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ABSTRACT. In this short note, we solve an interesting geometric inequality problem relating to
two points in triangle posed by Liu [7], and also give two corollaries.
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1. I NTRODUCTION AND M AIN RESULTS

Let P , Q be two arbitrary interior points in4ABC, and leta, b, c be the lengths of its sides,

S the area,R the circumradius andr the inradius, respectively. Denote byR1, R2, R3 andr1,

r2, r3 the distances fromP to the verticesA, B, C and the sidesBC, CA, AB, respectively.

For the interior pointQ, defineD1, D2, D3 andd1, d2, d3 similarly (see Figure 1.1).

The following well-known and elegant result (see [1, Theorem 12.13, pp.105])

(1.1) R1 + R2 + R3 ≥ 2(r1 + r2 + r3)
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Figure 1.1:

concerningRi andri (i = 1, 2, 3) is called theErdös-Mordell inequality . Inequality (1.1) was

generalized as follows [9, Theorem 15, pp. 318]:

(1.2) R1x
2 + R2y

2 + R3z
2 ≥ 2(r1yz + r2zx + r3xy)

for all x, y, z ≥ 0.

And the special casen = 2 of [9, Theorem 8, pp. 315-316] states that

(1.3)
√

R1D1 +
√

R2D2 +
√

R3D3 ≥ 2
(√

r1d1 +
√

r2d2 +
√

r3d3

)
,

which also extends (1.1).

Recently, for allx, y, z ≥ 0, J. Liu [8, Proposition 2] obtained

(1.4)
√

R1D1x
2 +

√
R2D2y

2 +
√

R3D3z
2 ≥ 2

(√
r1d1yz +

√
r2d2zx +

√
r3d3xy

)
which generalizes inequality (1.3).

In 2008, J. Liu [7] posed the following interesting geometric inequality problem.

Problem 1.1. For a triangleABC and two arbitrary interior pointsP , Q, prove or disprove that

(1.5) R1D1 + R2D2 + R3D3 ≥ 4(r2r3 + r3r1 + r1r2).

We will solve Problem 1.1 in this paper.

From inequality (1.5), we get

R1D1 + R2D2 + R3D3 ≥ 4(d2d3 + d3d1 + d1d2).

Hence, we obtain the following result.

Corollary 1.1. For any4ABC and two interior pointsP , Q, we have

(1.6) R1D1 + R2D2 + R3D3 ≥ 4
√

(r2r3 + r3r1 + r1r2)(d2d3 + d3d1 + d1d2).

J. Inequal. Pure and Appl. Math., 10(4) (2009), Art. 106, 5 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


GENERALIZED ERDÖS-MORDELL TYPE GEOMETRIC INEQUALITY 3

From inequality (1.5), and by making use of an inversion transformation [2, pp.48-49] (see

also [3, pp.108-109]) in the triangle, we easily get the following result.

Corollary 1.2. For any4ABC and two interior pointsP , Q, we have

(1.7)
D1

R1r1

+
D2

R2r2

+
D3

R3r3

≥ 4 · |PQ| ·
(

1

R1R2

+
1

R2R3

+
1

R3R1

)
.

Remark 1. With one of Liu’s theorems [8, Theorem 3], inequality (1.2) implies (1.4). However,

we cannot determine whether inequalities (1.1) and (1.3) imply inequality (1.5) or inequality

(1.6), or inequalities (1.5) and (1.3) imply inequality (1.1).

2. PRELIMINARY RESULTS

Lemma 2.1. We have for any4ABC and an arbitrary interior pointP that

(2.1) aR1 ≥ br2 + cr3,

(2.2) bR2 ≥ cr3 + ar1,

(2.3) cR3 ≥ ar1 + br2.

Proof. Inequalities (2.1) – (2.3) directly follow from the obvious fact

ar1 + br2 + cr3 = 2S,

the formulas of the altitude

ha =
2S

a
, hb =

2S

b
, hc =

2S

c
,

and the evident inequalities [11]

R1 + r1 ≥ ha,

R2 + r2 ≥ hb,

R3 + r3 ≥ hc.

�

Lemma 2.2([4, 5]). For real numbersx1, x2, x3, y1, y2, y3 such that

x1x2 + x2x3 + x3x1 ≥ 0

and

y1y2 + y2y3 + y3y1 ≥ 0,

the inequality

(2.4) (y2 + y3)x1 + (y3 + y1)x2 + (y1 + y2)x3

≥ 2
√

(x1x2 + x2x3 + x3x1)(y1y2 + y2y3 + y3y1)
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holds, with equality if and only ifx1

y1
= x2

y2
= x3

y3
.

Lemma 2.3 (Hayashi’s inequality, [9, pp.297, 311]). For any4ABC and an arbitrary point

P , we have

(2.5)
R1R2

ab
+

R2R3

bc
+

R3R1

ca
≥ 1.

Equality holds if and only ifP is the orthocenter of the acute triangleABC or one of the

vertexes of triangleABC.

Lemma 2.4(Klamkin’s inequality, [6, 10]). LetA, B, C be the angles of4ABC. For positive

real numbersu, v, w, the inequality

(2.6) u sin A + v sin B + w sin C ≤ 1

2
(uv + vw + wu)

√
u + v + w

uvw

holds, with equality if and only ifu = v = w and4ABC is equilateral.

Lemma 2.5. For any4ABC and an arbitrary interior pointP , we have

(2.7)
√

abr1r2 + bcr2r3 + car3r1 ≥ 2(r2r3 + r3r1 + r1r2).

Proof. Suppose that the actual barycentric coordinates ofP are (x, y, z), Thenx = area of

4PBC, and therefore

x

x + y + z
=

area(4PBC)

S
=

r1a

bc sin A
=

2r1

bc
· a

2 sin A
=

2Rr1

bc
.

Therefore

r1 =
bc

2R
· x

x + y + z
,

r2 =
ca

2R
· y

x + y + z
,

r3 =
ab

2R
· z

x + y + z
.

Thus, inequality (2.7) is equivalent to

(2.8)
abc

2R(x + y + z)

√
xy + yz + zx ≥ abc

R(x + y + z)2

(
a

2R
yz +

b

2R
zx +

c

2R
xy

)
or

(2.9)
1

2
(x + y + z)

√
xy + yz + zx ≥ yz sin A + zx sin B + xy sin C.

Inequality (2.9) follows from Lemma 2.4 by taking

(u, v, w) =

(
1

x
,
1

y
,
1

z

)
.

This completes the proof of Lemma 2.5. �
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3. SOLUTION OF PROBLEM 1.1

Proof. In view of Lemmas 2.1 – 2.3 and 2.5, we have that

R1D1 + R2D2 + R3D3

= aR1 ·
D1

a
+ bR2 ·

D2

b
+ cR3 ·

D3

c

≥ (br2 + cr3) ·
D1

a
+ (cr3 + ar1) ·

D2

b
+ (ar1 + br2) ·

D3

c

≥ 2

√
(abr1r2 + bcr2r3 + car3r1)

(
D1D2

ab
+

D2D3

bc
+

D3D1

ca

)
≥ 2

√
abr1r2 + bcr2r3 + car3r1

≥ 4(r2r3 + r3r1 + r1r2).

The proof of inequality (1.5) is thus completed. �
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