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ABSTRACT. In this article, an open problem posed in [12] is studied once again, and, following
closely theorems and methods from [5], some extensions of several integral inequalities are
obtained.
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1. I NTRODUCTION

In [12], the following interesting integral inequality is proved: Letf(x) be continuous on
[a, b] and differentiable on(a, b) such thatf(a) = 0. If 0 ≤ f ′(x) ≤ 1 for x ∈ (a, b), then

(1.1)
∫ b

a

[f(x)]3 dx ≤
[∫ b

a

f(x) dx

]2

.
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If f ′(x) ≥ 1, then inequality (1.1) reverses. The equality in (1.1) holds only iff(x) ≡ 0 or
f(x) = x− a.

As a generalization of inequality (1.1), the following more general result is also obtained in
[12]: Let n ∈ N and supposef(x) has a continuous derivative of then-th order on the interval
[a, b] such thatf (i)(a) ≥ 0 for 0 ≤ i ≤ n− 1 andf (n)(x) ≥ n!. Then

(1.2)
∫ b

a

[f(x)]n+2 dx ≥
[∫ b

a

f(x) dx

]n+1

.

At the end of [12] an open problem is proposed: Under what conditions does the inequality

(1.3)
∫ b

a

[
f(x)

]t
dx ≥

[∫ b

a

f(x) dx

]t−1

hold for t > 1?
This open problem has attracted some mathematicians’ research interests and many gener-

alizations, extensions and applications of inequality (1.2) or (1.3) were investigated in recent
years. For more detailed information, please refer to, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 13, 14, 15] and the references therein.

In this paper, following closely theorems and methods from [5], we will establish some more
extensions and generalizations of inequality (1.2) or (1.3) once again. Our main results are the
following five theorems.

Theorem 1.1.Letf(x) be continuous and not identically zero on[a, b], differentiable in(a, b),
with f(a) = 0, and letα, β be positive real numbers such thatα > β > 1. If

(1.4)
[
f (α−β)/(β−1)(x)

]′
R

(α− β)β1/(β−1)

α− 1

for all x ∈ (a, b), then

(1.5)
∫ b

a

[f(t)]α d t R

[∫ b

a

f(t) d t

]β

.

Theorem 1.2.Letα ∈ R andf(x) be continuous on[a, b] and positive in(a, b).

(1) For β > 1, if

(1.6)
∫ x

a

f(t) d t Q β1/(1−β)[f(x)](α−1)/(β−1)

for all x ∈ (a, b), then inequality(1.5) is validated;
(2) For 0 < β < 1, if inequality(1.6) is reversed, then inequality(1.5)holds;
(3) For β = 1, if [f(x)]1−α Q 1 for all x ∈ (a, b), then inequality(1.5) is valid.

Theorem 1.3. Supposen ∈ N, 1 ≤ β ≤ n + 1, andf(x) has a derivative of then-th order on
the interval[a, b] such thatf (i)(a) = 0 for 0 ≤ i ≤ n− 1 andf (n)(x) ≥ 0.

(1) If f(x) ≥
[

(x−a)β−1

ββ−2

]1/(α−β)

andf (n)(x) is increasing, then the inequality with direction

≥ in (1.5)holds.

(2) If 0 ≤ f(x) ≤
[

(x−a)β−1

ββ−2

]1/(α−β)

and f (n)(x) is decreasing, then the inequality with

direction≤ in (1.5) is valid.

Theorem 1.4. Supposen ∈ N, 1 < β ≤ n + 1, andf(x) has a derivative of then-th order on
the interval[a, b] such thatf (i)(a) = 0 for 0 ≤ i ≤ n− 1 andf (n)(x) ≥ 0.

J. Inequal. Pure and Appl. Math., 7(3) Art. 107, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


EXTENSIONS OFSEVERAL INTEGRAL INEQUALITIES 3

(1) If f(x) ≥
[

β(x−a)(β−1)

(β−1)(β−1)

]1/(α−β)

, then the inequality with direction≥ in (1.5)holds.

(2) If 0 ≤ f(x) ≤
[

β(x−a)(β−1)

(β−1)(β−1)

]1/(α−β)

, then the inequality with direction≤ in (1.5) is valid.

Theorem 1.5. Let α, β be positive numbers,α > β ≥ 2 andf(x) be continuous on[a, b] and
differentiable on(a, b) such thatf(a) ≥ 0. If

[f (α−β)(x)]′ ≥ β(β − 1)(α− β)(x− a)β−2

α− 1

for x ∈ (a, b), then the inequality with direction≥ in (1.5)holds.

Remark 1.6. Theorem 1.5 generalizes a result obtained in [9, Theorem 2] by Pečaríc and Pe-
jković.

2. PROOFS OF THEOREMS

Proof of Theorem 1.1.If [
f (α−β)/(β−1)(x)

]′ ≥ (α− β)β1/(β−1)

α− 1

for x ∈ (a, b) andα > β > 1, thenf(x) > 0 for x ∈ (a, b]. Thus both sides of (1.5) do not
equal zero. This allows us to consider the quotient of both sides of (1.5). Utilizing Cauchy’s
Mean Value Theorem consecutively yields[∫ b

a
f(t) d t

]β

∫ b

a
[f(t)]α d t

=
β

[∫ ξ

a
f(t) d t

]β−1

f(ξ)

[f(ξ)]α
ξ ∈ (a, b)

=

{
β1/(β−1)

∫ ξ

a
f(t) d t

[f(ξ)](α−1)/(β−1)

}β−1

(2.1)

=

{
β1/(β−1)f(θ)

α−1
β−1

[f(θ)](α−β)/(β−1)f ′(θ)

}β−1

θ ∈ (a, ξ)

=

{
(α− β)β1/(β−1)/(α− 1)[

f (α−β)/(β−1)(θ)
]′

}β−1

(2.2)

≤ 1.

So the inequality with direction≥ in (1.5) follows.
If

0 ≤
[
f (α−β)/(β−1)(x)

]′ ≤ (α− β)β1/(β−1)

α− 1

for x ∈ (a, b) andα > β > 1, thenf (α−β)/(β−1)(x) is nondecreasing andf(x) ≥ 0 for x ∈ [a, b].
Without loss of generality, we may assumef(x) > 0 for x ∈ (a, b] (otherwise, we can find a
point a1 ∈ (a, b) such thatf(a1) = 0 andf(x) > 0 for x ∈ (a1, b] and hence we only need
to consider the inequality with direction≤ in (1.5) on[a1, b]). This means that both sides of
inequality (1.5) are not zero. Therefore, the inequality with direction≤ in (1.5) follows from
(2.2). �

Proof of Theorem 1.2.The first and second conclusions are obtained easily by (2.1) of Theorem
1.1.
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Forβ = 1, inequality (1.5) is reduced to

(2.3)
∫ b

a

[f(t)]α d t R
∫ b

a

f(t) d t.

Now consider the quotient of both sides of (2.3). By Cauchy’s Mean Value Theorem, it is
obtained that

(2.4)

∫ b

a
[f(t)]α d t∫ b

a
f(t) d t

=
[f(ξ)]α

f(ξ)
= [f(ξ)]α−1.

The third conclusion is proved. �

Proof of Theorem 1.3.Utilization of the condition thatf(x) ≥
[

(x−a)β−1

ββ−2

]1/(α−β)

and Cauchy’s

Mean Value Theorem gives∫ b

a
[f(x)]α dx[ ∫ b

a
f(x) dx

]β
=

[f(b1)]
α−1

β
[ ∫ b1

a
f(x) dx

]β−1
a < b1 < b(2.5)

≥
(b1 − a)β−1[f(b1)]

β−1
/
ββ−2

β
[ ∫ b1

a
f(x) dx

]β−1
(2.6)

=

[
(b1 − a)f(b1)

β
∫ b1

a
f(x) dx

]β−1

.(2.7)

Now for the term in (2.7), by using Cauchy’s Mean Value Theorem several times, we have

(b1 − a)f(b1)∫ b1
a

f(x) dx
= 1 +

(b2 − a)f ′(b2)

f(b2)
a < b2 < b1

= 2 +
(b3 − a)f ′′(b3)

f ′(b3)
a < b3 < b2

· · ·

= n +
(bn+1 − a)f (n)(bn+1)

f (n−1)(bn+1)
a < bn+1 < bn.(2.8)

But f (n−1)(t) = f (n−1)(t) − f (n−1)(a) = (t − a)f (n)(t1) for somet1 ∈ (a, t). If f (n)(x) is
increasing, thenf (n)(t1) ≤ f (n)(t). Therefore,

(2.9) 0 < f (n−1)(t) ≤ f (n)(t)(t− a).

Applying (2.9) to (2.8) yields

(2.10)
(b1 − a)f(b1)∫ b1

a
f(x) dx

≥ n + 1.

Hence,

(2.11)

∫ b

a
[f(x)]α dx[ ∫ b

a
f(x) dx

]β
≥

(
n + 1

β

)β−1

for 1 ≤ β ≤ n + 1. Then the inequality with direction≥ in (1.5) holds.
Suppose that

0 ≤ f(x) ≤
[(x− a)β−1

ββ−2

]1/(α−β)
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andf (n)(x) is decreasing. The statement of the theorem implies that the inequalities (2.6) and
(2.9) reverse, this means that the inequalities (2.10) and (2.11) reverse also, so the inequality
with direction≤ in (1.5) holds. �

Proof of Theorem 1.4.If

f(x) ≥
[β(x− a)(β−1)

(β − 1)(β−1)

]1/(α−β)

,

(2.5) becomes ∫ b

a
[f(x)]α dx[∫ b

a
f(x) dx

]β
≥

[
(b1 − a)f(b1)

(β − 1)
∫ b1

a
f(x) dx

]β−1

.

Note that if all the terms in (2.8) are positive, then(b1−a)f(b1)∫ b1
a f(x) dx

≥ n. Therefore, for1 < β ≤ n+1,

the inequality with direction≥ in (1.5) holds.
If

0 ≤ f(x) ≤
[β(x− a)(β−1)

(β − 1)(β−1)

]1/(α−β)

,

the inequality with direction≤ in (1.5) follows from a similar argument as above. �

Proof of Theorem 1.5.Suppose that

[f (α−β)(x)]′ ≥ β(β − 1)(α− β)(x− a)β−2

α− 1
.

Now consider the quotient of the two sides of (1.5). Applying Cauchy’s Mean Value Theorem
three times leads to∫ b

a
[f(x)]α dx[ ∫ b

a
f(x) dx

]β
=

[f(b1)]
α−1

β
[ ∫ b1

a
f(x) dx

]β−1

≥ (α− 1)[f(b2)]
α−3f ′(b2)

β(β − 1)
[ ∫ b2

a
f(x) dx

]β−2
a < b2 < b1

≥

[
f(b2)(b2 − a)∫ b2

a
f(x) dx

]β−2

a < b3 < b2

=

[
1 +

f ′(b3)(b3 − a)

f(b3)

]β−2

≥ 1.

This completes the proof. �
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