Journal of Inequalities in Pure and Applied Mathematics
http://jipam.vu.edu.au/
Volume 5, Issue 3, Article 55, 2004

A TWO-SIDED ESTIMATE OF $\mathrm{e}^{x}-\left(1+\frac{x}{n}\right)^{n}$
 CONSTANTIN P. NICULESCU AND ANDREI VERNESCU
 > DEPARTMENT OF MATHEMATICS > University of Craiova > Street A. I. CuZa 13 > Craiova 200217, Romania. > cniculescu@central.ucv.ro

 Department of Mathematics

 Department of Mathematics

 University of Craiova

 University of Craiova

 Street A. I. Cuza 13

 Street A. I. Cuza 13

 Craiova 200217, Romania.

 Craiova 200217, Romania.

 cniculescu@central.ucv.ro

 cniculescu@central.ucv.ro
 University Valahia of TÂrgovişte
 BD. Uniril 18, TÂRGOVIŞTE 130082
 Romania.
 avernescu@pcnet.ro

Received 23 March, 2004; accepted 01 April, 2004
Communicated by L.-E. Persson

AbStract. In this paper we refine an old inequality of G. N. Watson related to the formula $\mathrm{e}^{x}=\lim _{\mathrm{n} \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$.

Key words and phrases: Inequalities, Two-sided estimates, Exponential function, Means.
2000 Mathematics Subject Classification. Primary 26D15; Secondary 26A06, 26 A48.
The exponential function can be defined by the formula

$$
e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

the convergence being uniform on compact subsets of \mathbb{R}. The "speed" of convergence is discussed in many places, including the classical book of D. S. Mitrinović [2], where the following formulae are presented:

$$
\begin{array}{ll}
0 \leq e^{x}-\left(1+\frac{x}{n}\right)^{n} \leq \frac{x^{2} e^{x}}{n} & \text { for }|x|<n \text { and } n \in \mathbb{N}^{\star} \\
0 \leq e^{-x}-\left(1-\frac{x}{n}\right)^{n} \leq \frac{x^{2}(1+x) e^{-x}}{2 n} & \text { for } 0 \leq x \leq n, n \in \mathbb{N}, n \geq 2 \\
0 \leq e^{-x}-\left(1-\frac{x}{n}\right)^{n} \leq \frac{x^{2}}{2 n} & \text { for } 0 \leq x \leq n, n \in \mathbb{N}^{\star}
\end{array}
$$

Here \mathbb{N}^{\star} stands for the set of positive naturals.

[^0]See [3], [4], [8], [9], [10] for history, applications and related results. As noticed by G.N. Watson in [9], the first inequality yields a quick proof of the equivalence of two basic definitions of the Gamma function. In fact, for $x>0$ it yields

$$
\lim _{n \rightarrow \infty} \int_{0}^{n} s^{x-1}\left(1-\frac{s}{n}\right)^{n} d s=\int_{0}^{\infty} s^{x-1} e^{-s} d s
$$

while a small computation shows that the integral on the left is equal to

$$
\frac{n!n^{x}}{x(x+1) \cdots(x+n)}
$$

The aim of the present note is to prove stronger estimates.

Theorem 1.

i) If $x>0, t>0$ and $t>\frac{1-x}{2}$, then

$$
\frac{x^{2} e^{x}}{2 t+x+\max \left\{x, x^{2}\right\}}<e^{x}-\left(1+\frac{x}{t}\right)^{t}<\frac{x^{2} e^{x}}{2 t+x} .
$$

ii) If $x>0, t>0$ and $t>\frac{x-1}{2}$, then

$$
\frac{x^{2} e^{-x}}{2 t-x+x^{2}}<e^{-x}-\left(1-\frac{x}{t}\right)^{t}<\frac{x^{2} e^{-x}}{2 t-2 x+\min \left\{x, x^{2}\right\}}
$$

For $x=1$ and $t=n \in \mathbb{N}^{\star}$ the inequalities i) yield,

$$
\frac{e}{2 n+2}<e-\left(1+\frac{1}{n}\right)^{n}<\frac{e}{2 n+1},
$$

which constitutes Problem 170 in G. Pólya and G. Szegö [6].
For $x=1$ and $t=n \in \mathbb{N}^{\star}$ the inequalities $\left.i i\right)$ read as

$$
\frac{1}{2 n e}<\frac{1}{e}-\left(1-\frac{1}{n}\right)^{n}<\frac{1}{(2 n-1) e}
$$

and this fact improves the result of Problem B3 given at the 63rd Annual William Lowell Putnam Mathematical Competition. See [5]. Needless to say, the solutions presented in [1] and [11] both missed the question of whether the original pair of inequalities are optimal or not.

The result of Theorem 1 above can be easily extended for positive elements in a C^{\star}-algebra (particularly in $M_{n}(\mathbb{R})$). This is important since the solution $u \in C^{1}\left([0, \infty), \mathbb{R}^{n}\right)$ of the differential system

$$
\left\{\begin{array}{l}
\frac{d u}{d t}+A u=0 \quad \text { for } t \in[0, \infty) \tag{1}\\
u(0)=u_{0}
\end{array}\right.
$$

for $A \in M_{n}(\mathbb{R})$, has an exponential representation,

$$
\begin{aligned}
u(t) & =e^{-t A} u_{0} \\
& =\lim _{n \rightarrow \infty}\left(I-\frac{t}{n} A\right)^{n} u_{0}
\end{aligned}
$$

Since $e^{-t A}=\left(e^{t A}\right)^{-1}$, we can rewrite $u(t)$ as

$$
\begin{equation*}
u(t)=\lim _{n \rightarrow \infty}\left[\left(I+\frac{t}{n} A\right)^{-1}\right]^{n} u_{0} \tag{2}
\end{equation*}
$$

This led K. Yosida [7] to his semigroup approach of evolution equations:

Theorem 2. Let E be a Banach space and let $A: \mathcal{D}(A) \subset E \rightarrow E$ be a densely defined linear operator such that for every $\lambda>0$, the operator $I+\lambda A$ is a bijection between $\mathcal{D}(A)$ and E with $\left\|(I+\lambda A)^{-1}\right\| \leq 1$.

Then for every $u_{0} \in \mathcal{D}(A)$ the formula (2) provides the unique solution $u \in C^{1}([0, \infty), E) \cap$ $C([0, \infty), \mathcal{D}(A))$ of the Cauchy problem (1).

It is unclear up to what extent an analogue of Theorem 1 is valid in the context of unbounded generators A.
Proof of Theorem [1. We shall detail here only the case i). The case $i i$) can be treated in a similar way.

We shall need the Harmonic, Logarithmic and Arithmetic Mean Inequality,

$$
\frac{2 u v}{v+u}<\frac{v-u}{\ln v-\ln u}<\frac{u+v}{2}, \quad \text { for every } u, v>0, u<v
$$

from which we get the following two-sided estimate

$$
\begin{equation*}
\frac{2 x}{2 t+x}<\ln (t+x)-\ln t<\frac{(2 t+x) x}{2 t(t+x)}, \quad \text { for every } t, x>0 \tag{3}
\end{equation*}
$$

The left-hand side inequality in i) is equivalent to

$$
\begin{equation*}
u(t):=\frac{2 t+x+\max \left\{x, x^{2}\right\}}{2 t+x+\max \left\{x, x^{2}\right\}-x^{2}}\left(1+\frac{x}{t}\right)^{t}<\mathrm{e}^{x} \tag{4}
\end{equation*}
$$

for $t>\max \left\{0, \frac{1-x}{2}\right\}$.
If the parameter x belongs to $(0,1]$, then

$$
u(t)=\frac{2 t+2 x}{2 t+2 x-x^{2}}\left(1+\frac{x}{t}\right)^{t}
$$

so that

$$
\begin{aligned}
u^{\prime}(t) & =\left[\left(\ln (t+x)-\ln t-\frac{x}{t+x}\right) \frac{2 t+2 x}{2 t+2 x-x^{2}}-\frac{2 x^{2}}{\left(2 t+2 x-x^{2}\right)^{2}}\right]\left(1+\frac{x}{t}\right)^{t} \\
& >\left[\left(\frac{2 x}{2 t+x}-\frac{x}{t+x}\right) \frac{2 t+2 x}{2 t+2 x-x^{2}}-\frac{2 x^{2}}{\left(2 t+2 x-x^{2}\right)^{2}}\right]\left(1+\frac{x}{t}\right)^{t} \\
& =\frac{2 x^{3}(1-x)}{\left(2 t+2 x-x^{2}\right)^{2}(2 t+x)}\left(1+\frac{x}{t}\right)^{t} \geq 0
\end{aligned}
$$

by the left-hand side inequality in (3). Therefore the function $u(t)$ is increasing. As $\lim _{t \rightarrow \infty} u(t)=$ e^{x}, this proves (4) for $x \in(0,1]$.

For $x \geq 1$, the inequality (4) reads

$$
u(t)=\frac{2 t+x+x^{2}}{2 t+x}\left(1+\frac{x}{t}\right)^{t}<e^{x} \quad \text { for every } t>0
$$

In this case,

$$
u^{\prime}(t)=\left[\left(\ln (t+x)-\ln t-\frac{x}{t+x}\right) \frac{2 t+x+x^{2}}{2 t+x}-\frac{2 x^{2}}{(2 t+x)^{2}}\right]\left(1+\frac{x}{t}\right)^{t}
$$

and the left part of (3) yields

$$
\begin{aligned}
u^{\prime}(t) & >\left[\left(\frac{2 x}{2 t+x}-\frac{x}{t+x}\right) \frac{2 t+x+x^{2}}{2 t+x}-\frac{2 x^{2}}{(2 t+x)^{2}}\right]\left(1+\frac{x}{t}\right)^{t} \\
& =\frac{x^{3}(x-1)}{(2 t+x)^{2}(t+x)}\left(1+\frac{x}{t}\right)^{t} \geq 0
\end{aligned}
$$

since $t>0$ and $x \geq 1$. Then $u(t)$ is increasing and thus

$$
u(t)<\lim _{t \rightarrow \infty} u(t)=e^{x}
$$

for every $t>0$ and every $x \geq 1$. Hence (4), and this shows that the left-hand side inequality in $i)$ holds for every $x>0$.

The right-hand side inequality in Theorem $1 i$) is equivalent to

$$
e^{x}<\frac{2 t+x}{2 t+x-x^{2}}\left(1+\frac{x}{t}\right)^{t}=v(t)
$$

for every $x>0$ and every $t>\max \left\{0, \frac{1-x}{2}\right\}$. Again, we shall use a monotonicity argument. According to the right-hand side inequality in (3) we have

$$
\begin{aligned}
v^{\prime}(t) & =\left[\left(\ln (t+x)-\ln t-\frac{x}{t+x}\right) \frac{2 t+x}{2 t+x-x^{2}}-\frac{2 x^{2}}{\left(2 t+x-x^{2}\right)^{2}}\right]\left(1+\frac{x}{t}\right)^{t} \\
& <\left[\left(\frac{(2 t+x) x}{2 t(t+x)}-\frac{x}{t+x}\right) \frac{2 t+x}{2 t+x-x^{2}}-\frac{2 x^{2}}{\left(2 t+x-x^{2}\right)^{2}}\right]\left(1+\frac{x}{t}\right)^{t} \\
& =\frac{x^{4}(-2 t+(1-x))}{2 t(t+x)\left(2 t+x-x^{2}\right)^{2}}<0
\end{aligned}
$$

from which we infer that $v(t)$ is decreasing. Consequently,

$$
v(t)>\lim _{t \rightarrow \infty} v(t)=e^{x}
$$

for every $x>0$ and every $t>\max \left\{0, \frac{1-x}{2}\right\}$. Thus also the right-hand side inequality in i) holds and the proof is complete.

REfERENCES

[1] L.F. KLOSINSKI, The Sixty-Third William Lowell Putnam Mathematical Competition, Amer. Math. Monthly, 110(8) (2003), 718-726.
[2] D.S. MITRINOVIĆ, Analytic Inequalities, Springer-Verlag, Berlin Heidelberg New York, 1970.
[3] E.H. NEVILLE, Note 1209: Two inequalities used in the theory of the gamma functions, Math. Gazette, 20 (1936), 279-280.
[4] E.H. NEVILLE, Note 1225: Addition to the Note 1209, Math. Gazette, 21 (1937), 55-56.
[5] C.P. NICULESCU AND A. VERNESCU, On the order of convergence of the sequence $\left(1-\frac{1}{n}\right)^{n}$, (Romanian) Gazeta Matematică, 109(4) (2004).
[6] G. PÓLYA AND G. SZEGÖ, Problems and Theorems in Analysis, Springer-Verlag, Berlin Heidelberg New York, 1978.
[7] K. YOSIDA, Functional Analysis, Springer-Verlag, Berlin Heidelberg New York, 7th Edition, 1995.
[8] G.N. WATSON, An inequality associated with gamma function, Messenger Math., 45, (1916) 2830.
[9] G.N. WATSON, Note 1254: Comments on Note 1225, Math. Gazette, 21 (1937), 292-295.
[10] E.T. WHITTAKER AND G.N. WATSON, A Course of Modern Analysis, Cambridge Univ. Press, 1952.
[11] *** 63rd Annual William Lowell Putnam Mathematical Competition, Math. Magazine, 76(1) (2003), 76-80.

[^0]: ISSN (electronic): 1443-5756
 (c) 2004 Victoria University. All rights reserved.

 062-04

