal. Pure Appl. Math., 6(1) (2005), Art.8. [ONLINE http: / / jipam. vu.edu.au/article.php?sid=477].
[3] T. POPOVICIU, Divided differences and derivatives (Romanian), Studii şi Cercetări de Matematică (Cluj), 11(1) (1960), 119-145.

Some Remarks on a Paper by A. McD. Mercer

Ioan Gavrea
Title Page

[^0]: J. Ineq. Pure and Appl. Math. 6(1) Art. 26, 2005

