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Abstract
In this paper some Poincaré type inequalities are obtained for the maps of the

Heisenberg group target.
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Let H™ ([1]) denote a Heisenberg group which is a Lie group that has algebra
g = R?™*! with a non-abelian group law:

(1.2) (z1,y1,t1) - (T2, Y2, t2) = (1 + T2, y1 + Yo, t1 + t2 + 2(y2x1 — T2Y1)),

foreveryu; = (z1,y1,t1),us = (22,90, 12) € H™. The Lie algebra is generated
by the left invariant vector fields
0 0 0 0

V= 2 _9p L
or, | Vior A T

(1.2) X, =

1=1,2,...,m,
andT = %. For everyu; = (x1,41,11), us = (22,y2,t2) € H™, the metric
d(uy,us) in the Heisenberg grouH™ is defined as {])
(1.3) d(ur, uz) = ’U2Uf1’
= [((w2 —21)* + (32 —1)*)°
+ (t2 — t1 + 2(wag1 — 132))%] "

NI

We see thaH™ possesses the nonlinear structure of group laws. It is one of the
differences betweeH™ and general Riemann manifolds.

Let @ C R" (n > 2) be a bounded and connected Lipschitz domain . Let
2<p< 0.

L. Capogna and Fang-Hua Lig][have provided the characterizations for the
Sobolev spacé/!* (2, H™), proved the existence theorem for the minimizer,
and established that all critical points for the energy are Lipschitz continuous in
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the 2-dimensional case. However, the higher dimensional regularity problem is
still open.

In this paper, we shall give some Poincaré type inequalities for the maps of
the Heisenberg group target. The statements of these results are similar to the
ones in the classical case. However, since the metric possesses the nonlinear
structure of the group law, we require the use of a few techniques in the proofs
for our Poincaré type inequalities.

Definition 1.1. Let2 < p < oo. A functionu = (z,t) : @ — H™isin _ N
Poincaré Inequalities for the

Lr(©2, H™) if for someh, € 2, one has Heisenberg Group Target
Gao Jia
(1.4) /(d(u(h), u(ho))Pdh < oo.
Q
A functionu = (z,t) : Q — H™ is in the Sobolev spacd'»(Q, H™) if Title Page
u e LP(2,H™) and Contents
4« 44
(1.5) E,q(u) = sup hmsup/ f(h)eu(h)dh < oo,
feC(Q),0<f<1 €70 < 4
where ) Go Back
€y e(h) — / (d(U(h% u(Q))) dae(Q) Close
’ |h—ql € ent .
Quit

E, o(u) is called thep-energy ofu on €.
Lemma 1.1.If u = (z,y,t) € WhP(Q,H™), then
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The maps satisfyindl(6) are called Legendrian maps.

Lemma 1.2.If u = (2,t) = (z,y,t) € WP(Q,H™), then

Epa(u) = wo / V217 (q)dq.
QO

Lemmal.land Lemmal.2are due to L. Capogna and Fang-Hua Lih [

Lemma 1.3 ([]). (C,—inequality) Letp > 0. Then for any; € R,

n p n
(Z |az‘|> <G Y lail”,
i=1

i=1
whereC, =1if0 <p <landC, =nt"tif p > 1.

Lemma 1.4 ([5]). (Poincaré Inequality in the classical case) Kebe a bounded
and connected Lipschitz domainlki. Letp > 1. Then there exists a constant
C depending only of2, m andp, such that for every functiom € W'*(Q, R),
we have

/ lu(z) — AofPde < c/ Vulrde,
Q Q

where), = ﬁ Jo u(z)da.
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Theorem 2.1 (Poincaré type inequality).Let 2 be a bounded and connected
Lipschitz domain inR™. Then there exists a constaft depending only on
Q,n,m andp, such that for every function= (x,y,t) = (z,t) € W'?(Q, H™),

@1 [ () M) < CoBpa(w) = Ca [ 1V2P0)ds

Here A, = (Ao, Ay, Ar) and Xy = & [, f(g)dg.

Proof. Obviously, \, € W'?(Q, H™). From (L.3), using theC,—inequality,
we have

(d(u(q

~—

P

)P
[12(q) = A"+ (t(q) = A + 2(Nay(q) — Ayz(q)))?] *
Cy[2() = Aal” + ly(a@) = "

(2.2) +[t(q) = N+ 200p(a) = Nyz(@)]F]

IN

whereC), depends op. By the Poincaré inequality in the classical case, noting
that

2(Azy(q) — Ayz(q)) = 222 (y(q) — Ay) — 22y (2(q) — As),
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we obtain

[ @ )y

<G, [ / (12(@) = Aal? + y(@) = AP + [t(a) = X+ 200(@) = Mz (@)]F) dq]
<C1 [ [FaPda+ Ca [ [VuPl@da+Ca [ 1Ve+20075 - 0,V0) g

By virtue of the Legendrian conditiowt = 2(yVz — xVy), using the Holder
inequality, noting thatVz| < |Vz| and|Vy| < |Vz|, we have

/ (d(u(g), \))Pdg
Q
< Cl/ |v:c|pdq+02/ IVy[P(q)
QO Q
L2t / Vy(z — \) — Va(y — \,)|3dg
Q
<o / ValPdg + Co / VyPrdg
0 Q

e (/|w|’z’|y—xy|’édq+/|Vy|’5|x—xx|%’dq)
Q Q

%
g(]l/ |Vx|pdq+02/ Vylrdg + Cs (/ \vwdq/ |Vy|pdq)
Q Q Q Q
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< / Valdg + Cs / Vylrdg + Co ( / Valdg + / |Vy\pdq)
Q Q QO Q

<c / V2P (q)da.
Q

where(C', Cy, C3, Cy, C5, Cs andC are dependent o, n, m andp. H
Corollary 2.2. If u € W'?(B(hg,r), H™), then

(2.3) /B(h )(d<U(Q); )\u))pdq < OTpEp,B(hom)(u)

—crr [ VP
B(ho,’r‘)
Proof. Observe that
(d(u(q), )P

= [[2(q) = Al + (t(g) — A + 2(N\ay(@) — Ay ()))?]
< Cy [[2() = Aal? + ly(a@) = A l? + 11(a) = N+ 200y(a) = Mya(@)#]

)
4

HereC, depends omp. By the Poincaré inequality in the classical case, noting
that

2(/\acy(q) - /\y'r(Q)) = 2/\x(y(q) - )‘y) - 2/\y(x(Q> - /\ac)7
we deduce

/B (o) 2y
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<Gy U (2 = Xal? + |y = AP+ [t = Ao + 2000y — \y2)|2)dg
Br(ho)

< Cur? / (Va["(q)dq + Cor® / \Vy|P(¢q)dg
Br(ho) B (ho)

+ Cyr? / |Vt 4+ 2(\.Vy — A\, Vz)|2dg.
Br(ho)

By virtue of the Legendrian conditioNt = 2(yVa — xVy), using Holder’s
inequality, noting thatVz| < |Vz| and|Vy| < |Vz|, we can obtain

[ o)
BT‘(h’O)
<Oy / IV (q)dq + Car” / Yyl (q)dg
By (ho) By (ho)
Oyt / o [V@0) = A) — V(o) (vla) )l
By (hg

<y / V2P (q)dq + Car® / Yyl (q)dq
Br(ho) By (ho)

+ Cyr? </ \Va:\pdq/ |Vy|pdq>
By-(ho) By (ho)
<crt [ VaP(oda
Q

whereC', Cy, C3, Cy andC depend orf2, n, m andp. O
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