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function with its derivative and improve the results of K.-W. Yu and I. Lahiri and answer the
open questions posed by K.-W. Yu.
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1. I NTRODUCTION AND M AIN RESULTS

By a meromorphic function we shall always mean a function that is meromorphic in the open
complex planeC. It is assumed that the reader is familiar with the notations of Nevanlinna
theory such asT (r, f), m(r, f), N(r, f), N(r, f), S(r, f) and so on, that can be found, for
instance, in [2], [5].

Let f andg be two non-constant meromorphic functions,a ∈ C ∪ {∞}, we say thatf andg
share the valuea IM (ignoring multiplicities) iff −a andg−a have the same zeros, they share
the valuea CM (counting multiplicities) iff − a andg − a have the same zeros with the same
multiplicities. Whena = ∞ the zeros off − a means the poles off (see [5]).

Let l be a non-negative integer or infinite. For anya ∈ C ∪ {∞}, we denote byEl(a, f) the
set of alla-points off where ana-point of multiplicity m is countedm times ifm ≤ l andl +1
times ifm > l. If El(a, f) = El(a, g), we sayf andg share the valuea with weight l (see [3],
[4]).

f andg share a valuea with weightl means thatz0 is a zero off−a with multiplicity m(≤ l)
if and only if it is a zero ofg − a with the multiplicity m(≤ l), andz0 is a zero off − a with
multiplicity m(> l) if and only if it is a zero ofg − a with the multiplicityn(> l), wherem is
not necessarily equal ton.
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We writef andg share(a, l) to mean thatf andg share the valuea with weightl. Clearly, if
f andg share(a, l), thenf andg share(a, p) for all integersp, 0 ≤ p ≤ l. Also we note thatf
andg share a valuea IM or CM if and only if f andg share(a, 0) or (a,∞) respectively (see
[3], [4]).

A functiona(z) is said to be a small function off if a(z) is a meromorphic function satisfying
T (r, a) = S(r, f), i.e. T (r, a) = o(T (r, f)) asr → +∞ possibly outside a set of finite linear
measure. Similarly, we define thatf andg share a small functiona IM or CM or with weight l
by f − a andg − a sharing the value0 IM or CM or with weightl respectively.

Brück [1] first considered the uniqueness problems of an entire function sharing one value
with its derivative and proved the following result.

Theorem A. Let f be an entire function which is not constant. Iff andf ′ share the value1

CM and ifN
(
r, 1

f ′

)
= S(r, f), thenf ′−1

f−1
≡ c for some constantc ∈ C\{0}.

Brück [1] further posed the following conjecture.

Conjecture 1.1. Let f be an entire function which is not constant,ρ1(f) be the first iterated
order off . If ρ1(f) < +∞ andρ1(f) is not a positive integer, and iff andf ′ share one value
a CM, thenf ′−a

f−a
≡ c for some constantc ∈ C\{0}.

Yang [7] proved that the conjecture is true iff is an entire function of finite order. Zhang [9]
extended Theorem A to meromorphic functions. Yu [8] recently considered the problem of an
entire or meromorphic function sharing one small function with its derivative and proved the
following two theorems.

Theorem B ([8]). Let f be a non-constant entire function anda ≡ a(z) be a meromorphic
function such thata 6≡ 0,∞ andT (r, a) = o(T (r, f) asr → +∞. If f − a andf (k) − a share
the value0 CM andδ(0, f) > 3

4
, thenf ≡ f (k).

Theorem C ([8]). Let f be a non-constant, non-entire meromorphic function anda ≡ a(z) be
a meromorphic function such thata 6≡ 0,∞ andT (r, a) = o(T (r, f) asr → +∞. If

(i) f anda have no common poles,
(ii) f − a andf (k) − a share the value0 CM,

(iii) 4δ(0, f) + 2Θ(∞, f) > 19 + 2k,

thenf ≡ f (k), wherek is a positive integer.

In the same paper Yu [8] further posed the following open questions:

(1) Can a CM shared be replaced by an IM shared value?
(2) Can the conditionδ(0, f) > 3

4
of Theorem B be further relaxed?

(3) Can the condition (iii) of Theorem C be further relaxed?
(4) Can, in general, the condition (i) of Theorem C be dropped?

Let p be a positive integer anda ∈ C ∪ {∞}. We useNp)

(
r, 1

f

)
to denote the counting

function of the zeros off − a (counted with proper multiplicities) whose multiplicities are not

greater thanp, N(p+1

(
r, 1

f

)
to denote the counting function of the zeros off − a whose multi-

plicities are not less thanp + 1. And Np)

(
r, 1

f

)
andN (p+1

(
r, 1

f

)
denote their corresponding

reduced counting functions (ignoring multiplicities) respectively. We also useNp

(
r, 1

f

)
to de-

note the counting function of the zeros off − a where a zero of multiplicitym is countedm
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times ifm ≤ p andp times ifm > p. ClearlyN1

(
r, 1

f

)
= N

(
r, 1

f

)
. Define

δp(a, f) = 1− lim sup
r→+∞

Np

(
r, 1

f−a

)
T (r, f)

.

Obviouslyδp(a, f) ≥ δ(a, f).
Lahiri [4] improved the results of Zhang [9] with weighted shared value and obtained the

following two theorems

Theorem D ([4]). Letf be a non-constant meromorphic function andk be a positive integer. If
f andf (k) share(1, 2) and

2N(r, f) + N2

(
r,

1

f (k)

)
+ N2

(
r,

1

f

)
< (λ + o(1))T (r, f (k))

for r ∈ I, where0 < λ < 1 andI is a set of infinite linear measure, thenf (k)−1
f−1

≡ c for some
constantc ∈ C\{0}.

Theorem E ([4]). Letf be a non-constant meromorphic function andk be a positive integer. If
f andf (k) share(1, 1) and

2N(r, f) + N2

(
r,

1

f (k)

)
+ 2N

(
r,

1

f

)
< (λ + o(1))T (r, f (k))

for r ∈ I, where0 < λ < 1 andI is a set of infinite linear measure, thenf (k)−1
f−1

≡ c for some
constantc ∈ C\{0}.

In the same paper Lahiri [4] also obtained the following result which is an improvement of
Theorem C.

Theorem F ([4]). Let f be a non-constant meromorphic function andk be a positive integer.
Also, leta ≡ a(z)(6≡ 0,∞) be a meromorphic function such thatT (r, a) = S(r, f). If

(i) a has no zero (pole) which is also a zero (pole) off or f (k) with the same multiplicity.
(ii) f − a andf (k) − a share(0, 2) CM,

(iii) 2δ2+k(0, f) + (4 + k)Θ(∞, f) > 5 + k,

thenf ≡ f (k).

In this paper, we still study the problem of a meromorphic or entire function sharing one small
function with its derivative and obtain the following two results which are the improvement and
complement of the results of Yu [8] and Lahiri [4] and answer the four open questions of Yu in
[8].

Theorem 1.2. Let f be a non-constant meromorphic function andk(≥ 1), l(≥ 0) be integers.
Also, leta ≡ a(z) ( 6≡ 0,∞) be a meromorphic function such thatT (r, a) = S(r, f). Suppose
thatf − a andf (k) − a share(0, l). If l ≥ 2 and

(1.1) 2N(r, f) + N2

(
r,

1

f (k)

)
+ N2

(
r,

1

(f/a)′

)
< (λ + o(1))T (r, f (k)),

or l = 1 and

(1.2) 2N(r, f) + N2

(
r,

1

f (k)

)
+ 2N

(
r,

1

(f/a)′

)
< (λ + o(1))T (r, f (k)),
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or l = 0, i.e. f − a andf (k) − a share the value0 IM and

(1.3) 4N(r, f) + 3N2

(
r,

1

f (k)

)
+ 2N

(
r,

1

(f/a)′

)
< (λ + o(1))T (r, f (k)),

for r ∈ I, where0 < λ < 1 andI is a set of infinite linear measure, thenf (k)−a
f−a

≡ c for some
constantc ∈ C\{0}.

Theorem 1.3. Let f be a non-constant meromorphic function andk(≥ 1), l(≥ 0) be integers.
Also, leta ≡ a(z) ( 6≡ 0,∞) be a meromorphic function such thatT (r, a) = S(r, f). Suppose
thatf − a andf (k) − a share(0, l). If l ≥ 2 and

(1.4) (3 + k)Θ(∞, f) + 2δ2+k(0, f) > k + 4,

or l = 1 and

(1.5) (4 + k)Θ(∞, f) + 3δ2+k(0, f) > k + 6,

or l = 0, i.e. f − a andf (k) − a share the value0 IM and

(1.6) (6 + 2k)Θ(∞, f) + 5δ2+k(0, f) > 2k + 10,

thenf ≡ f (k).

Clearly Theorem 1.2 extends the results of Lahiri (Theorem D and E) to small functions.
Theorem 1.3 gives the improvements of Theorem C and F, which removes the restrictions on
the zeros (poles) ofa(z) andf(z) and relaxes other conditions, which also includes a result of
meromorphic function sharing one value or small function IM with its derivative, so it answers
the four open questions of Yu [8].

From Theorem 1.2 we have the following corollary which is the improvement of Theorem A.

Corollary 1.4. Let f be an entire function which is not constant. Iff andf ′ share the value 1

IM and if N
(
r, 1

f

)
= S(r, f), thenf ′−1

f−1
≡ c for some constantc ∈ C\{0}.

From Theorem 1.3 we have

Corollary 1.5. Let f be a non-constant entire function anda ≡ a(z) (6≡ 0,∞) be a meromor-
phic function such thatT (r, a) = S(r, f). If f − a and f (k) − a share the value 0 CM and
δ(0, f) > 1

2
, or if f − a andf (k) − a share the value 0 IM andδ(0, f) > 4

5
, thenf ≡ f (k).

Clearly Corollary 1.5 is an improvement and complement of Theorem B.

2. M AIN L EMMAS

Lemma 2.1 (see [4]). Let f be a non-constant meromorphic function,k be a positive integer,
then

Np

(
r,

1

f (k)

)
≤ Np+k

(
r,

1

f

)
+ kN(r, f) + S(r, f).

This lemma can be obtained immediately from the proof of Lemma 2.3 in [4] which is the
special casep = 2.

Lemma 2.2(see [5]). Let f be a non-constant meromorphic function,n be a positive integer.
P (f) = anf

n + an−1f
n−1 + · · ·+ a1f whereai is a meromorphic function such thatT (r, ai) =

S(r, f) (i = 1, 2, . . . , n). Then

T (r, P (f)) = nT (r, f) + S(r, f).
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3. PROOF OF THEOREM 1.2

Let F = f
a
, G = f (k)

a
, thenF − 1 = f−a

a
, G − 1 = f (k)−a

a
. Sincef − a andf (k) − a share

(0, l), F andG share(1, l) except the zeros and poles ofa(z). Define

(3.1) H =

(
F ′′

F ′
− 2

F ′

F − 1

)
−
(

G′′

G′
− 2

G′

G− 1

)
,

We have the following two cases to investigate.

Case 1.H ≡ 0. Integration yields

(3.2)
1

F − 1
≡ C

1

G− 1
+ D,

whereC andD are constants andC 6= 0. If there exists a polez0 of f with multiplicity p which
is not the pole and zero ofa(z), thenz0 is the pole ofF with multiplicity p and the pole ofG
with multiplicity p + k. This contradicts with (3.2). So

N(r, f) ≤ N(r, a) + N

(
r,

1

a

)
= S(r, f),(3.3)

N(r, F ) = S(r, f), N(r, G) = S(r, f).

(3.2) also showsF andG share the value 1 CM. Next we proveD = 0. We first assume that
D 6= 0, then

(3.4)
1

F − 1
≡

D
(
G− 1 + C

D

)
G− 1

.

So

(3.5) N

(
r,

1

G− 1 + C
D

)
= N(r, F ) = S(r, f).

If C
D
6= 1, by the second fundamental theorem and (3.3), (3.5) andS(r, G) = S(r, f), we

have

T (r, G) ≤ N(r, G) + N

(
r,

1

G

)
+ N

(
r,

1

G− 1 + C
D

)
+ S(r, G)

≤ N

(
r,

1

G

)
+ S(r, f) ≤ T (r, G) + S(r, f).

So

(3.6) T (r, G) = N

(
r,

1

G

)
+ S(r, f),

i.e.

T (r, f (k)) = N

(
r,

1

f (k)

)
+ S(r, f),

this contradicts with conditions (1.1), (1.2) and (1.3) of this theorem.
If C

D
= 1, from (3.4) we know

1

F − 1
≡ C

G

G− 1
,

then (
F − 1− 1

C

)
G ≡ − 1

C
.
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Noticing thatF = f
a
, G = f (k)

a
, we have

(3.7)
1

f(f − (1 + 1
C

)a)
≡ −C

a2
· f (k)

f
.

By Lemma 2.2 and (3.3) and (3.7), then

2T (r, f) = T

(
r, f

(
f −

(
1 +

1

C

)
a

))
+ S(r, f)(3.8)

= T

(
r,

1

f(f − (1 + 1
C
)a)

)
+ S(r, f)

= T

(
r,

f (k)

f

)
+ S(r, f)

≤ N

(
r,

1

f

)
+ kN(r, f) + S(r, f)

≤ T (r, f) + S(r, f).

SoT (r, f) = S(r, f), this is impossible. HenceD = 0, andG−1
F−1

≡ C, i.e. f (k)−a
f−a

≡ C. This
is just the conclusion of this theorem.

Case 2.H 6≡ 0. From (3.1) it is easy to see thatm(r, H) = S(r, f).

Subcase 2.1l ≥ 1. From (3.1) we have

(3.9) N(r, H) ≤ N(r, F ) + N (l+1

(
r,

1

F − 1

)
+ N (2

(
r,

1

F

)
+ N (2

(
r,

1

G

)
+ N0

(
r,

1

F ′

)
+ N0

(
r,

1

G′

)
+ N(r, a) + N

(
r,

1

a

)
,

whereN0

(
r, 1

F ′

)
denotes the counting function of the zeros ofF ′ which are not the zeros ofF

andF − 1, andN0

(
r, 1

F ′

)
denotes its reduced form. In the same way, we can defineN0

(
r, 1

G′

)
andN0

(
r, 1

G′

)
. Let z0 be a simple zero ofF − 1 but a(z0) 6= 0,∞, thenz0 is also the simple

zero ofG− 1. By calculatingz0 is the zero ofH, so

(3.10) N1)

(
r,

1

F − 1

)
≤ N

(
r,

1

H

)
+ N(r, a) + N

(
r,

1

a

)
≤ N(r, H) + S(r, f).

Noticing thatN1)

(
r, 1

G

)
= N1)

(
r, 1

F

)
+ S(r, f), we have

N

(
r,

1

G− 1

)
= N1)

(
r,

1

F − 1

)
+ N (2

(
r,

1

F − 1

)
(3.11)

≤ N(r, F ) + N (l+1

(
r,

1

F − 1

)
+ N (2

(
r,

1

F − 1

)
+ N (2

(
r,

1

F

)
+ N (2

(
r,

1

G

)
+ N0

(
r,

1

F ′

)
+ N0

(
r,

1

G′

)
+ S(r, f).
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By the second fundamental theorem and (3.11) and notingN(r, F ) = N(r, G) + S(r, f), then

T (r, G) ≤ N(r, G) + N

(
r,

1

G

)
+ N

(
r,

1

G− 1

)
−N0

(
r,

1

G′

)
+ S(r, G)(3.12)

≤ 2N(r, F ) + N

(
r,

1

G

)
+ N (2

(
r,

1

G

)
+ N (2

(
r,

1

F

)
+ N (l+1

(
r,

1

F − 1

)
+ N (2

(
r,

1

F − 1

)
+ N0

(
r,

1

F ′

)
+ S(r, f).

While l ≥ 2,

(3.13) N (2

(
r,

1

F

)
+ N (l+1

(
r,

1

F − 1

)
+ N (2

(
r,

1

F − 1

)
+ N0

(
r,

1

F ′

)
≤ N2

(
r,

1

F ′

)
,

so

T (r, G) ≤ 2N(r, F ) + N2

(
r,

1

G

)
+ N2

(
r,

1

F ′

)
+ S(r, f),

i.e.

T (r, f (k)) ≤ 2N(r, f) + N2

(
r,

1

f (k)

)
+ N2

(
r,

1

(f/a)′

)
+ S(r, f).

This contradicts with (1.1).

While l = 1, (3.13) turns into

N (2

(
r,

1

F

)
+ N (l+1

(
r,

1

F − 1

)
+ N (2

(
r,

1

F − 1

)
+ N0

(
r,

1

F ′

)
≤ 2N

(
r,

1

F ′

)
.

Similarly as above, we have

T (r, f (k)) ≤ 2N(r, f) + N2

(
r,

1

f (k)

)
+ 2N

(
r,

1

(f/a)′

)
+ S(r, f).

This contradicts with (1.2).

Subcase 2.2l = 0. In this case,F andG share 1 IM except the zeros and poles ofa(z).
Let z0 be the zero ofF − 1 with multiplicity p and the zero ofG − 1 with multiplicity q.

We denote byN1)
E

(
r, 1

F

)
the counting function of the zeros ofF − 1 wherep = q = 1; by

N
(2

E

(
r, 1

F

)
the counting function of the zeros ofF − 1 wherep = q ≥ 2; by NL

(
r, 1

F

)
the

counting function of the zeros ofF −1 wherep > q ≥ 1, each point in these counting functions

is counted only once. In the same way, we can defineN
1)
E

(
r, 1

G

)
, N

(2

E

(
r, 1

G

)
andNL

(
r, 1

G

)
. It

is easy to see that

N
1)
E

(
r,

1

F − 1

)
= N

1)
E

(
r,

1

G− 1

)
+ S(r, f),

N
(2

E

(
r,

1

F − 1

)
= N

(2

E

(
r,

1

G− 1

)
+ S(r, f),

N

(
r,

1

F − 1

)
= N

(
r,

1

G− 1

)
+ S(r, f)(3.14)

= N
1)
E

(
r,

1

F − 1

)
+ N

(2

E

(
r,

1

F − 1

)
+ NL

(
r,

1

F − 1

)
+ NL

(
r,

1

G− 1

)
+ S(r, f).
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From (3.1) we have now

(3.15) N(r, H) ≤ N(r, F ) + N (2

(
r,

1

F

)
+ N (2

(
r,

1

G

)
+ NL

(
r,

1

F − 1

)
+ NL

(
r,

1

G− 1

)
+ N0

(
r,

1

F ′

)
+ N0

(
r,

1

G′

)
+ S(r, f).

In this case, (3.10) is replaced by

(3.16) N
1)
E

(
r,

1

F − 1

)
≤ N(r, H) + S(r, f).

From (3.14), (3.15) and (3.16), we have

N

(
r,

1

G− 1

)
≤ N(r, F ) + N (2

(
r,

1

F

)
+ N (2

(
r,

1

G

)
+ N

(2

E

(
r,

1

F − 1

)
+ 2NL

(
r,

1

F − 1

)
+ 2NL

(
r,

1

G− 1

)
+ N0

(
r,

1

F ′

)
+ N0

(
r,

1

G′

)
+ S(r, f)

≤ N(r, F ) + 2N

(
r,

1

F ′

)
+ 2NL

(
r,

1

G− 1

)
+ N (2

(
r,

1

G

)
+ N0

(
r,

1

G′

)
+ S(r, f).

By the second fundamental theorem, then

T (r, G) ≤ N(r, G) + N

(
r,

1

G

)
+ N

(
r,

1

G− 1

)
−N0

(
r,

1

G′

)
+ S(r, G)

≤ 2N(r, G) + 2N

(
r,

1

F ′

)
+ N

(
r,

1

G

)
+ N (2

(
r,

1

G

)
+ 2NL

(
r,

1

G− 1

)
+ S(r, f)

≤ 2N(r, G) + 2N

(
r,

1

F ′

)
+ N

(
r,

1

G

)
+ 2N

(
r,

1

G′

)
+ S(r, f).

From Lemma 2.1 forp = 1, k = 1 we know

N

(
r,

1

G′

)
≤ N2

(
r,

1

G

)
+ N(r, G) + S(r, G).

So

T (r, G) ≤ 4N(r, F ) + 3N2

(
r,

1

G

)
+ 2N

(
r,

1

F ′

)
+ S(r, f),

i.e.

T (r, f (k)) ≤ 4N(r, f) + 3N2

(
r,

1

f (k)

)
+ 2N

(
r,

1

(f/a)′

)
+ S(r, f).

This contradicts with (1.3). The proof is complete.
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4. PROOF OF THEOREM 1.3

The proof is similar to that of Theorem 1.2. We defineF andG and (3.1) as above, and we
also distinguish two cases to discuss.

Case 3.H ≡ 0. We also have (3.2). From (3.3) we know thatΘ(∞, f) = 1, and from (1.4),
(1.5) and (1.6), we further knowδ2+k(0, f) > 1

2
. Assume thatD 6= 0, then

−
D
(
F − 1− 1

D

)
F − 1

≡ C
1

G− 1
,

so

N

(
r,

1

F − 1− 1
D

)
= N(r, G) = S(r, f).

If D 6= −1, using the second fundamental theorem forF , similarly as (3.6) we have

T (r, F ) = N

(
r,

1

F

)
+ S(r, f),

i.e.

T (r, f) = N

(
r,

1

f

)
+ S(r, f).

HenceΘ(0, f) = 0, this contradicts withΘ(0, f) ≥ δ2+k(0, f) > 1
2
.

If D = −1, thenN
(
r, 1

F

)
= S(r, f), i.e. N

(
r, 1

f

)
= S(r, f), and

F

F − 1
≡ C

1

G− 1
.

Then
F (G− 1− C) ≡ −C

and thus,

(4.1) f (k)
(
f (k) − (1 + C)a

)
≡ −Ca2f (k)

f
.

As same as (3.8), by Lemma 2.2 and (3.3) andN
(
r, 1

f

)
= S(r, f), from (4.1) we have

2T (r, f (k)) = T

(
r,

f (k)

f

)
+ S(r, f)

= N

(
r,

f (k)

f

)
+ S(r, f)

≤ kN(r, f) + kN

(
r,

1

f

)
+ S(r, f) = S(r, f).

SoT (r, f (k)) = S(r, f) andT
(
r, f (k)

f

)
= S(r, f). Hence

T (r, f) ≤ T

(
r,

f

f (k)

)
+ T (r, f (k)) + O(1)

= T

(
r,

f (k)

f

)
+ T (r, f (k)) + O(1) = S(r, f),

this is impossible. ThereforeD = 0, and from (3.2) then

G− 1 ≡ 1

C
(F − 1).

J. Inequal. Pure and Appl. Math., 6(4) Art. 116, 2005 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


10 QINGCAI ZHANG

If C 6= 1, then

G ≡ 1

C
(F − 1 + C),

and

N

(
r,

1

G

)
= N

(
r,

1

F − 1 + C

)
.

By the second fundamental theorem and (3.3) we have

T (r, F ) ≤ N(r, F ) + N

(
r,

1

F

)
+ N

(
r,

1

F − 1 + C

)
+ S(r, G)

≤ N

(
r,

1

F

)
+ N

(
r,

1

G

)
+ S(r, f).

By Lemma 2.1 forp = 1 and (3.3), we have

T (r, f) ≤ N

(
r,

1

f

)
+ N

(
r,

1

f (k)

)
+ S(r, f)

≤ N

(
r,

1

f

)
+ N1+k

(
r,

1

f

)
+ N(r, f) + S(r, f)

≤ 2N1+k

(
r,

1

f

)
+ S(r, f).

Henceδ1+k(0, f) ≤ 1
2
. This is a contradiction withδ1+k(0, f) ≥ δ2+k(0, f) > 1

2
. SoC = 1 and

F ≡ G, i.e. f ≡ f (k). This is just the conclusion of this theorem.

Case 4.H 6≡ 0.

Subcase 4.1l ≥ 1. As similar as Subcase 2.1, From (3.9) and (3.10) we have

N

(
r,

1

F − 1

)
+ N

(
r,

1

G− 1

)
= N1)

(
r,

1

F − 1

)
+ N (2

(
r,

1

F − 1

)
+ N

(
r,

1

G− 1

)
≤ N(r, F ) + N (2

(
r,

1

F

)
+ N (2

(
r,

1

G

)
+ N (l+1

(
r,

1

G− 1

)
+ N (2

(
r,

1

G− 1

)
+ N

(
r,

1

G− 1

)
+ N0

(
r,

1

F ′

)
+ N0

(
r,

1

G′

)
+ S(r, f).

While l ≥ 2,

N (l+1

(
r,

1

G− 1

)
+ N (2

(
r,

1

G− 1

)
+ N

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
≤ T (r, G) + O(1),
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so

N

(
r,

1

F − 1

)
+ N

(
r,

1

G− 1

)
≤ N(r, F ) + N (2

(
r,

1

F

)
+ N (2

(
r,

1

G

)
+ N0

(
r,

1

F ′

)
+ N0

(
r,

1

G′

)
+ T (r, G) + S(r, f).

By the second fundamental theorem, we have

T (r, F ) + T (r, G)

≤ N(r, F ) + N(r, G) + N

(
r,

1

F

)
+ N

(
r,

1

G

)
+ N

(
r,

1

F − 1

)
+ N

(
r,

1

G− 1

)
−N0

(
r,

1

F ′

)
−N0

(
r,

1

G′

)
+ S(r, F ) + S(r, G)

≤ 3N(r, F ) + N2

(
r,

1

F

)
+ N2

(
r,

1

G

)
+ T (r, G) + S(r, f),

so

T (r, F ) ≤ 3N(r, F ) + N2

(
r,

1

F

)
+ N2

(
r,

1

G

)
+ S(r, f),

i.e.

T (r, f) ≤ 3N(r, f) + N2

(
r,

1

f

)
+ N2

(
r,

1

f (k)

)
+ S(r, f).

By Lemma 2.1 forp = 2 we have

T (r, f) ≤ (3 + k)N(r, f) + 2N2+k

(
r,

1

f

)
+ S(r, f),

so
(3 + k)Θ(∞, f) + 2δ2+k(0, f) ≤ k + 4.

This contradicts with (1.4).
While l = 1,

N (l+1

(
r,

1

G− 1

)
+ N

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
≤ T (r, G) + O(1),

so by Lemma 2.1 forp = 1, k = 1, we have

N

(
r,

1

F − 1

)
+ N

(
r,

1

G− 1

)
≤ N(r, F ) + N (2

(
r,

1

F

)
+ N (2

(
r,

1

G

)
+ N (2

(
r,

1

F − 1

)
+ N0

(
r,

1

F ′

)
+ N0

(
r,

1

G′

)
+ T (r, G) + S(r, f)

≤ N(r, F ) + N (2

(
r,

1

G

)
+ N

(
r,

1

F ′

)
+ N0

(
r,

1

G′

)
+ T (r, G) + S(r, f)

≤ 2N(r, F ) + N (2

(
r,

1

G

)
+ N2

(
r,

1

F

)
+ N0

(
r,

1

G′

)
+ T (r, G) + S(r, f)
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As same as above, by the second fundamental theorem we have

T (r, F ) + T (r, G) ≤ 4N(r, F ) + 2N2

(
r,

1

F

)
+ N2

(
r,

1

G

)
+ T (r, G) + S(r, f),

so

T (r, F ) ≤ 4N(r, F ) + 2N2

(
r,

1

F

)
+ N2

(
r,

1

G

)
+ S(r, f),

i.e.

T (r, f) ≤ 4N(r, f) + 2N2

(
r,

1

f

)
+ N2

(
r,

1

f (k)

)
+ S(r, f).

By Lemma 2.1 forp = 2 we have

T (r, f) ≤ (4 + k)N(r, f) + 3N2+k

(
r,

1

f

)
+ S(r, f),

so
(4 + k)Θ(∞, f) + 3δ2+k(0, f) ≤ k + 6.

This contradicts with (1.5).

Subcase 4.2l = 0. From (3.14), (3.15) and (3.16) and Lemma 2.1 forp = 1, k = 1, noticing

N
(2

E

(
r,

1

G− 1

)
+ NL

(
r,

1

G− 1

)
+ N

(
r,

1

G− 1

)
≤ N

(
r,

1

G− 1

)
≤ T (r, G) + S(r, f),

then

N

(
r,

1

F − 1

)
+ N

(
r,

1

G− 1

)
= N

1)
E

(
r,

1

F − 1

)
+ N

(2

E

(
r,

1

F − 1

)
+ NL

(
r,

1

F − 1

)
+ NL

(
r,

1

G− 1

)
+ N

(
r,

1

G− 1

)
≤ N(r, F ) + N (2

(
r,

1

F

)
+ N (2

(
r,

1

G

)
+ 2NL

(
r,

1

F − 1

)
+ NL

(
r,

1

G− 1

)
+ N

(2

E

(
r,

1

G− 1

)
+ NL

(
r,

1

G− 1

)
+ N

(
r,

1

G− 1

)
+ N0

(
r,

1

F ′

)
+ N0

(
r,

1

G′

)
+ S(r, f)

≤ N(r, F ) + 2N

(
r,

1

F ′

)
+ N

(
r,

1

G′

)
+ T (r, G) + S(r, f)

≤ 4N(r, F ) + 2N2

(
r,

1

F

)
+ N2

(
r,

1

G

)
+ T (r, G) + S(r, f).

As same as above, by the second fundamental theorem, we can obtain

T (r, F ) + T (r, G) ≤ 6N(r, F ) + 3N2

(
r,

1

F

)
+ 2N2

(
r,

1

G

)
+ T (r, G) + S(r, f),

so

T (r, F ) ≤ 6N(r, F ) + 3N2

(
r,

1

F

)
+ 2N2

(
r,

1

G

)
+ S(r, f),
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i.e.

T (r, f) ≤ 6N(r, f) + 3N2

(
r,

1

f

)
+ 2N2

(
r,

1

f (k)

)
+ S(r, f).

By Lemma 2.1 forp = 2 we have

T (r, f) ≤ (6 + 2k)N(r, f) + 5N2+k

(
r,

1

f

)
+ S(r, f),

so
(6 + 2k)Θ(∞, f) + 5δ2+k(0, f) ≤ 2k + 10.

This contradicts with (1.6). Now the proof has been completed.
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