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ABSTRACT. In this paper, we establish general form of an inequality of Ostrowski type for
twice differentiable mappings in terms ofLp−norm, with first derivative absolutely continuous.
The integral inequality of similar type already pointed out in literature is a special case of ours.
The already established inequality contains a mistake and as a result incorrect consequences and
applications. The corrected version of the inequality is pointed out and the inequality is also
applied to special means and numerical integration.
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1. I NTRODUCTION

We establish here the general form of an inequality of Ostrowski type, different to that of
Cerone, Dragomir and Roumeliotis [1], for twice differentiable mappings in terms ofLp−norm.
The integral inequality of similar type already pointed out by N.S. Barnett, P. Cerone, S.S.
Dragomir, J. Roumeliotis and A. Sofo [2], contains a mistake which has already been reported
by N.A. Mir and A. Rafiq in their research work [3]. The same mistake has been carried out in
their other research article, namely Theorem 20 of [2] and as a result incorrect consequences
and applications of this theorem. The corrected form of the theorem is as follows:

Theorem 1.1.Letg : [a, b] −→ R be a mapping whose first derivative is absolutely continuous
on [a, b] . If we assume that the second derivativeg′′ ∈ Lp(a, b), 1 < p < ∞, then we have the
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inequality

(1.1)

∣∣∣∣∫ b

a

g(t)dt− 1

2

[
g(x) +

g(a) + g(b)

2

]
(b− a) +

1

2
(b− a)

(
x− a + b

2

)
g′(x)

∣∣∣∣
≤ 1

2

(
b− a

2

)2+ 1
q

‖g′′‖p

×

{
[B(q + 1, q + 1) + Bx1(q + 1, q + 1) + Ψx2(q + 1, q + 1)]

1
q for x ∈

[
a, a+b

2

]
,

[B(q + 1, q + 1) + Bx3(q + 1, q + 1) + Bx4(q + 1, q + 1)]
1
q for x ∈ (a+b

2
, b],

where1
p

+ 1
q

= 1, p > 1, q > 1, andB(·, ·) is the Beta function of Euler given by

B(l, s) =

∫ 1

0

tl−1(1− t)s−1dt, l, s > 0.

Further

Br(l, s) =

∫ r

0

tl−1(1− t)s−1dt

is the incomplete Beta function,

Ψr(l, s) =

∫ r

0

tl−1(1 + t)s−1dt

is the real positive valued integral,

x1 =
2(x− a)

b− a
, x2 = 1− x1, x3 = x1 − 1, x4 = 2− x1

and

‖g′′‖p :=

(∫ b

a

|g′′(t)|p dt

) 1
p

.

If we assume thatg′′ ∈ L1(a, b), then we have

(1.2)

∣∣∣∣∫ b

a

g(t)dt− 1

2

[
g(x) +

g(a) + g(b)

2

]
(b− a) +

1

2
(b− a)

(
x− a + b

2

)
g′(x)

∣∣∣∣
≤ ‖g′′‖1

8
(b− a)2,

where

‖g′′‖1 :=

∫ b

a

|g′′(t)| dt.

2. M AIN RESULTS

The following theorem is now proved and subsequently applied to numerical integration and
special means.

Theorem 2.1.Letg : [a, b] −→ R be a mapping whose first derivative is absolutely continuous
on [a, b]. If we assume that the second derivativeg′′ ∈ Lp(a, b), 1 < p < ∞, then we have the
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inequality

(2.1)

∣∣∣∣ 1

α + β

(
α

x− a

∫ x

a

g(t)dt +
β

b− x

∫ b

x

g(t)dt

)
− 1

2
g(x)− 1

2(α + β)

[(
x− a + b

2

)
g(x)

(
α

x− a
− β

b− x

)
+

(b− a)

2

(
α

x− a
g(a) +

β

b− x
g(b)

)
− (α + β)

(
x− a + b

2

)
g′(x)

]∣∣∣∣

≤
(

b− a

2

)2+ 1
q

‖g′′‖p



[(
β

α+β
1

b−x

)q

B(q + 1, q + 1) +
(

α
α+β

1
x−a

)q

Bx1(q + 1, q + 1)

+
(

β
α+β

1
b−x

)q

Ψx2(q + 1, q + 1)
] 1

q

for x ∈
[
a, a+b

2

]
,

[(
α

α+β
1

x−a

)q

B(q + 1, q + 1) +
(

α
α+β

1
x−a

)q

Bx3(q + 1, q + 1)

+
(

β
α+β

1
b−x

)q

Bx4(q + 1, q + 1)
] 1

q

for x ∈
(

a+b
2

, b
]
,

where1
p

+ 1
q

= 1, p > 1, q > 1, andB(·, ·) is the Beta function of Euler given by

B(l, s) =

∫ 1

0

tl−1(1− t)s−1dt, l, s > 0.

Further,

Br(l, s) =

∫ r

0

tl−1(1− t)s−1dt

is the incomplete Beta function,

Ψr(l, s) =

∫ r

0

tl−1(1 + t)s−1dt

is a real positive valued integral,

x1 =
2(x− a)

b− a
, x2 = 1− x1, x3 = x1 − 1, x4 = 2− x1

and

‖g′′‖p :=

(∫ b

a

|g′′(t)|p dt

) 1
p

.

If we assume thatg′′ ∈ L1(a, b), then we have

(2.2)

∣∣∣∣ 1

α + β

(
α

x− a

∫ x

a

g(t)dt +
β

b− x

∫ b

x

g(t)dt

)
− 1

2
g(x)

− 1

2(α + β)

[(
x− a + b

2

)
g(x)

(
α

x− a
− β

b− x

)
+

(b− a)

2

(
α

x− a
g(a) +

β

b− x
g(b)

)
− (α + β)

(
x− a + b

2

)
g′(x)

]∣∣∣∣
≤ 1

2
‖g′′‖1 ‖K(x, t)‖∞ ,

where

‖g′′‖1 =

∫ b

a

|g′′(t)| dt,

J. Inequal. Pure and Appl. Math., 7(3) Art. 112, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


4 A. RAFIQ AND NAZIR AHMAD M IR

and

‖K(x, t)‖∞ =
1

α + β
max

(
α

x− a
,

β

b− x

)
(b− a)2

4
for x ∈ [a, b].

Proof. We begin by recalling the following integral equality proved by N.A. Mir and A. Rafiq
[3] which is generalization of an integral equality proved by Dragomir and Wang [4].

(2.3)

∣∣∣∣ 1

α + β

(
α

x− a

∫ x

a

g(t)dt +
β

b− x

∫ b

x

g(t)dt

)
− 1

2
g(x)

− 1

2(α + β)

[(
x− a + b

2

)
g(x)

(
α

x− a
− β

b− x

)
+

(b− a)

2

(
α

x− a
g(a) +

β

b− x
g(b)

)
− (α + β)

(
x− a + b

2

)
g′(x)

]∣∣∣∣
=

1

2

∣∣∣∣∫ b

a

p(x, t)

(
t− a + b

2

)
g′′(t)dt

∣∣∣∣
whose left hand side is equivalent to that of (2.1). From the right hand side of (2.3) we have, by
Hölder’s inequality, that∣∣∣∣∫ b

a

p(x, t)

(
t− a + b

2

)
g′′(t)dt

∣∣∣∣
≤

(∫ b

a

|g′′(t)|p dt

) 1
p
(∫ b

a

|p(x, t)|q
∣∣∣∣t− a + b

2

∣∣∣∣q dt

) 1
q

= ‖g′′‖p

(∫ b

a

|p(x, t)|q
∣∣∣∣t− a + b

2

∣∣∣∣q dt

) 1
q

,

and from (2.3) we obtain the inequality

(2.4)

∣∣∣∣ 1

α + β

(
α

x− a

∫ x

a

g(t)dt +
β

b− x

∫ b

x

g(t)dt

)
− 1

2
g(x)− 1

2(α + β)

[(
x− a + b

2

)
g(x)

(
α

x− a
− β

b− x

)
+

(b− a)

2

(
α

x− a
g(a) +

β

b− x
g(b)

)
− (α + β)

(
x− a + b

2

)
g′(x)

]∣∣∣∣
≤ 1

2
‖g′′‖p

(∫ b

a

|p(x, t)|q
∣∣∣∣t− a + b

2

∣∣∣∣q dt

) 1
q

.

From the right hand side of (2.4) we may define

I :=

∫ b

a

|p(x, t)|q
∣∣∣∣t− a + b

2

∣∣∣∣q dt

=

(
α

α + β
· 1

x− a

)q ∫ x

a

(t− a)q

∣∣∣∣t− a + b

2

∣∣∣∣q dt

+

(
β

α + β
· 1

b− x

)q ∫ b

x

|t− b|q
∣∣∣∣t− a + b

2

∣∣∣∣q dt(2.5)

such that we can identify two distinct cases.
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(a) Forx ∈
[
a, a+b

2

]
IA =

(
α

α + β

1

x− a

)q ∫ x

a

(t− a)q

(
a + b

2
− t

)q

dt

+

(
β

α + β

1

b− x

)q ∫ a+b
2

x

(b− t)q

(
a + b

2
− t

)q

dt

+

(
β

α + β

1

b− x

)q ∫ b

a+b
2

(b− t)q

(
t− a + b

2

)q

dt.

Investigating the three separate integrals, we may evaluate as follows:

I1 =

∫ x

a

(t− a)q

(
a + b

2
− t

)q

dt,

making the change of variablet = a +
(

b−a
2

)
w, we arrive at

I1 =

(
b− a

2

)2q+1 ∫ x1

0

wq(1− w)qdw,

=

(
b− a

2

)2q+1

Bx1(q + 1, q + 1),

whereBx1 (·, ·) is the incomplete Beta function andx1 = 2(x−a)
b−a

.

I2 =

∫ a+b
2

x

(b− t)q

(
a + b

2
− t

)q

dt,

making the change of variablet = a+b
2
−

(
b−a
2

)
w, we obtain

I2 =

(
b− a

2

)2q+1 ∫ x2

0

wq(1 + w)qdw =

(
b− a

2

)2q+1

Ψx2(q + 1, q + 1),

where

Ψx2 :=

∫ x2

0

wq(1 + w)qdw

andx2 = a+b−2x
b−a

= 1− x1.

I3 =

∫ b

a+b
2

(b− t)q

(
t− a + b

2

)q

dt,

making the change of variablet = a+b
2

+
(

b−a
2

)
w, we get

I3 =

(
b− a

2

)2q+1 ∫ 1

0

wq(1− w)qdw =

(
b− a

2

)2q+1

B(q + 1, q + 1),

whereB (·, ·) is the Beta function.
We may now write

IA = I1 + I2 + I3

=

(
b− a

2

)2q+1 [(
α

α + β

1

x− a

)q

Bx1(q + 1, q + 1)

+

(
β

α + β

1

b− x

)q

Ψx2(q + 1, q + 1) +

(
β

α + β

1

b− x

)q

B(q + 1, q + 1)

]
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for x ∈
[
a, a+b

2

]
.

(b) Forx ∈
(
a, a+b

2

]
IB =

(
α

α + β

1

x− a

)q ∫ a+b
2

a

(t− a)q

(
a + b

2
− t

)q

dt

+

(
α

α + β

1

x− a

)q ∫ x

a+b
2

(t− a)q

(
t− a + b

2

)q

dt

+

(
β

α + β

1

b− x

)q ∫ b

x

(b− t)q

(
t− a + b

2

)q

dt.

In a similar fashion to the previous case, we have

I4 =

∫ a+b
2

a

(t− a)q

(
a + b

2
− t

)q

dt.

Letting t = a +
(

b−a
2

)
w, we obtain

I4 =

(
b− a

2

)2q+1 ∫ 1

0

wq(1− w)qdw =

(
b− a

2

)2q+1

B(q + 1, q + 1),

whereB (·, ·) is the Beta function.

I5 =

∫ x

a+b
2

(t− a)q

(
t− a + b

2

)q

dt,

making the change of variablet = a+b
2

+
(

b−a
2

)
w, we arrive at

I5 =

(
b− a

2

)2q+1 ∫ x3

0

wq(1− w)qdw =

(
b− a

2

)2q+1

Bx3(q + 1, q + 1),

whereBx3 (·, ·) is the incomplete Beta function andx3 = x1 − 1.

I6 =

∫ b

x

(b− t)q

(
t− a + b

2

)q

dt,

making the change of variablet = b−
(

b−a
2

)
w, we get

I6 =

(
b− a

2

)2q+1 ∫ x4

0

wq(1− w)qdw =

(
b− a

2

)2q+1

Bx4(q + 1, q + 1),

whereBx4 (·, ·) is the incomplete Beta function andx4 = 2− x1.

IB = I4 + I5 + I6

=

(
b− a

2

)2q+1 [(
α

α + β

1

x− a

)q

B(q + 1, q + 1) +

(
α

α + β

1

x− a

)q

Bx3(q + 1, q + 1)

+

(
β

α + β

1

b− x

)q

Bx4(q + 1, q + 1)

]
for x ∈ (a+b

2
, b].
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Also from (2.5)

I = IA + IB

=

(
b− a

2

)2q+1



(
α

α+β
1

x−a

)q

Bx1(q + 1, q + 1) +
(

β
α+β

1
b−x

)q

Ψx2(q + 1, q + 1)

+
(

β
α+β

1
b−x

)q

B(q + 1, q + 1) for x ∈
[
a, a+b

2

]
,

(
α

α+β
1

x−a

)q

B(q + 1, q + 1) +
(

α
α+β

1
x−a

)q

Bx3(q + 1, q + 1)

+
(

β
α+β

1
b−x

)q

Bx4(q + 1, q + 1) for x ∈
[

a+b
2

, b
]
.

Using (2.4), we obtain the result (2.1). Using the inequality (2.3), we can also state that∣∣∣∣ 1

α + β

(
α

x− a

∫ x

a

g(t)dt +
β

b− x

∫ b

x

g(t)dt

)
− 1

2
g(x)− 1

2(α + β)

[(
x− a + b

2

)
g(x)

(
α

x− a
− β

b− x

)
+

(b− a)

2

(
α

x− a
g(a) +

β

b− x
g(b)

)
− (α + β)

(
x− a + b

2

)
g′(x)

]∣∣∣∣
≤ 1

2
‖g′′‖1 ‖K(x, t)‖∞ ,

where

‖K(x, t)‖∞ = p(x, t)

(
t− a + b

2

)
.

As it is easy to see that

‖K(x, t)‖∞ =
1

α + β
·max

(
α

x− a
,

β

b− x

)
· (b− a)2

4
for x ∈ [a, b],

we deduce (2.2). �

Remark 2.2. Puttingα = x− a andβ = b− x in (2.1) and (2.2), we get the inequalities (1.1)
and (1.2).

Remark 2.3. Simple manipulation of (2.1) will allow for the corrected result of (1.1) and (1.2),
owing to a missing factor of1

2
in the third term of the original result (1.1) of the Barnett, Cerone,

Dragomir, Roumeliotis and Sofo, this will not be done here.
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