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Abstract: In this short note, we solve an interesting geometric inequality problem relating Close

to two points in triangle posed by Li], and also give two corollaries.
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1. Introduction and Main Results

Let P, @ be two arbitrary interior points i ABC, and leta, b, c be the lengths of
its sides,S the areaR the circumradius and the inradius, respectively. Denote by
Ry, Ry, R andry, 1o, 73 the distances fron® to the verticesd, B, C and the sides
BC, CA, AB, respectively. For the interior poid?, defineD,, Dy, D3 andd,, ds,

ds similarly (see Figuré.). Erdos-Mordell Type
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Figure 1:
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(11) R1+R2+R3 Z 2(T1—|—T2+T3)
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concerningR; andr; (i = 1,2, 3) is called theErdés-Mordell inequality . Inequal-
ity (1.1) was generalized as follow8,[Theorem 15, pp. 318]:

(1.2) Ri2® 4+ Ryy® + Rsz? > 2(r1yz + roza + r3xy)

forall z,y,z > 0.
And the special case = 2 of [9, Theorem 8, pp. 315-316] states that

(1.3) V/RiD; + \/RoDy + \/R3D3 > 2 (\/T‘ldl +\/7ody + \/T3d3> ;

which also extendsl(1).
Recently, for allz, y, = > 0, J. Liu [8, Proposition 2] obtained

(14) vV R1D1132 + \V4 R2D2y2 + R3D3Z2
> 2 <\/r1d1yz + v/ rodezr + \/nggxy)

which generalizes inequality. (3).

In 2008, J. Liu [/] posed the following interesting geometric inequality problem.

Problem 1. For a triangle ABC' and two arbitrary interior pointsP, (), prove or
disprove that

(15) R1D1 + RQDQ + R3D3 Z 4(T27“3 + 3T + T17"2).

We will solve Problenil in this paper.
From inequality {.5), we get

RiDy + RyDy + RyDy > 4(dods + dydy + dyds).

Hence, we obtain the following result.
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Corollary 1.1. For any AABC and two interior pointsP, (), we have

(16) R1D1 + RQDQ + R3D3 Z 4\/(7’27’3 + RYAT + Tlrg)(dgdg + d3d1 + d1d2>.

From inequality (.5, and by making use of an inversion transformati@n [
pp.48-49] (see alsd[ pp.108-109]) in the triangle, we easily get the following re-
sult.

Corollary 1.2. For any AABC and two interior pointsP, (), we have

D, D, Ds 1 1 1
1.7 >4.|POQ)| - )
(3.7) Riry * Rars * Rars — PQ (RlRQ * RyR3 * R3R1)

Remarkl. With one of Liu’s theoremsd, Theorem 3], inequalityl(.2) implies (L.4).
However, we cannot determine whether inequalities)@nd (L.3) imply inequality
(1.5) or inequality (L.6), or inequalities {.5) and (L.3) imply inequality (L.1).
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2. Preliminary Results

Lemma 2.1. We have for anyA ABC' and an arbitrary interior pointP that

(2.1) aRy > bry + crs,
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Lemma 2.2 (i, 5]). For real numbersey, x5, x3, y1, ¥2, y3 such that
T1To + xox3 + 2371 > 0

and
Y1Y2 + Y2ys + ysy1 > 0,
the inequality

(2.4) (y2 +y3)w1 + (y3 + y1)z2 + (Y1 + y2)w3
> 2\/ (2122 + 223 + 371) (Y192 + Yoy + Y3y1)

holds, with equality if and only '?ﬁ = % = z—g

Lemma 2.3 (Hayashi’s inequality, P, pp.297, 311]).For any AABC and an ar-
bitrary point P, we have

RiRy RyR

1412 + 2413 + RBRl
ab bc ca

Equality holds if and only i is the orthocenter of the acute triangleBC or one

of the vertexes of triangld BC'

Lemma 2.4 (Klamkin’s inequality, [6, 10]). Let A, B, C be the angles o ABC.
For positive real numbers, v, w, the inequality

(2.5) > 1.

u+v+w

1
(2.6) usin A+ vsin B+ wsin C < —(uv + vw + wu)
2 uvw

holds, with equality if and only it = v = w and AABC'is equilateral.
Lemma 2.5. For any AABC and an arbitrary interior pointP, we have

(2.7) \/abrlrg + bergrs + carsry > 2(rars + 131 + 1179).
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Proof. Suppose that the actual barycentric coordinateB afe(x,y, z), Thenz =
area ofA PBC, and therefore

x _aredAPBC)  ra  2n a  2Rr
t4+y+z S ~ besinA be 2sinA - be
Therefore
r o= bC . z Erddés-Mordell Type

N 2 ’ Geometric Inequality
R Tt Y Tz Yu-Dong Wu, Chun-Lei Yu

ro — ﬁ . Yy and Zhi-Hua Zhang
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3. Solution of Problem 1

Proof. In view of Lemmas?.1—2.3and?2.5, we have that

RyDy + RyDs + R3Ds

D D D
=aR; - = + bRy =2 4+ cRy- =2
a b & Erdés-Mordell Type
D D D Geometric Inequality
> (b?’g —+ C?"g) it —+ (C?“3 + arl) 22 + (arl + er) .23 Yu-Dong Wu, Chun-Lei Yu
a b C and Zhi-Hua Zhang
DD DD DD vol. 10, iss. 4, art. 106, 2009
> 24 [ (abryry + berors + carsry) 172 72778 8
ab be ca
Title P.
> 2\/abr1r2 + berors + carsry e rage
> 4(7”27"3 +r3ry + 7“17“2). Contents
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