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ABSTRACT. Letp be a positive linear functional on the algebranck n complex matrices and
p, q be positive numbers such that+ . = 1. We prove that if for any pairi, B of positive
semi-definiten x n matrices the inequality

o(|4B]) < 24, #(BY)
p q

holds, thenp is a positive scalar multiple of the trace.
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In what follows, M, stands for the *-algebra of x n complex matricesM; stands for the
cone of positive semi-definite matricgsandq are positive numbers such th}gm é = 1. For
A € M,, |A|is understood as the modul4| = (A*A4)'/2,

T. Ando proved in[1] that for any paii, B € M,, there is a unitary/ € M,, such that

AP |B|?
s < AP 1B
p q
It follows immediately that for any paid, B € M; the following trace version of Young's
inequality holds:
Tr( AP Tr(B?
(|| < S | THBY
p q

The aim of this note is to show that the latter inequality characterizes the trace among the

positive linear functionals oMMm,,.

ISSN (electronic): 1443-5756

(© 2005 Victoria University. All rights reserved.

Supported by the Russian Foundation for Basic Research (grant no. 05-01-00799).
089-05


http://jipam.vu.edu.au/
mailto:Airat.Bikchentaev@ksu.ru
mailto:Oleg.Tikhonov@ksu.ru
http://www.ams.org/msc/

2 A.M. BIKCHENTAEV AND O.E. TIKHONOV

Theorem 1. Let ¢ be a positive linear functional oM, such that for any paitd, B € M
the inequality

B?)
q

1) (| AB)) < “”(;‘p> L A

holds. Thenp = k Tr for some nonnegative number

Proof. As is well known, every positive linear functionalon M,, can be represented in the
form ¢(-) = Tr(S,-) for someS, € M. Itis easily seen that without loss of generality
we can assume that, = diag(o,as,...,a,), and we have to prove that; = «; for all
i,j =1,...,n. Clearly, it suffices to prove that, = «,. Inequality [1) must hold, in particular,
for all matricesA = [a;;]7;—;, B = [by]} ;=1 in M} such thal) = a;; = by; if 3 < i < nor

3 < j < n. Thus the proof of the theorem reduces to the following lemma.

Lemma 2. Let S = diag (3 + 5,5 — s), where0 < s < 1. If for every pairA, B € M7 the
inequality

Tr(SAP) n Tr(SBY)

) Te(S |AB]) <
p q

holds, therns = 0.

Proof of Lemmﬂz Let0 <e < % 0= i — g2, Let us consider two projections
e Vo lte V6
! ( Ve le)’ ? V-

20 (14 2)V9
(1—2e)V6 26

|P,Py| = 2V/0P, = /1 — 422D,
SubstituteA = P, B = P, with a, 5 > 0 into (J) and perform the calculations. Then the
left hand side in[(2) becomes

Calculate| P, P, |:
PP = < ) ; PoP Py = 40P,

hence

afV1 — 4e? (% + 285)
and the right hand one becomes
aP (% — 2&?3) N Joxl (% + 285)
p q '

1
Now, takex = 1, § = (1532%) *. Then we obtain as an implication H (2):

1 1
51— des)a (1 + des)r /1 — 42 < 5 (1 —des),

which implies

3) (1—4e%)% <
By the Taylor formulas,
(1—4e2)5 =1—-2p +0(e?) =1+0(e) (¢ —0),

=1—-8ss+o0(e) (¢ —0).
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Since we have supposed that< s, the inequality ) can hold for alt € (0, %] only if

s =0. ]
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