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ABSTRACT. In this paper we study the problem of meromorphic function sharing one small
function with its derivative and improve the results of K.-W. Yu and I. Lahiri and answer the
open questions posed by K.-W. Yu.
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1. INTRODUCTION AND MAIN RESULTS

By a meromorphic function we shall always mean a function that is meromorphic in the open
complex planeC. It is assumed that the reader is familiar with the notations of Nevanlinna
theory such ag'(r, ), m(r, f), N(r, f), N(r, f), S(r, f) and so on, that can be found, for
instance, in[[2],[[5].

Let f andg be two non-constant meromorphic functions; C U {oco}, we say thaff andg
share the value IM (ignoring multiplicities) if f — a andg — a have the same zeros, they share
the valuen CM (counting multiplicities) iff — a andg — a have the same zeros with the same
multiplicities. Whena = oo the zeros off — a means the poles gf (see [5]).

Let/ be a non-negative integer or infinite. For ang C U {co}, we denote by (a, f) the
set of alla-points of f where am-point of multiplicity m is countedn times ifm < [andl+ 1
times ifm > . If Ej(a, f) = Ei(a,g), we sayf andg share the value with weight/ (see [3],

[4]).

f andg share a value with weight! means that, is a zero off — a with multiplicity m(< 1)
if and only if it is a zero ofg — a with the multiplicity m(< 1), andz, is a zero off — a with
multiplicity m(> 1) if and only if it is a zero ofy — a with the multiplicity n(> 1), wherem is
not necessarily equal ta
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2 QINGCAI ZHANG

We write f andg share(a, [) to mean thaff andg share the value with weightl. Clearly, if
f andg share(a, 1), thenf andg share(a, p) for all integersp, 0 < p < [. Also we note thaff
andg share a value IM or CM if and only if f andg share(a, 0) or (a, c0) respectively (see
[3], [4]).

Afunctiona(z) is said to be a small function ¢fif a(z) is a meromorphic function satisfying
T(r,a) = S(r, f),i.e. T(r,a) = o(T(r, f)) asr — +oo possibly outside a set of finite linear
measure. Similarly, we define thatandg share a small functiom IM or CM or with weight!/
by f — a andg — a sharing the valué IM or CM or with weight! respectively.

Brick [1] first considered the uniqueness problems of an entire function sharing one value
with its derivative and proved the following result.

Theorem A. Let f be an entire function which is not constant. fliand f’ share the valud
CM and if N (7", fi> =S(r, f), then% = ¢ for some constant € C\{0}.

Brick [1] further posed the following conjecture.

Conjecture 1.1. Let f be an entire function which is not constapt, f) be the first iterated
order of f. If p1(f) < +o0 andp;(f) is not a positive integer, and jf and f’ share one value

a CM, thenj}'jc‘j = ¢ for some constant € C\{0}.

Yang [ 7] proved that the conjecture is truefifs an entire function of finite order. Zharig [9]
extended Theorem|A to meromorphic functions. Yu [8] recently considered the problem of an
entire or meromorphic function sharing one small function with its derivative and proved the
following two theorems.

Theorem B ([8]). Let f be a non-constant entire function and= a(z) be a meromorphic
function such that # 0, co and7'(r, a) = o(T(r, f) asr — +oo. If f —a and f*) — a share
the valued CM ands(0, f) > 2, thenf = f*).

Theorem C ([8]). Let f be a non-constant, non-entire meromorphic function ard a(z) be
a meromorphic function such that 0, co andT'(r,a) = o(T(r, f) asr — +oo. If

() f anda have no common poles,
(i) f—aandf® — q share the valu@ CM,
(iii) 49(0, f) + 20(o0, f) > 19 + 2k,

thenf = f*), wherek is a positive integer.

In the same paper Yu|[8] further posed the following open questions:

(1) Can a CM shared be replaced by an IM shared value?
(2) Can the condition(0, f) > 3 of Theore@ be further relaxed?
(3) Can the condition (iii) of Theorem|C be further relaxed?
(4) Can, in general, the condition (i) of Theorgm C be dropped?
Let p be a positive integer and € C U {co}. We useN,, (r, %) to denote the counting
function of the zeros of — a (counted with proper multiplicities) whose multiplicities are not
greater tham, N, (r, %) to denote the counting function of the zerosfof a whose multi-

plicities are not less tham+ 1. And N, (7", %) and N 11 <r, %) denote their corresponding

reduced counting functions (ignoring multiplicities) respectively. We als , %) to de-
note the counting function of the zeros pf- a where a zero of multiplicityn is countedn
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times ifm < p andp times ifm > p. Clearly V; (r,
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Obviouslyé,(a, f) > d6(a, f).
Lahiri [4] improved the results of Zhan@![9] with weighted shared value and obtained the
following two theorems

Theorem D ([4]). Let f be a non-constant meromorphic function a@nbde a positive integer. If
f and f*) share(1, 2) and

F®

forr € I, where0) < A\ < 1 and/ is a set of infinite linear measure, thé{%i;ll = ¢ for some
constantc € C\{0}.

SN ) + Ny < L) N ( %) < (A o(L)T(r, f¥)

Theorem E ([4]). Let f be a non-constant meromorphic function @nbde a positive integer. If
fand f* share(1,1) and

_ 1 — 1
2N(r, f) + N2 (r, W) + 2N (r, ?) < (A +o(1)T(r, f(k))
forr € I, where0 < A\ < 1 and/ is a set of infinite linear measure, thé%%l = ¢ for some
constantc € C\{0}.

In the same paper Lahiri[4] also obtained the following result which is an improvement of
Theoreni C.

Theorem F ([4]). Let f be a non-constant meromorphic function antbe a positive integer.
Also, leta = a(2)(# 0, 00) be a meromorphic function such thBatr, a) = S(r, f). If

(i) @ has no zero (pole) which is also a zero (pole)adr f*) with the same multiplicity.
(i) f—aandf® — qshare(0,2) CM,
(i) 205,1(0, f) + (4 + k)O(c0, f) > 5 + k,
thenf = f®,

In this paper, we still study the problem of a meromorphic or entire function sharing one small
function with its derivative and obtain the following two results which are the improvement and
complement of the results of Yul[8] and Lahiri [4] and answer the four open questions of Yu in

8.

Theorem 1.2. Let f be a non-constant meromorphic function and 1), /(> 0) be integers.
Also, leta = a(z) (£ 0, 00) be a meromorphic function such th&tr, a) = S(r, f). Suppose
that f — a and f*) — @ share(0,1). If > 2 and

(1.2) 2N (r, f) + Ny (7“, %) + Ny (7“, ﬁ) < (A4 o(1)T(r, f(k)),
or/=1and
(1.2) 2N(r, f) + Ny (r, %) + 2N (r, ﬁ) < (A4 o()T(r, f®),
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orl=0,i.e. f—aandf® — qshare the valué IM and
— 1 — 1 k
(1.3) AN(r, f) + 3N, (7‘, W) +2N (7’, W) < (A+o(1)T(r, f™),
forr € I, where0 < A\ < 1 and/ is a set of infinite linear measure, théﬁ% = ¢ for some
constantc € C\{0}.

Theorem 1.3. Let f be a non-constant meromorphic function and 1), /(> 0) be integers.
Also, leta = a(z) (£ 0, 00) be a meromorphic function such th&tr,a) = S(r, f). Suppose
that f — a and f*) — @ share(0,1). If > 2 and

(1.4) (3+ £)O(00, f) + 20244(0, f) > k + 4,
orl=1and

(1.5) (4 + k)O(00, f) + 36244(0, f) > k + 6,
orl=0,i.e. f—aandf® — qshare the valué IM and

(1.6) (6 + 2k)O(o0, f) + 50a1x (0, f) > 2k + 10,
thenf = .

Clearly Theorenj 1]2 extends the results of Lahiri (Theofgm D[gnd E) to small functions.
Theoren] 1.B gives the improvements of Theofem C[dnd F, which removes the restrictions on
the zeros (poles) of(z) and f(z) and relaxes other conditions, which also includes a result of
meromorphic function sharing one value or small function IM with its derivative, so it answers
the four open questions of Yul[8].

From Theorem 1]2 we have the following corollary which is the improvement of Thgofem A.
Corollary 1.4. Let f be an entire function which is not constant.flind f’ share the value 1

IM and if N (r, %) = S(r, f), then% = ¢ for some constant € C\{0}.

From Theorem 113 we have

Corollary 1.5. Let f be a non-constant entire function and= a(z) (# 0, c0) be a meromor-
phic function such thal’(r,a) = S(r, f). If f — a and f*) — q share the value 0 CM and
5(0, f) > 1, orif f —aand f* — a share the value 0 IM and(0, f) > %, thenf = f®.

Clearly Corollary 1.b is an improvement and complement of Thegrem B.

2. MAIN LEMMAS

Lemma 2.1(seel[4]) Let f be a non-constant meromorphic functidnbe a positive integer,
then

N, (r, %) < Npik (r, %) +EN(r, f) + S(r, f).

This lemma can be obtained immediately from the proof of Lemma 2.3 in [4] which is the
special case = 2.

Lemma 2.2(see[5]) Let f be a non-constant meromorphic functionbe a positive integer.
P(f) = anf"+an_1f" '+ +ayf wherea; is a meromorphic function such tha(r, a;) =
S(r,f) (1=1,2,...,n). Then

T(r, P(f)) = nT(r, ) + S(r, f).
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3. PROOF OF THEOREM [1.2

LetF =1L G = @,thenF—l =L Gg-1= % Sincef — a and f*) — ¢ share
s

(0,1), F an hare(1, 1) except the zeros and polesaf). Define

F// F/ G// G/
(3.1) H‘(F_QF—J_(E_QG—J’

We have the following two cases to investigate.

i
d

Case 1.H = 0. Integration yields

1 1
(3.2) F—1:OG—1+D’
whereC' and D are constants and # 0. If there exists a pole, of f with multiplicity p which
is not the pole and zero af(z), thenz, is the pole ofF" with multiplicity p and the pole of~

with multiplicity p + k. This contradicts with (3]2). So

(3.3) N(r,f) < N(r,a) + N (7‘, 2) = S(r, f),

N(r,F)=S(r, f), N(r,G) = S(r, f).

(3.9) also showd” andG share the value 1 CM. Next we pro¥e = 0. We first assume that
D # 0, then

1 D(G-1+5)

(3.4) F—1_ G-1
So
(35) N (7”, G'—:1[—+%> = N(T, F) = S(T‘, f)

If & # 1, by the second fundamental theorem gnd|(3[3)] (3.5)%mdG) = S(r, f), we
have

— — 1 — 1
T(r,G) < N(r,G)+ N (r,5> +N (r, m) +S(r,G)

<N (r, l) +S(r, f) <T(r,G) + S(r, f).

G
So
(3.6) T(r,G)=N (r, é) + S(r, f),
i.e.

— 1
T(r, f(k)) =N (r, W) + S(r, f),

this contradicts with condition§ (1.1), (1.2) and {1.3) of this theorem.
If & =1, from (3.4) we know

then
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Noticing thatF = £, G = L= we have

! __¢.
o0 FO-r )~ @
By Lemmd 2.2 and (3]3) and (3.7), then
(3.8) 2T(7",f):T(r,f(f— (14—%) a)) + S(r, f)
1
= S
(i) e

T (7’, ?) + S(r, f)

<N (r,%) +EN(r, )+ S(r, f)
<T(r, f)+ S(r, f).

SoT(r, f) = S(r, f), this is impossible. Henc® = 0, and%=1 = C, i.e. % = C. This
is just the conclusion of this theorem.

Case 2.H # 0. From [3.])itis easy to see that(r, 1) = S(r, f).
Subcas¢ P.11 > 1. From [3.1) we have

— — 1 — 1 — 1
. < + — _
(3.9) N(r,H) < N(r,F)+ N (T’F 1)—|—N(2 (T,F>+N(2 (T,G)

— 1 — 1 — — 1
+ Ng (r, F) + Ng (T, a) + N(r,a)+ N (r,g> ,
whereN, (r, FL) denotes the counting function of the zerosFéfwhich are not the zeros daf

andF — 1, andN, (r, &) denotes its reduced form. In the same way, we can défine, £,)

andN, (r, &). Letz, be a simple zero of” — 1 buta(z) # 0, oo, thenz, is also the simple
zero of G — 1. By calculatingz, is the zero ofH, so

(3.10) Ny (7’, Fl—l) <N (r, %) + N(r,a) + N <r, é) < N(r,H)+ S(r, f).

Noticing thatNy) (r, &) = Ny (r, +) + S(r, f), we have

_ 1 1 — 1
1 W) ) )
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By the second fundamental theorem gnd (3.11) and ndiing F') = N(r, G) + S(r, f), then

(38.12) T(r,G)< N(r,G)+N (r, é) + N <7", ﬁ) — Ny (r, é) +S(r,G)
<2N(r,F)+N (r, é) + N(g (7“, é) +N(2 <7’, %)

— 1 — 1 — 1
+ N+ <T’F—1) + N (T’F—1> + No (ﬂﬁ) +5(r, f).
While ! > 2,

— 1 — 1 — 1 — 1 1
(3.13) Ny (T,F) + N4 (T’F—l) + N T,F_1> + No (“ﬁ) < Ny (r’ﬁ)’

SO

T<T7 f(k)> S 2N(T7 f) + NQ (7”7 )
This contradicts with[ (1]1).
While [ = 1, (3.13) turns into

_ 1 — 1 — 1 — 1 — 1
N (T,f) + Nt (T,m) + N2 (T’F—l) + Ny (T’F) <2N (T’7ﬁ>~

Similarly as above, we have

T(?gf(k)) < 2N(r, f) + Ny (r, %) + 2N (r,

(f/la)’> 5

This contradicts with[ (1]2).
Subcas¢ R.21 = 0. Inthis case}" andG share 1 IM except the zeros and poles.©f).
Let zy be the zero off” — 1 with multiplicity p and the zero ofy — 1 with multiplicity q.

We denote by, (r, &) the counting function of the zeros &f — 1 wherep = ¢ = 1; by

NS (r, +) the counting function of the zeros &f — 1 wherep = ¢ > 2; by Ny, (r, &) the

counting function of the zeros @f — 1 wherep > ¢ > 1, each pointin these counting functions
is counted only once. In the same way, we can deméb(r, &) Ng (r, &) andNy (1, 5). It

is easy to see that
1 1 1 1
NE) <7“7 F_ 1) = NE) (T, m) + S(’f’, f),

(2 1 =2 1
NE <T7F_1) _NE <T7G_1) +S(7’,f),

1 __
(3.14) N(r,F 1)— (T,G_1>—|—S(7“,)
o 1) 1 (2 1
= Ny (T’F—l)—i_NE(T’F—l)
__ 1 _
+NL(T7F_1>+NL raG_1)+S(r7f)
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From (3.1) we have now

— — 1\ — 1\ — 1

1 — 1 1
+NL(7”G 1>+N0( F)+No( G,)+S(Taf)~
In this case,[(3.10) is replaced by

(3.16) ( ) N(r,H) + S(r, ).
From (3.14),[(3.15) and (3.1L6), we have

N(T,%)<NTF +N(2<
+ 2N, (r L + 2N, (?" ! )
"F—1 G -1
L, ('r i)+m (7’ i)+s<r f
’F, ’G/ )

’11>—t

By the second fundamental theorem, then

— — 1 — 1 1

< _ ) - _
T(r,G) < N(r,G)+ N (r, G) + N (r, o 1) No (r, G”) +S(r,G)
— — 1 — 1
< N(T,G)—FQN(T,F)—FN(T,E)
+ N L) oW ! +S(r, f)
CARE) 5 L\ G—-1 T,

1 1 — 1
<2
N(r, G)+2N( F’) +N( G) +2N< G’> +S(r, f).
From Lemma 2]1 fop = 1,k = 1 we know

N( é)<ww( é)+Nﬁxﬁ+smG)

So
T(r,G) < o&m+ww( é)+2ﬁ(n%>+SvJ%

+ S(r, f).

_ LY ow (L
T(T, f(k)) S 4]\7(7“, f) +3N2 (T’, W) + 2N (T7 (f/a)’)

This contradicts with (I]3). The proof is complete.
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4. PROOF OF THEOREM [1.3

The proof is similar to that of Theorem 1.2. We defifiendG and [3.1) as above, and we
also distinguish two cases to discuss.

Case 3.H =0. We also have (3]2). Fror- h (3.3) we know tieitoo, f) = 1, and from [(1.4),
(1.5) and[(1.}p), we further knod., (0, f) > 3. Assume thaD # 0, then
D(F—1—5) 1

B F—1 CG 1

N (rpr ) = N6 =50,

D

SO

If D # —1, using the second fundamental theoremAosimilarly as [(3.5) we have

T(r,F)=N (r, %) + S(r, f),

T(r,f)=N (r, %) + S(r, f).

HenceO (0, f) = 0, this contradicts witt®(0, ) > d24.4(0, ) > 3.
It D= ~1,then (r, ) = S(r, /), i.e. N (r,+) = S(r, f), and

F 1
F—lZOG—I
Then
FG-1-0)=-C
and thus,
(4.1) fw(ﬂ“—(y+0))——offf

As same a'8) by Lem@ 2 a@?; 3) Ahé T g (r, f), from ) we have

>+T(f)+OU

)
=1 (1 L2) + 1)+ 0) = (1),
this is impossible. Therefor® = 0, and from|[(3.R) then

1
G—1==(F-1)
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If C'# 1, then

and

1 1
N(ﬁa) :N<T’m>'

By the second fundamental theorem gnd](3.3) we have
T(r,F)<N(r,F)+ N DNow(r—r +S(r,G)
r? —_ r? r’ F r? F _ 1 + C r’

— 1 - 1
< — — .
<N (r, F) +N (7‘, G) +S(r, f)
By Lemmg 2.1 fop = 1 and [3.3), we have

Henced, (0, f) < 3. This is a contradiction with (0, f) > d244(0, f) > 3. SoC' =1 and
F=G@G,i.e. f= f®, This is just the conclusion of this theorem.

Case 4.H # 0.

Subcas¢ 4.1 > 1. As similar as Subcase 2.1, From (3.9) dnd (3.10) we have

While [ > 2,
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+ N, ( F’) + Ny ( G’) +T(r,G)+ S(r, f).
By the second fundamental theorem, we have
T(r,F)+T(r,G)

— — — 1 — 1 — 1
< - —
_N(T,F)+N(7‘,G)+N<T,F)—i—N(r,G)—I—N T,F_l)
+ N LY om(rn ) o (r 2 +S(r,F) + S(r,G)
T,G—l o{m, fal o{ 7 G’ r, T,
)

_ 1 1
< 3N(r,F)+ N (T’,F> + Ny (7",5) +T(r,G

SO

T(r,F) <3N(r,F)+ N, <7“, %) + N, (r, é) +5(r, f),
) S(r. f).

— 1
T(T‘,f) S 3N(T7f)+N2 (T,}) +N2 (
By Lemmg 2.1 fop = 2 we have

f®

T(r, f) < (34 Kk)N(r, f) + 2Nayy, (r 7

,1) )

SO
(3+k)O(c0, f) + 2001 1(0, f) < k + 4.

This contradicts with[(T]4).
Whilel =1,

— 1 — 1 1
< <
N (rgm) + ¥ (ngmy) <8 (ngty ) <T0.G)+00)

so by Lemma 2]1 fop = 1,k = 1, we have
— 1 — 1
N(T,F_1> +N(T,—G_1>
<N(rF)+N w ) w L
=~ T, + (2 r, r (2 r, G (2 T, F—1
— 1 — 1
(o) o) roerssis

< N(r,F)+ N (é)m( ;,)Hvo( é,)+T<r,G>+S<r,f>

<2N(r,F)+ N (ré) + N, (r, %) + Ny ( é/) +T(r,G) + S(r, f)
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As same as above, by the second fundamental theorem we have

T(r, F) + T(r, G) < AN(r, F) + 2N, (7“, %) LN, (r, é) T, G) + S(r, /),

SO
T(r,F) < 4N(r,F) + 2N, (r, %) + N, (r, é) +S(r, f),

T(r, f) <4N(r, f) + 2N, (r, %) + Ny <r, %) + S(r, f).
By Lemmd 2.1 fop = 2 we have

T(r, f) < (4+Kk)N(r, f) + 3Ny (r, %) +S(r, f),

SO
(4 +k)O(00, f) + 3024%(0, f) < k +6.
This contradicts with (1]5).

Subcas¢ B.2l = 0. From [3.14),[(3.15) andl (3.16) and Lemma 2.1/fet 1, k = 1, noticing

e 1 - 1 - 1 1
- - < -
Ny (T,G_l)—i-NL(r,G_l)-i—N(T,G_l) _N(T,G_l)

<T(r,G)+S(r,f),

then

< AN (. F) 1 2N, (n %) N, (r, 5) L T(r,G) + S(r, f).

As same as above, by the second fundamental theorem, we can obtain

T(r,F)+T(r,G) <6N(r,F)+ 3N, (7", %) + 2N, (T, é) +T(r,G)+ S(r, f),

SO

T(r,F) <6N(r, F) + 3N, <r,%) + 2N, (r, é) +S(r, f),
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T(r, f) <6N(r, f) + 3N, (7“, %) + 2N, (r, %) + S(r, f).
By Lemmg 2.1 fop = 2 we have

T(r, ) < (6 4+ 20N (r. ) + 5Nass ( %) S f),

(6 + 2k)O (00, f) + 5d21x(0, ) < 2k + 10.
This contradicts with (1]6). Now the proof has been completed.

SO
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