# A GEOMETRIC INEQUALITY OF THE GENERALIZED ERDÖS-MORDELL TYPE 

YU-DONG WU, CHUN-LEI YU, AND ZHI-HUA ZHANG<br>Department of Mathematics<br>Zhejiang Xinchang High School<br>Shaoxing 312500, Zhejiang<br>People's Republic of China<br>yudong.wu@yahoo.com.cn<br>seetill@126.com

Department of Mathematics
Shili Senior High School in Zixing
Chenzhou 423400, Hunan
People's Republic of China
zxzh1234@163.com
Received 20 April, 2009; accepted 09 October, 2009
Communicated by S.S. Dragomir
Dedicated to Mr. Ting-Feng Dong on the occasion of his 55th birthday.

AbSTRACT. In this short note, we solve an interesting geometric inequality problem relating to two points in triangle posed by Liu [7], and also give two corollaries.

Key words and phrases: Geometric inequality, triangle, Erdös-Mordell inequality, Hayashi's inequality, Klamkin's inequality.
2000 Mathematics Subject Classification. Primary 51M16.

## 1. Introduction and Main Results

Let $P, Q$ be two arbitrary interior points in $\triangle A B C$, and let $a, b, c$ be the lengths of its sides, $S$ the area, $R$ the circumradius and $r$ the inradius, respectively. Denote by $R_{1}, R_{2}, R_{3}$ and $r_{1}$, $r_{2}, r_{3}$ the distances from $P$ to the vertices $A, B, C$ and the sides $B C, C A, A B$, respectively. For the interior point $Q$, define $D_{1}, D_{2}, D_{3}$ and $d_{1}, d_{2}, d_{3}$ similarly (see Figure 1.1).

The following well-known and elegant result (see [1, Theorem 12.13, pp.105])

$$
\begin{equation*}
R_{1}+R_{2}+R_{3} \geq 2\left(r_{1}+r_{2}+r_{3}\right) \tag{1.1}
\end{equation*}
$$

[^0]

Figure 1.1:
concerning $R_{i}$ and $r_{i}(i=1,2,3)$ is called the Erdös-Mordell inequality. Inequality (1.1) was generalized as follows [9, Theorem 15, pp. 318]:

$$
\begin{equation*}
R_{1} x^{2}+R_{2} y^{2}+R_{3} z^{2} \geq 2\left(r_{1} y z+r_{2} z x+r_{3} x y\right) \tag{1.2}
\end{equation*}
$$

for all $x, y, z \geq 0$.
And the special case $n=2$ of [9. Theorem 8, pp. 315-316] states that

$$
\begin{equation*}
\sqrt{R_{1} D_{1}}+\sqrt{R_{2} D_{2}}+\sqrt{R_{3} D_{3}} \geq 2\left(\sqrt{r_{1} d_{1}}+\sqrt{r_{2} d_{2}}+\sqrt{r_{3} d_{3}}\right) \tag{1.3}
\end{equation*}
$$

which also extends (1.1).
Recently, for all $x, y, z \geq 0$, J. Liu [8, Proposition 2] obtained

$$
\begin{equation*}
\sqrt{R_{1} D_{1}} x^{2}+\sqrt{R_{2} D_{2}} y^{2}+\sqrt{R_{3} D_{3}} z^{2} \geq 2\left(\sqrt{r_{1} d_{1}} y z+\sqrt{r_{2} d_{2}} z x+\sqrt{r_{3} d_{3}} x y\right) \tag{1.4}
\end{equation*}
$$

which generalizes inequality (1.3).
In 2008, J. Liu [7] posed the following interesting geometric inequality problem.
Problem 1.1. For a triangle $A B C$ and two arbitrary interior points $P, Q$, prove or disprove that

$$
\begin{equation*}
R_{1} D_{1}+R_{2} D_{2}+R_{3} D_{3} \geq 4\left(r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}\right) \tag{1.5}
\end{equation*}
$$

We will solve Problem 1.1 in this paper.
From inequality (1.5), we get

$$
R_{1} D_{1}+R_{2} D_{2}+R_{3} D_{3} \geq 4\left(d_{2} d_{3}+d_{3} d_{1}+d_{1} d_{2}\right)
$$

Hence, we obtain the following result.
Corollary 1.1. For any $\triangle A B C$ and two interior points $P, Q$, we have

$$
\begin{equation*}
R_{1} D_{1}+R_{2} D_{2}+R_{3} D_{3} \geq 4 \sqrt{\left(r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}\right)\left(d_{2} d_{3}+d_{3} d_{1}+d_{1} d_{2}\right)} \tag{1.6}
\end{equation*}
$$

From inequality (1.5), and by making use of an inversion transformation [2] pp.48-49] (see also [3, pp.108-109]) in the triangle, we easily get the following result.

Corollary 1.2. For any $\triangle A B C$ and two interior points $P, Q$, we have

$$
\begin{equation*}
\frac{D_{1}}{R_{1} r_{1}}+\frac{D_{2}}{R_{2} r_{2}}+\frac{D_{3}}{R_{3} r_{3}} \geq 4 \cdot|P Q| \cdot\left(\frac{1}{R_{1} R_{2}}+\frac{1}{R_{2} R_{3}}+\frac{1}{R_{3} R_{1}}\right) . \tag{1.7}
\end{equation*}
$$

Remark 1. With one of Liu's theorems [8, Theorem 3], inequality (1.2) implies (1.4). However, we cannot determine whether inequalities (1.1) and (1.3) imply inequality (1.5) or inequality (1.6), or inequalities (1.5) and (1.3) imply inequality (1.1).

## 2. Preliminary Results

Lemma 2.1. We have for any $\triangle A B C$ and an arbitrary interior point $P$ that

$$
\begin{equation*}
a R_{1} \geq b r_{2}+c r_{3} \tag{2.1}
\end{equation*}
$$

Proof. Inequalities (2.1) - 2.3) directly follow from the obvious fact

$$
a r_{1}+b r_{2}+c r_{3}=2 S,
$$

the formulas of the altitude

$$
h_{a}=\frac{2 S}{a}, \quad h_{b}=\frac{2 S}{b}, \quad h_{c}=\frac{2 S}{c},
$$

and the evident inequalities [11]

$$
\begin{aligned}
& R_{1}+r_{1} \geq h_{a}, \\
& R_{2}+r_{2} \geq h_{b}, \\
& R_{3}+r_{3} \geq h_{c} .
\end{aligned}
$$

Lemma 2.2 ([4, 5]). For real numbers $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ such that

$$
x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1} \geq 0
$$

and

$$
y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{1} \geq 0,
$$

the inequality

$$
\begin{align*}
\left(y_{2}+y_{3}\right) x_{1}+\left(y_{3}+y_{1}\right) x_{2}+\left(y_{1}+\right. & \left.y_{2}\right) x_{3}  \tag{2.4}\\
& \geq 2 \sqrt{\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)\left(y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{1}\right)}
\end{align*}
$$

holds, with equality if and only if $\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}=\frac{x_{3}}{y_{3}}$.
Lemma 2.3 (Hayashi's inequality, [9, pp.297, 311]). For any $\triangle A B C$ and an arbitrary point $P$, we have

$$
\begin{equation*}
\frac{R_{1} R_{2}}{a b}+\frac{R_{2} R_{3}}{b c}+\frac{R_{3} R_{1}}{c a} \geq 1 \tag{2.5}
\end{equation*}
$$

Equality holds if and only if $P$ is the orthocenter of the acute triangle $A B C$ or one of the vertexes of triangle $A B C$.

Lemma 2.4 (Klamkin's inequality, [6, 10]). Let $A, B, C$ be the angles of $\triangle A B C$. For positive real numbers $u, v, w$, the inequality

$$
\begin{equation*}
u \sin A+v \sin B+w \sin C \leq \frac{1}{2}(u v+v w+w u) \sqrt{\frac{u+v+w}{u v w}} \tag{2.6}
\end{equation*}
$$

holds, with equality if and only if $u=v=w$ and $\triangle A B C$ is equilateral.
Lemma 2.5. For any $\triangle A B C$ and an arbitrary interior point $P$, we have

$$
\begin{equation*}
\sqrt{a b r_{1} r_{2}+b c r_{2} r_{3}+c a r_{3} r_{1}} \geq 2\left(r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}\right) \tag{2.7}
\end{equation*}
$$

Proof. Suppose that the actual barycentric coordinates of $P$ are $(x, y, z)$, Then $x=$ area of $\triangle P B C$, and therefore

$$
\frac{x}{x+y+z}=\frac{\operatorname{area}(\triangle P B C)}{S}=\frac{r_{1} a}{b c \sin A}=\frac{2 r_{1}}{b c} \cdot \frac{a}{2 \sin A}=\frac{2 R r_{1}}{b c} .
$$

Therefore

$$
\begin{aligned}
& r_{1}=\frac{b c}{2 R} \cdot \frac{x}{x+y+z}, \\
& r_{2}=\frac{c a}{2 R} \cdot \frac{y}{x+y+z}, \\
& r_{3}=\frac{a b}{2 R} \cdot \frac{z}{x+y+z} .
\end{aligned}
$$

Thus, inequality (2.7) is equivalent to

$$
\begin{equation*}
\frac{a b c}{2 R(x+y+z)} \sqrt{x y+y z+z x} \geq \frac{a b c}{R(x+y+z)^{2}}\left(\frac{a}{2 R} y z+\frac{b}{2 R} z x+\frac{c}{2 R} x y\right) \tag{2.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{1}{2}(x+y+z) \sqrt{x y+y z+z x} \geq y z \sin A+z x \sin B+x y \sin C . \tag{2.9}
\end{equation*}
$$

Inequality (2.9) follows from Lemma 2.4 by taking

$$
(u, v, w)=\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right) .
$$

This completes the proof of Lemma 2.5 .

## 3. Solution of Problem 1.1

Proof. In view of Lemmas $2.1-2.3$ and 2.5, we have that

$$
\begin{aligned}
R_{1} D_{1} & +R_{2} D_{2}+R_{3} D_{3} \\
& =a R_{1} \cdot \frac{D_{1}}{a}+b R_{2} \cdot \frac{D_{2}}{b}+c R_{3} \cdot \frac{D_{3}}{c} \\
& \geq\left(b r_{2}+c r_{3}\right) \cdot \frac{D_{1}}{a}+\left(c r_{3}+a r_{1}\right) \cdot \frac{D_{2}}{b}+\left(a r_{1}+b r_{2}\right) \cdot \frac{D_{3}}{c} \\
& \geq 2 \sqrt{\left(a b r_{1} r_{2}+b c r_{2} r_{3}+c a r_{3} r_{1}\right)\left(\frac{D_{1} D_{2}}{a b}+\frac{D_{2} D_{3}}{b c}+\frac{D_{3} D_{1}}{c a}\right)} \\
& \geq 2 \sqrt{a b r_{1} r_{2}+b c r_{2} r_{3}+c a r_{3} r_{1}} \\
& \geq 4\left(r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}\right) .
\end{aligned}
$$

The proof of inequality (1.5) is thus completed.

## References

[1] O. BOTTEMA, R.Ž. DJORDEVIĆ, R.R. JANIĆ, D.S. MITRINOVIĆ AND P.M. VASIĆ, Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969.
[2] H.S.M. COXETER and S.L. GREITZER, Geometry Revisited, Random House, New York, 1967.
[3] H.S.M. COXETER, Introduction to Geometry, 2nd ed., John Wiley \& Sons, New York, London, Sydney, Toronto, 1969.
[4] PHAM HUU DUC, An unexpectedly useful inequality, Mathematical Reflections, 3(1) (2008). [ONLINE:http://reflections.awesomemath.org/2008_1/unexpected_ineq. pdf].
[5] TRAN QUANG HUNG, On some geometric inequalities, Mathematical Reflections, 3(3) (2008). [ONLINE: http://reflections.awesomemath.org/2008_3/on_some_geo_ ineq.pdf.
[6] M.S. KLAMKIN, On a triangle inequality, Crux Mathematicorum, 10(5) (1984), 139-140.
[7] J. LIU, Nine sine inequality, manuscript, 2008, 66. (in Chinese)
[8] J. LIU, The composite theorem of ternary quadratic inequalities and its applications, RGMIA Res. Rep. Coll., 11(4) (2008), Art. 13. [ONLINE http://eureka.vu.edu.au/~rgmia/ v11n4/CTTQIApp.pdf].
[9] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND V. VOLENEC, Recent Advances in Geometric Inequalities, Acad. Publ., Dordrecht, Boston, London, 1989.
[10] W.-X. SHEN, Introduction to Simplices, Hunan Normal University Press, Changsha, 2000, 179. (in Chinese)
[11] G. STEENSHOLT, Note on an elementary property of triangles, Amer. Math. Monthly, 63 (1956), 571-572.


[^0]:    The authors would like to thank the anonymous referee for his very careful reading and some valuable suggestions. 107-09

