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Abstract: In this short note, we solve an interesting geometric inequality problem relating
to two points in triangle posed by Liu [7], and also give two corollaries.
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1. Introduction and Main Results

Let P , Q be two arbitrary interior points in4ABC, and leta, b, c be the lengths of
its sides,S the area,R the circumradius andr the inradius, respectively. Denote by
R1, R2, R3 andr1, r2, r3 the distances fromP to the verticesA, B, C and the sides
BC, CA, AB, respectively. For the interior pointQ, defineD1, D2, D3 andd1, d2,
d3 similarly (see Figure1).

D1

D2

D3

R
1

R2 R
3

r
1

r
3

r
2

d
1

d3

d
2

G

H

F

M

N

L

A

B C

P

Q

Figure 1:

The following well-known and elegant result (see [1, Theorem 12.13, pp.105])

(1.1) R1 + R2 + R3 ≥ 2(r1 + r2 + r3)
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concerningRi andri (i = 1, 2, 3) is called theErdös-Mordell inequality . Inequal-
ity (1.1) was generalized as follows [9, Theorem 15, pp. 318]:

(1.2) R1x
2 + R2y

2 + R3z
2 ≥ 2(r1yz + r2zx + r3xy)

for all x, y, z ≥ 0.
And the special casen = 2 of [9, Theorem 8, pp. 315-316] states that

(1.3)
√

R1D1 +
√

R2D2 +
√

R3D3 ≥ 2
(√

r1d1 +
√

r2d2 +
√

r3d3

)
,

which also extends (1.1).
Recently, for allx, y, z ≥ 0, J. Liu [8, Proposition 2] obtained

(1.4)
√

R1D1x
2 +

√
R2D2y

2 +
√

R3D3z
2

≥ 2
(√

r1d1yz +
√

r2d2zx +
√

r3d3xy
)

which generalizes inequality (1.3).
In 2008, J. Liu [7] posed the following interesting geometric inequality problem.

Problem 1. For a triangleABC and two arbitrary interior pointsP , Q, prove or
disprove that

(1.5) R1D1 + R2D2 + R3D3 ≥ 4(r2r3 + r3r1 + r1r2).

We will solve Problem1 in this paper.
From inequality (1.5), we get

R1D1 + R2D2 + R3D3 ≥ 4(d2d3 + d3d1 + d1d2).

Hence, we obtain the following result.
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Corollary 1.1. For any4ABC and two interior pointsP , Q, we have

(1.6) R1D1 + R2D2 + R3D3 ≥ 4
√

(r2r3 + r3r1 + r1r2)(d2d3 + d3d1 + d1d2).

From inequality (1.5), and by making use of an inversion transformation [2,
pp.48-49] (see also [3, pp.108-109]) in the triangle, we easily get the following re-
sult.

Corollary 1.2. For any4ABC and two interior pointsP , Q, we have

(1.7)
D1

R1r1

+
D2

R2r2

+
D3

R3r3

≥ 4 · |PQ| ·
(

1

R1R2

+
1

R2R3

+
1

R3R1

)
.

Remark1. With one of Liu’s theorems [8, Theorem 3], inequality (1.2) implies (1.4).
However, we cannot determine whether inequalities (1.1) and (1.3) imply inequality
(1.5) or inequality (1.6), or inequalities (1.5) and (1.3) imply inequality (1.1).
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2. Preliminary Results

Lemma 2.1. We have for any4ABC and an arbitrary interior pointP that

(2.1) aR1 ≥ br2 + cr3,

(2.2) bR2 ≥ cr3 + ar1,

(2.3) cR3 ≥ ar1 + br2.

Proof. Inequalities (2.1) – (2.3) directly follow from the obvious fact

ar1 + br2 + cr3 = 2S,

the formulas of the altitude

ha =
2S

a
, hb =

2S

b
, hc =

2S

c
,

and the evident inequalities [11]

R1 + r1 ≥ ha,

R2 + r2 ≥ hb,

R3 + r3 ≥ hc.
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Lemma 2.2 ([4, 5]). For real numbersx1, x2, x3, y1, y2, y3 such that

x1x2 + x2x3 + x3x1 ≥ 0

and
y1y2 + y2y3 + y3y1 ≥ 0,

the inequality

(2.4) (y2 + y3)x1 + (y3 + y1)x2 + (y1 + y2)x3

≥ 2
√

(x1x2 + x2x3 + x3x1)(y1y2 + y2y3 + y3y1)

holds, with equality if and only ifx1

y1
= x2

y2
= x3

y3
.

Lemma 2.3 (Hayashi’s inequality, [9, pp.297, 311]).For any4ABC and an ar-
bitrary pointP , we have

(2.5)
R1R2

ab
+

R2R3

bc
+

R3R1

ca
≥ 1.

Equality holds if and only ifP is the orthocenter of the acute triangleABC or one
of the vertexes of triangleABC.

Lemma 2.4 (Klamkin’s inequality, [6, 10]). LetA, B, C be the angles of4ABC.
For positive real numbersu, v, w, the inequality

(2.6) u sin A + v sin B + w sin C ≤ 1

2
(uv + vw + wu)

√
u + v + w

uvw

holds, with equality if and only ifu = v = w and4ABC is equilateral.

Lemma 2.5. For any4ABC and an arbitrary interior pointP , we have

(2.7)
√

abr1r2 + bcr2r3 + car3r1 ≥ 2(r2r3 + r3r1 + r1r2).
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Proof. Suppose that the actual barycentric coordinates ofP are(x, y, z), Thenx =
area of4PBC, and therefore

x

x + y + z
=

area(4PBC)

S
=

r1a

bc sin A
=

2r1

bc
· a

2 sin A
=

2Rr1

bc
.

Therefore

r1 =
bc

2R
· x

x + y + z
,

r2 =
ca

2R
· y

x + y + z
,

r3 =
ab

2R
· z

x + y + z
.

Thus, inequality (2.7) is equivalent to

(2.8)
abc

2R(x + y + z)

√
xy + yz + zx

≥ abc

R(x + y + z)2

(
a

2R
yz +

b

2R
zx +

c

2R
xy

)
or

(2.9)
1

2
(x + y + z)

√
xy + yz + zx ≥ yz sin A + zx sin B + xy sin C.

Inequality (2.9) follows from Lemma2.4by taking

(u, v, w) =

(
1

x
,
1

y
,
1

z

)
.

This completes the proof of Lemma2.5.
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3. Solution of Problem1

Proof. In view of Lemmas2.1– 2.3and2.5, we have that

R1D1 + R2D2 + R3D3

= aR1 ·
D1

a
+ bR2 ·

D2

b
+ cR3 ·

D3

c

≥ (br2 + cr3) ·
D1

a
+ (cr3 + ar1) ·

D2

b
+ (ar1 + br2) ·

D3

c

≥ 2

√
(abr1r2 + bcr2r3 + car3r1)

(
D1D2

ab
+

D2D3

bc
+

D3D1

ca

)
≥ 2

√
abr1r2 + bcr2r3 + car3r1

≥ 4(r2r3 + r3r1 + r1r2).

The proof of inequality (1.5) is thus completed.
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