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Abstract

We give a new simpler proof along with a generalization for the inequality of Yao
and lyer [10] arising in bioequivalence studies and by using a nonparametric
approach we also discuss an extension of the individual bioequivalence setting
to the case where the data are not necessarily normally distributed.
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Bioequivalence testing is required when trying to get the approval for manu-
facturing and selling of a generic drug having mainly the same properties with
a (more expensive) reference (brand-name) drug. Establishing bioequivalence
saves the generic drug manufacturer from performing expensive clinical trials
to demonstrate the quality of his product. Two drugs are considered bioequiv-
alent if they are absorbed into the blood and become active at about the same
rate and c_oncentratlon. Bioequivalent drugs are supposed to provide the same A Note on an Individual
therapeutlc effect. Bioequivalence Setting
For explaining the notions and notations we use, we recall the problem set-
ting in [10] for the individual bioequivalence. Thus, the amount of the chemical
absorbed by a patient’s bloodstream when using a reference drug is a random
variable X, which has meam; and standard deviationz. The correspond- Title Page
ing variable for the same patient when using the generic drug has meand Contents
standard deviation;. Thetherapeutic windovef a patient is defined to be the
interval in which must lie the concentration of the chemical in the bloodstream, S D
in order for the drug to be classified as beneficial for that patient. Usually, < >
the therapeutic window is assumed to be an interval centered at theypean
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. ) . Go Back
namely the rangéur — zog, ur + zog). The drug will be uneffective if the orac
amount absorbed in the bloodstream is too low and it could cause severe side Close
effects if too much of the chemical substance is absorbed. Quit

Denoting b and py the probabilities that the subject will have benefit
9 DYpr pr b ) Page 3 of 21

from using drugR, respectivelyl’, the regulatory agency might approve the
marketing of drugl” provided thatt > ~, wherevy is about 1 or even larger.
. . Pr . . J. Ineq. Pure and Appl. Math. 7(3) Art. 100, 2006
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tity of interest for the approval procedure will be .~ g—i

Usually, to derive this quantity the assumption thatand 7 have normal
distributions is made, though it is well known that in practice this is rarely the
case. Under this assumption, Yao and lyei jhave shown that

(I)(MR-FZUR—MT ) _ (I)(#R—ZUR—#T )

. pr . o o
1.1 inf — = inf L L
(1.1) >0 pp  2>0 O(z) — P(—2)
{ ORV 2T <MT—[LR)} »
= min , A Note on an Individual
ar Bioequivalence Setting

whereg and® are respectively the probability density function and the cumu- & Stieserand . surulesed

lative density function of a standard normal variable.

Thus, the approval of manufacturing the generic dfumay be granted if Title Page
from the statistical analysis of experimental data it can be proven that Contents
ORV 2T Hr — KR 4 dd
1.2 o (M1t 20
or or < 4
Alternatively to (L.2), a more flexible approval criterion can be used, namely Go Back
one of the type Close
(1.3) U(Z,) >0, Quit
Page 4 of 21

for some large enough given boutid whereZz, := {z > 0 : 2 > 4} and
¢ is for instance the Lebesgue measure. We WI|| discuss in the next sections

J. Ineq. Pure and Appl. Math. 7(3) Art. 100, 2006
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For more information about individual bioequivalence sde[[/], [€], [4],
[5], [6] and the references therein.

In this paper we give a simpler proof and a generalization of the inequal-
ity of Yao and lyer and we also give a nonparametric extension of the above
bioequivalence setting.

For the sake of clarity, we put all our proofs in the Appendix.
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The main result of Yao and lyer in.{] was the proof of the following inequal-
ity:

(=) — o(—=+) . V21 s
2.1) B2 = B(—z) {1’ ¢ (E)} ’

forall z > 0, u € R\{0} ando € (0, 00)\{1}; this inequality comes fromi(1)
after some changes of notations.

As in [1(], observe that it is enough to treat the case 0. Here we will
prove the following generalization:

Proposition 2.1. In the above settings, we have:

@) If o > 1, then

D(2) — D(—2) ‘ (2) — ®(—2
S 1 Iy S 2%
€ 20° — — —_— - 2%
o 6 o?
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(i) If o € (0,1) then

D) — () [ VEr oy | 2T - (=)
B(z) —b(—z) = "n {1’ ¢ (E)} B(z) — B(—2)
2.2) > min {1, @d) (g) } . Y2>0, V>0,

wherey(o) := oy/2In 2.
This result is based on Lemn%a2, generalising Lemma 3 in.[], (which

was the most difficult part of the proof therein) and on Lemrasand 2.4
below.

Lemma 2.2. The functions — F(o) := &(Z42) -

@(*Z*T“(")) is strictly
decreasing ort0, 1), with (o) as above.

Lemma 2.3. For everyo > 0, o # 1, we have:
O (2) - (=) 1 1 1* .

2.3 c o’ —min<1,— — [1—-min{1, = e T

(2.3) B(2) = B(—2) mm{ ’0}>60 mln{ ,0} z%e

1 ) 1 _ 22
+ — — min 1’ — (& 202 > O, \V/Z > 0
g g

The following lemma generalises Lemma 1 and Lemma 4 it |

S
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Lemma 2.4.

(2 —pu1) — P(—2 — ) : ()2 (2)?
2.4 > min 17 e 2[(:“‘1) (/‘2) }
(2:4) D(z — o) — P(—2z — o) { }

Vz >0, uy, o € R, py # po.
Remark 1. Replacingz with Z, 11, by £t and i, by £2 then

e for u; > us > 0 One has

Q) e () {1, e—é[(@f—wf)"’]} -3[(8) - (2)7] Biosquivalence Setting
®(55) -0 (%)

g g

C. Surulescu and N. Surulescu

thus the function

Title Page
L l(%)z Z— U _ —Z— U
(0,00) 5 = Balp) := e [(I) ( o ) ¢ ( o Contents
is increasing, i.e. Lemma 1 in.[] is obtained; 44 (44
e for po > py > 0 one has < >
D) — p(=2=t) Go Back
= — 5 > L
P(=2) — o(—=£2) Close
thus the function Quit
_ PV Page 8 of 21
(0,003 0 Baly = (21 ) -0 (22
g g
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Remark 2. Sufficient conditions forl(3) to be satisfied can be easily derived

upon using forr > 1 the monotonicity of the function— = e (increasing
on (0,+/2), decreasing ory/2, 00)) and for0 < o < 1 the fact that

ez 5, ) 22 ()

B(z) = B(— - B(2) = B(—2)
. Va2 oy | @(2) — ()
> amm{l, T¢ (;)} W, Vz >0

and this term can be minorated by applying Lenitria
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Consider now that the random variabl®s T from the Introduction have con-
tinuous univariate distributions, with the densitigs, respectivelyfr, which

are not necessarily Gaussian, and assume that we correspondingly have the in-
dependent observations;, . . ., x,,, respectivelyt,, ..., t,. Then fx and fr

can be estimated by using the classical nonparametric estimators:

R 1 " €T — T;
- . K
fX(f) mhX - ( hX )

m m

A Note on an Individual
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and .
A 1 t—t; Title Page
) nhy i ( ha, ) ’ Contents
whereK is a kernel2X andh! are the bandwidths (with the usual properties: < >
hX — 0, kI — 0 for m,n — oo; mhX — 0, nh? — oo for m,n — oo and,
of course X andh! have to be chosen in practice by a corresponding criterion, < >
see P]). Go Back
With the above notations, the fractions of interest for bioequivalence studies Close
are .
. Quit
f fT(t)dt Page 10 of 21
(3.1) br _ R(z) := £E7%
Pr pat 2R J. Ineq. Pure and Appl. Math. 7(3) Art. 100, 2006
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HRTZ20R
[ fr(t)dt

~ D ._ HR—Z0R
~ R(z) := prev— , 2z >0,

f fx(z)dx

HR—Z0R

and for the approval procedure it will be important to find the quantity of in-
terestinf,-, R(z), but this is clearly more difficult than for the case presented
in the previous section and an analytic treatment is hardly possible. Even when
considering the Gaussian kernel, the available nonlinear optimization proce-
dures are surprisingly very time consuming. However, a great (and also easy
to implement) simplification can be achieved when using one of the following
kernels (see e.g.?]):

A Note on an Individual
Bioequivalence Setting

C. Surulescu and N. Surulescu

. Title Page
e the rectangular kerneK (u) := sy (_1.1)(u);
g (1) = 3 () Contents
e the triangular kernelf (u) := (1 — |u|)x(-1,1)(u); % N
e the Epanechnikov kerneK (u) := 3(1 — u?)x(—1,1)(u); < >
e the triangle kernel# (u) := (1 — |u|)x(—1,1)(w); Go Back
e the double Epanechnikov kernét:(u) := 3|u[(1 — |ul)x(—1,1)(u). Close
Moreover, the procedure can also be used for finding the largest therapeu- Quit
tic window under which the fraction of interest exceeds some given positive Page 11 of 21
constanty. Since all kernels above are supported(efi, 1), then the global
minimum can be found in the following way: 3. Ineq, Pure and Appl. Math. 7(3) Art, 100, 2006
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e constructA?+ := AT N (0, ), where

Y

" ti—hl - ti +hl —
AT;:U{_ nHr bty =

OR OR

)

OR OR

ti—hz:—ﬂR _ti‘{'hg—,uR}‘

X+ . AX
o constructAm ti= Am N (O, 00)1 where A Note on an Individual

Bioequivalence Setting

AX — LmJ {_xj - h% —UR T+ hfg — KR C. Surulescu and N. Surulescu
m ° \ O_R ) O_R Y
7=1

T — hi —pr T+ hnX@ —ur) Title Page

OR ’ OR ’ Contents
. , <4< 44

e if K is not the rectangular kernel, then construgt,, . as the set con-

stituted by the critical points aR(z) on the union of the subintervals of < 4

R whereR is differentiable (which in this case are roots of some poly- Go Back

nomials, thus easy to be handled by the compute#; i the rectangular
kernel, setd7. .., = 0.

e denoted := AT JASH U AT jeri-

Close
Quit
Page 12 of 21

Then we have:
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Proposition 3.1. With the notations above and witti being one of the kernels
enumerated before,

n MRTZ20R
Ay S K ()
(s) = — > it { R(onne). iy A=) RA)
thZ f K( )d

i=lugp—20R

wherez,,., = max{|(| : ¢ € A},

- mhX Z K (
hr% R(z) = h;” Z;f for the continuous kernels abave
z— n n Z K <;LR :m)

=1

and

- A(Z) ) mh Z:Z:l [K+ (uR —t; ) LK (NRnt )]
L S [ () < (o)

with the notationg<’, (§) := lim ¢ K (t), respectivelyi{_(§) := lim; ~ K (t).

Remark 3. If K is one of the kernels presented above, then for eash) and

A Note on an Individual
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for the rectangular kernel,

Title Page
Contents
44 44
< | 2
Go Back
Close
Quit
Page 13 of 21

using an algorithm similar to the one described above one can easily determine
Z.,, in order to check the approval conditiof.().
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Simulation result: Figure 1 illustrates a simulation withm = 150, n = 160
for the case wher&X and 7 are normally distributed and the nonparametric

estimators are constructed with the Epanechnikov kernel. The continuous lines

represent?(z) and its minimum, which is 0.012; the lines of circles represent
R(z) and its minimum, which is 0.0088. This shows that the Gaussian case can
be well recovered with this nonparametric procedure.

[
)

L Ny Ry @ Py
)

o
I

Figure 1: The continuous line &8(z); the line of circles isk(z); the horizontal
lines are the corresponding minimums
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In this paper we gave a generalization and a simpler proof of the inequality
of Yao and lyer [ (] concerning an individual bioequivalence setting when the
data were supposed to be normally distributed. Our generalization can be used
to develop a more flexible approval criterion (of the tyfed)) for manufactur-

ing and selling a drug which is supposed to be bioequivalent with a reference
one. Finally, we extended these settings to the more general situation when
the data are not necessarily normally distributed, upon using the nonparamet- A Note on an Individual
ric estimation technique. This idea can also be useful in the context of global Bioequivalence Setting
nonlinear optimization problems.
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Proof of Lemma.2. Denotingf) := < € (1, c0), we have

o

o (Z_—“(O')> — P (_Z_T’V‘(Uv = O(20 — V2In0) — ®(—20 — V21 0).

Considerg : (1,00) — R, ¢(0) := ®(20 —v2Inf) — d(—20 —/21n6), VO >
1. Observe that

ron 1 B 20v2In0 — 1
g (0) = (Z Q\/ﬁ) ¢(z0 — V21In0) [20m+ + exp(—2z0Vv2In )]

> 0,

forall # > 1, because, := 20v/21nf > 0 and it is easy to see that

u—1
u+1

+e 2% >0, Yu > 0.

Proof of Lemm&.3. If ¢ > 1, we can write

‘D@_@(%Z) v B
B(2) — B(—2) +

9~
=)

DO =
VR
—
|
Qw| —_
N~
S
no
ml

[y
QL
5]

_

1
> —
o
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2

sincee(1752) > 1 ¢ %2(1 — 1), Vz € R\{0}. Further, from the decreasing
monotonicity ofz — e~ = on|0, z] deduce that

@(é)-@(%?)zé{égy—w—@+:%?(y—é)-§af}

and, since

D(2) — B(—2) < 2¢/2/7, Y2 >0

(2.9 is proved.

A Note on an Individual

For the case where € (0, 1) we have: Bioequivalence Setting
Cb(g) — CI)(_?Z) 1 9 q)(g) — (I)(Z) C. Surulescu and N. Surulescu
) —d(—2) () B(—2)
fﬁ PN Title Page
=1+2°2
<I>(z) _ <I>(—z) Contents
2
Loz (L 44 44
>1+2¢Ee%22(o )
®(z) — (-2 \ ’
1 22
>1+<——1> e 27, Vz > 0, ColEaes
o
) _ ) Close
upon using the same method as in the previous case. O out
ul

Proof of Lemma&.4. Let

Q) = B(z = 1) — B~z — puy)
— sl [Pz — pry) — B(—z — pra)], 2> 0. htpipamedvan

Page 17 of 21
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2 Liy2a,2 | €F e FH efh2 TR
oy ()2 422 _
Q (Z) /27]'6 2 2
2 1 2 2
— —al(m)*+= ][ h(z| — cosh
e 2 cosh(z|u1|) — cosh(z|pe|)], Vz > 0.
V2T

Now using the fact that the hyperbolic cosine is an increasing function on

(0,00), we have tha®)’(z) > 0if |u1| > |uz| @andQ’(z) < Oif |u1| < |p2]-
Thus, if 1| > |ue|, thenQ(z) > 0, Vz > 0, i.e. inequality R.4) is satisfied,
since the minimum therein s 2[(#1)*~(2)?],
If |11| < |u2|, then consider the function

G(p) = 0(z — p) = P(—2 — p)

and observe that it is decreasing ([@noo), since its derivative is

G'(p) = —\/%e_(z2+“2)/2[ez“ —e M <0, Vz>0,u>0.
Observing thaté () = G(—u), Yu € R, we have that (u2) = G(|us|) <
G(|m1]) = G(u1), which proves the inequality in this case. O

Proof of Propositior2.1. In the case (i) observe that we can write

; (M) - a(HH) B(2) - 9(F)
B(z) — () O(2) - 0(F) D) - d(~2)

A Note on an Individual
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Now apply LemmaR.4 for the first term in the right hand side and Lemha
for the other one.

In the case (ii), ifu € (0, (o)), then we have thaB, (1) > Bs(u(o)) (see
Lemma2.4and Remark). Further, use Lemm2.2to obtain the last inequality
in (2.2).

If u > p(o), thenoBy(u) > 0B (u(o)) (see again Lemm2a.4 and Remark
1). Then Lemma&.2implies that

oBi1(p(0)) F(o)

3(2) - 0(-2) D) -d(2)

which completes the proof. O

Proof of PropositiorB8.1. The proof follows observing that for each of the ker-
nels abovef%(z) becomes a rapport of polynomials on some finite intervals
dictated by the points ilX+ | J AT+, Thus, the problem reduces to charac-
terising the minimum of these fractional expressions on such corresponding
finite intervals, which in this particular case means to find the roots of the poly-
nomials at the numerator of the derivatives. It only remains to observe that

~ ~

lim, .o R(2) = R(Zmaz)- O
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