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ABSTRACT. The general problem in this paper is minimizing &g H )-norm of suitable affine
mappings fromB(H) to C;(H), using convex and differential analysis (Gateaux derivative) as
well as input from operator theory. The mappings considered generalize the so-called elementary
operators and in particular the generalized derivations, which are of great interest by themselves.
The main results obtained characterize global minima in terms of (Banach space) orthogonality,
and constitute an interesting combination of infinite-dimensional differential analysis, convex
analysis, operator theory and duality.
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1. INTRODUCTION

SupposeB = B(H) is the algebra of bounded linear operators on the complex infinite
dimensional separable Hilbert spaék and letT € B be compact: then [13] we write

s1(T) > so(T) > --- > 0 for the “singular values” of, i.e. the eigenvalues ¢T'| = (7772,
counted according to multiplicity and arranged in decreasing ordér.<fp < oo we define
the Schattep-classC, = Cp(H) as the set of those compatte B with finite p-norm

[e.e] P 1
TN, = { D_si(T) | = @rlTP)» < oo;
j=1
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2 S. MECHERI

heretr denotes the trace functional. Tha$s = C,(H) is the trace class}, = Cy(H) is the
Hilbert-Schmidt class. We writ€',, = C,(H) for the compact operators, with
1Tl = 51(T) = sup |Tf]
IFlI=1
the usual operator norm @f.
If V' is a Banach space then a mappjhigV” — C is said to be “Gateaux differentiable” at a
pointa € V if the limit
o1
lim =~ (f(a+t2) = f(a))
exists for each point € V. If this applies to the nornf = |||, thena € V is said to be a
smooth point, and the functiond} f = Re(D,) is [13] sublinear, with

[Dall =15 Dy = |lal| = =Da(—a).

For elements:, b of a Banach spack&’, we say that is orthogonal toa, writtenb L a,

provided
||la|| = dist(a,Cb),

such that the line + Cb is tangential to the ball of cent@rand radius|a||; whenV = H is
a Hilbert space this agrees with the usual inner produdt) = 0. Thus wherb L a then the
expression|a + Ab|| has a global minimum whekh =0 € C.

In this paper we show how such a global minimum can be detected by the sign of the Gateaux
derivative, and apply it to range-kernel orthogonality for certain kinds of elementary operators.

2. GLOBAL MINIMA

Our main result characterises certain kinds of global minima in terms of the Gateaux deriva-
tive of a norm:

Theorem 2.1.1f ¢ : V — V is linear anda € V then the mapping

(2.1) z = flat o)l (V—R)
has a global minimum &t < V' if and only if
(2.2) Vo eV, Dayom(z) > 0.
Proof. Necessity follows from the linearity @f. Conversely withl, = D ),
la+ @)l = —L(—a —¢(b)) + L{p(z) — ¢(b)) < L(a + ¢(x)) < [la+ o(z)].

O

It is well known that this holds for ak € V' = C,(H), since [7]C, is always uniformly
convex; specifically, witth = u|a| the polar decomposition
D,(z) = HaH;(p*l) tr (JafP"'ua*),  z € C,.

This fails when eithep = 1 or p = co. The norm[[2] Gateaux differentiable @t£ a € C,(H)
if and only if eithera or a* is injective, with fora = ulal

D,(z) = Retr(u*z) if a one one,

D,(z) = Retr(ux) if a® one one.
We now offer a characterization of the global minimum of a mag- ||a,(z)|| derived from a

linear mapy : C; — € which is adjointable in the sense that there exjsts ¢, — C for
which

Va,y € Cy,  tr(ze(y)) = tr(e*(2)y).
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This is certainly the case for the elementary operafrs= L, o R, induced bya,b € B™:
By = Eqe e
Theorem 2.2. A necessary and sufficient condition for + ¢(z)|| to have a global minimum
at a smooth poink € C;(H), with polar decomposition + ¢(b) = ula + ¢(b)|, is that
u* € ker(¢").
Proof. Assume thatla + ¢(z)|| has a global minimum o6, atb. Then

(2.3) Dayp)(p(z)) = 0
forall z € . That is,
Re{tr(u*¢(x))} >0, Vze .
Let f ® g, be the rank one operator defineddy- (v, f) g, wheref, g are arbitrary vectors in
the Hilbert spacd?. Takex = f ® g, since the map satisfies[(2]2) one has

tr(u*e(z)) = tr(e"(u")z).
Then [2.3) is equivalent tBe{tr(¢*(u*)z)} > 0, for all z € C4, or equivalently
Re(¢*(u")g, f) 20, Vf.g€H.
If we choosef = ¢ such that| f|| = 1, we get

(2.4) Re (¢*(u") f, f) = 0.
Note that the set
(@) f ) < 1l =1}

is the numerical range @f*(u*) oni/ which is a convex set and its closure is a closed convex
set. By [2.4) it must contain one value of positive real part, under all rotation around the origin,
it must contain the origin, and we get a vecfoe H such that{p*(u*)f, f) < €, wheree is
positive. Since is arbitrary, we gety*(u*) f, f) = 0. Thusyp*(u*) = 0, i.e.,u* € ker ¢*.

Conversely, ifu* € ker ¢*, it is easily seen (using the same arguments above) that

Re{tr(u*¢(z))} >0, Vze Cy.
By this we get[(2.3). O
3. RANGE-KERNEL ORTHOGONALITY

Anderson|[[1] showed that for normal operatars V = B = B(H) on a Hilbert spacé’
then
ar = ra = |z + ay — yal| > ||z :
the range of the derivatiod), : y — ay — ya is orthogonal to its kernel. This result has been
generalized [4, 12, 14] to more general elementary operators

Ea7b = La @) Rb = Zaj.ilﬁbj
j=1
both onV' = B(H) and on the Schatten idedls= C,(H). The Gatedux derivative was used
in [6]1 [511 [7J1 [BJ and I_lO]
We state our first corollary of Theordm R.2. Let= 4,,, whered,, : B(H) — B(H) is the
generalized derivation defined by, (z) = ax — xb.

Corollary 3.1. Lets be a smooth point iii';, and lets + ¢(s) have the polar decomposition
s+ ¢(s) = uls + @(s)]. Then||s + ¢(x)|,, has a global minimum oa'; at s, if and only fif,
u* € ker 0y 4.
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Proof. It is a direct consequence of Theorpm|2.2. O

This result may be reformulated in the following form where the global minimudoes
not appear. It characterizes the smooth peimt C; which is orthogonal to the range of the
generalized derivatiod, ;.

Theorem 3.2. Let s be a smooth point i, and lets + ¢(s) have the polar decomposition
s+ ¢(s) =uls+ p(s)]. Then

Is +e(@)lle, = Is +¢(s)lle,
forall x € C; if and only ifu* € ker 9y ,.

As a corollary of this theorem we have

Corollary 3.3. Lets € C Nker d,,, and lets + ¢(s) have the polar decompositiont ¢(s) =
uls + ¢(s)|. Then the two following assertions are equivalent:

Q) lIs + (ax — 2b)||o, = lIsll,, forall x € Ch.

(2) u* € ker dp 4.

Remark 3.4. We point out that, thanks to our general results given previously with more general
linear mapsp, Theorenj 32 and its Corollafy 3.3 are true for the nuclear opersigfz) =
axb— x and other more general classes of operatorsdhafike the elementary operatofs, ;.

Now by using Theorein 3.2, Corollgry 8.3, RemlarK 3.4 we obtain some interesting results see
also ([14]).
_Lets = uls| be the polar decomposition af wheres is a smooth point inC; and let
Ea,b = Ea,b —I.

Theorem 3.5.Letc = (¢4, ¢a, . . ., ¢,) be ann—tuple of operators iB(H) such thad " | ¢;c; <
L, Y% cfe; < 1landker E,. C ker E.-. Thens € ker E,. N C4, if and only if,

(3.1) ‘

s+ E@)| = sl
forall z € C).

Proof. Let s be in ker Eclcl. Then it follows from CoroIIarS applied for the elementary
operatorE, that

|5+ Eu@)|| = Dsil

for all z € Cy if and only if u* € ker E,. The hypothesiger £, C ker E,-, implies that
u* € ker E.«. Note thatu* € ker E. C ker E.- if and only if

(3.2) tr(u*E (x)) = 0 = tr(u* E. ().
Choosinge € C; to be the rank one operatgr g it follows from (3.2) that if (3.1) holds then

= tr ((Z cutc; — u*) (f® g))

= (Z iU cig, f) —(u"g, f) =0
=1
and

(Z Uiy, f> — (u"f,9) =0
=1
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forall f,g € H or

E.(u) =0 = E(u).
It is known that if 5" ;e < 1,327, cie; < 1andE.(s) = 0 = E’(s), then the eigenspaces
corresponding to distinct non-zero eigenvalues of the compact positive oqefateduce each

¢; see ([4, Theorem 8]) and ([14, Lemma 2.3]). In particylarcommutes with each; for all
1 <14 < n.Hencel[(3.1L) holds if and only if,

E.(s)=0= E*(s).
[
Theorem 3.6.Leta = (ay,as9,...,a,),b = (by,bs,...,b,) ben—tuples of operators iB(H)

such that . . . .
=1 =1 =1 =1

andker Ea’b g ker Ea*,b*‘
Thens € ker E,, N C4, if and only if,
s+ Eus@)]| = Dsll,
forall z € C,.

Proof. It suffices to take the Hilbert spadé & H, and operators

a0 10t 10
“=lo n 0 ool "Tloo

and apply Theorein 3.5. O
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