## A GEOMETRIC INEQUALITY OF THE GENERALIZED ERDÖS-MORDELL TYPE

ZHI-HUA ZHANG

Department of Mathematics
Shili Senior High School in Zixing
Chenzhou 423400, Hunan
People's Republic of China
EMail: zxzh1234@163.com

20 April, 2009
09 October, 2009
S.S. Dragomir

Primary 51M16.
Geometric inequality, triangle, Erdös-Mordell inequality, Hayashi's inequality, Klamkin's inequality.

In this short note, we solve an interesting geometric inequality problem relating to two points in triangle posed by Liu [7], and also give two corollaries.

Dedicated to Mr. Ting-Feng Dong on the occasion of his 55th birthday.
vol. 10, iss. 4, art. 106, 2009

Title Page
Contents


Page 1 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

## Contents

1 Introduction and Main Results 3
2 Preliminary Results 6
3 Solution of Problem 1 9

Erdös-Mordell Type Geometric Inequality Yu-Dong Wu, Chun-Lei Yu and Zhi-Hua Zhang
vol. 10, iss. 4, art. 106, 2009

Title Page
Contents

| $\mathbf{4}$ |  |
| :---: | :---: |
| $\mathbf{4}$ |  |
| Page 2 of 11 |  |
| Go Back |  |
| Full Screen |  |
| Close |  |

journal of inequalities in pure and applied mathematics
issn: 1443-575b

## 1. Introduction and Main Results

Let $P, Q$ be two arbitrary interior points in $\triangle A B C$, and let $a, b, c$ be the lengths of its sides, $S$ the area, $R$ the circumradius and $r$ the inradius, respectively. Denote by $R_{1}, R_{2}, R_{3}$ and $r_{1}, r_{2}, r_{3}$ the distances from $P$ to the vertices $A, B, C$ and the sides $B C, C A, A B$, respectively. For the interior point $Q$, define $D_{1}, D_{2}, D_{3}$ and $d_{1}, d_{2}$, $d_{3}$ similarly (see Figure 1).


Figure 1:
The following well-known and elegant result (see [1, Theorem 12.13, pp.105])

$$
\begin{equation*}
R_{1}+R_{2}+R_{3} \geq 2\left(r_{1}+r_{2}+r_{3}\right) \tag{1.1}
\end{equation*}
$$

Title Page
Contents

| $\mathbf{4}$ |  |
| :---: | :---: |
| $\mathbf{4}$ |  |
| Page 3 of 11 |  |
| Go Back |  |
| Full Screen |  |
| Close |  |

journal of inequalities in pure and applied mathematics
issn: l443-575b
concerning $R_{i}$ and $r_{i}(i=1,2,3)$ is called the Erdös-Mordell inequality. Inequality (1.1) was generalized as follows [9, Theorem 15, pp. 318]:

$$
\begin{equation*}
R_{1} x^{2}+R_{2} y^{2}+R_{3} z^{2} \geq 2\left(r_{1} y z+r_{2} z x+r_{3} x y\right) \tag{1.2}
\end{equation*}
$$

for all $x, y, z \geq 0$.
And the special case $n=2$ of [9, Theorem 8, pp. 315-316] states that

$$
\begin{equation*}
\sqrt{R_{1} D_{1}}+\sqrt{R_{2} D_{2}}+\sqrt{R_{3} D_{3}} \geq 2\left(\sqrt{r_{1} d_{1}}+\sqrt{r_{2} d_{2}}+\sqrt{r_{3} d_{3}}\right) \tag{1.3}
\end{equation*}
$$

which also extends (1.1).
Recently, for all $x, y, z \geq 0$, J. Liu [8, Proposition 2] obtained

$$
\begin{align*}
\sqrt{R_{1} D_{1}} x^{2}+\sqrt{R_{2} D_{2}} y^{2}+ & \sqrt{R_{3} D_{3}} z^{2}  \tag{1.4}\\
& \geq 2\left(\sqrt{r_{1} d_{1}} y z+\sqrt{r_{2} d_{2}} z x+\sqrt{r_{3} d_{3}} x y\right)
\end{align*}
$$

which generalizes inequality (1.3).
In 2008, J. Liu [7] posed the following interesting geometric inequality problem.
Problem 1. For a triangle $A B C$ and two arbitrary interior points $P, Q$, prove or disprove that

$$
\begin{equation*}
R_{1} D_{1}+R_{2} D_{2}+R_{3} D_{3} \geq 4\left(r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}\right) \tag{1.5}
\end{equation*}
$$

Erdös-Mordell Type Geometric Inequality Yu-Dong Wu, Chun-Lei Yu and Zhi-Hua Zhang vol. 10, iss. 4, art. 106, 2009

Title Page
Contents


Page 4 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Hence, we obtain the following result.

Corollary 1.1. For any $\triangle A B C$ and two interior points $P, Q$, we have
(1.6) $\quad R_{1} D_{1}+R_{2} D_{2}+R_{3} D_{3} \geq 4 \sqrt{\left(r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}\right)\left(d_{2} d_{3}+d_{3} d_{1}+d_{1} d_{2}\right)}$.

From inequality (1.5), and by making use of an inversion transformation [2, pp.48-49] (see also [3, pp.108-109]) in the triangle, we easily get the following result.

Corollary 1.2. For any $\triangle A B C$ and two interior points $P, Q$, we have

$$
\begin{equation*}
\frac{D_{1}}{R_{1} r_{1}}+\frac{D_{2}}{R_{2} r_{2}}+\frac{D_{3}}{R_{3} r_{3}} \geq 4 \cdot|P Q| \cdot\left(\frac{1}{R_{1} R_{2}}+\frac{1}{R_{2} R_{3}}+\frac{1}{R_{3} R_{1}}\right) . \tag{1.7}
\end{equation*}
$$

Remark 1. With one of Liu's theorems [8, Theorem 3], inequality (1.2) implies (1.4). However, we cannot determine whether inequalities (1.1) and (1.3) imply inequality (1.5) or inequality (1.6), or inequalities (1.5) and (1.3) imply inequality (1.1).

Title Page
Contents

| $\mathbf{4}$ |  |
| :---: | :---: |
| $\mathbf{4}$ |  |
| Page 5 of 11 |  |
| Go Back |  |
| Full Screen |  |
| Close |  |

journal of inequalities in pure and applied mathematics
issn: 1443-575b

## 2. Preliminary Results

Lemma 2.1. We have for any $\triangle A B C$ and an arbitrary interior point $P$ that

$$
\begin{equation*}
a R_{1} \geq b r_{2}+c r_{3} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
b R_{2} \geq c r_{3}+a r_{1} \tag{2.2}
\end{equation*}
$$

## Erdös-Mordell Type

 Geometric Inequality Yu-Dong Wu, Chun-Lei Yu and Zhi-Hua Zhang vol. 10, iss. 4, art. 106, 2009
## Title Page

Contents


Page 6 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Lemma 2.2 ([4, 5]). For real numbers $x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}$ such that

$$
x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1} \geq 0
$$

and

$$
y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{1} \geq 0
$$

the inequality

$$
\begin{align*}
\left(y_{2}+y_{3}\right) x_{1}+\left(y_{3}+y_{1}\right) x_{2} & +\left(y_{1}+y_{2}\right) x_{3}  \tag{2.4}\\
& \geq 2 \sqrt{\left(x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}\right)\left(y_{1} y_{2}+y_{2} y_{3}+y_{3} y_{1}\right)}
\end{align*}
$$

Erdös-Mordell Type Geometric Inequality Yu-Dong Wu, Chun-Lei Yu and Zhi-Hua Zhang
vol. 10, iss. 4, art. 106, 2009
holds, with equality if and only if $\frac{x_{1}}{y_{1}}=\frac{x_{2}}{y_{2}}=\frac{x_{3}}{y_{3}}$.
Lemma 2.3 (Hayashi's inequality, [9, pp.297, 311]). For any $\triangle A B C$ and an arbitrary point $P$, we have

$$
\begin{equation*}
\frac{R_{1} R_{2}}{a b}+\frac{R_{2} R_{3}}{b c}+\frac{R_{3} R_{1}}{c a} \geq 1 \tag{2.5}
\end{equation*}
$$

Equality holds if and only if $P$ is the orthocenter of the acute triangle $A B C$ or one of the vertexes of triangle $A B C$.
Lemma 2.4 (Klamkin's inequality, $[\mathbf{6 , 1 0 ]}$ ). Let $A, B, C$ be the angles of $\triangle A B C$. For positive real numbers $u, v, w$, the inequality

$$
\begin{equation*}
u \sin A+v \sin B+w \sin C \leq \frac{1}{2}(u v+v w+w u) \sqrt{\frac{u+v+w}{u v w}} \tag{2.6}
\end{equation*}
$$

holds, with equality if and only if $u=v=w$ and $\triangle A B C$ is equilateral.
Lemma 2.5. For any $\triangle A B C$ and an arbitrary interior point $P$, we have

$$
\begin{equation*}
\sqrt{a b r_{1} r_{2}+b c r_{2} r_{3}+c a r_{3} r_{1}} \geq 2\left(r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}\right) \tag{2.7}
\end{equation*}
$$

Title Page
Contents


Page 7 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. Suppose that the actual barycentric coordinates of $P$ are $(x, y, z)$, Then $x=$ area of $\triangle P B C$, and therefore

$$
\frac{x}{x+y+z}=\frac{\operatorname{area}(\triangle P B C)}{S}=\frac{r_{1} a}{b c \sin A}=\frac{2 r_{1}}{b c} \cdot \frac{a}{2 \sin A}=\frac{2 R r_{1}}{b c} .
$$

Therefore

$$
\begin{aligned}
r_{1} & =\frac{b c}{2 R} \cdot \frac{x}{x+y+z} \\
r_{2} & =\frac{c a}{2 R} \cdot \frac{y}{x+y+z} \\
r_{3} & =\frac{a b}{2 R} \cdot \frac{z}{x+y+z}
\end{aligned}
$$

Thus, inequality (2.7) is equivalent to

$$
\begin{align*}
& \frac{a b c}{2 R(x+y+z)} \sqrt{x y+y z+z x}  \tag{2.8}\\
& \geq \frac{a b c}{R(x+y+z)^{2}}\left(\frac{a}{2 R} y z+\frac{b}{2 R} z x+\frac{c}{2 R} x y\right)
\end{align*}
$$

or
(2.9) $\frac{1}{2}(x+y+z) \sqrt{x y+y z+z x} \geq y z \sin A+z x \sin B+x y \sin C$.

## Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
This completes the proof of Lemma 2.5.

## Erdös-Mordell Type

 Geometric Inequality Yu-Dong Wu, Chun-Lei Yu and Zhi-Hua Zhang vol. 10, iss. 4, art. 106, 2009Title Page
Contents

Page 8 of 11

$$
(u, v, w)=\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z}\right)
$$

Inequality (2.9) follows from Lemma 2.4 by taking

## 3. Solution of Problem 1

Proof. In view of Lemmas 2.1 - 2.3 and 2.5, we have that

$$
\begin{aligned}
R_{1} D_{1} & +R_{2} D_{2}+R_{3} D_{3} \\
& =a R_{1} \cdot \frac{D_{1}}{a}+b R_{2} \cdot \frac{D_{2}}{b}+c R_{3} \cdot \frac{D_{3}}{c} \\
& \geq\left(b r_{2}+c r_{3}\right) \cdot \frac{D_{1}}{a}+\left(c r_{3}+a r_{1}\right) \cdot \frac{D_{2}}{b}+\left(a r_{1}+b r_{2}\right) \cdot \frac{D_{3}}{c} \\
& \geq 2 \sqrt{\left(a b r_{1} r_{2}+b c r_{2} r_{3}+c a r_{3} r_{1}\right)\left(\frac{D_{1} D_{2}}{a b}+\frac{D_{2} D_{3}}{b c}+\frac{D_{3} D_{1}}{c a}\right)} \\
& \geq 2 \sqrt{a b r_{1} r_{2}+b c r_{2} r_{3}+c a r_{3} r_{1}} \\
& \geq 4\left(r_{2} r_{3}+r_{3} r_{1}+r_{1} r_{2}\right) .
\end{aligned}
$$

The proof of inequality (1.5) is thus completed.

Erdös-Mordell Type Geometric Inequality Yu-Dong Wu, Chun-Lei Yu and Zhi-Hua Zhang vol. 10, iss. 4, art. 106, 2009

Title Page
Contents


Page 9 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

## References

[1] O. BOTTEMA, R.Ž. DJORDEVIĆ, R.R. JANIĆ, D.S. MITRINOVIĆ AND P.M. VASIĆ, Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969.
[2] H.S.M. COXETER AND S.L. GREITZER, Geometry Revisited, Random House, New York, 1967.
[3] H.S.M. COXETER, Introduction to Geometry, 2nd ed., John Wiley \& Sons, New York, London, Sydney, Toronto, 1969.
[4] PHAM HUU DUC, An unexpectedly useful inequality, Mathematical Reflections, 3(1) (2008). [ONLINE: http://reflections.awesomemath. org/2008_1/unexpected_ineq.pdf].
[5] TRAN QUANG HUNG, On some geometric inequalities, Mathematical Reflections, 3(3) (2008). [ONLINE: http://reflections. awesomemath.org/2008_3/on_some_geo_ineq.pdf].
[6] M.S. KLAMKIN, On a triangle inequality, Crux Mathematicorum, 10(5) (1984), 139-140.
[7] J. LIU, Nine sine inequality, manuscript, 2008, 66. (in Chinese)
[8] J. LIU, The composite theorem of ternary quadratic inequalities and its applications, RGMIA Res. Rep. Coll., 11(4) (2008), Art. 13. [ONLINE http: //eureka.vu.edu.au/~rgmia/v11n4/CTTQIApp.pdf].
[9] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND V. VOLENEC, Recent Advances in Geometric Inequalities, Acad. Publ., Dordrecht, Boston, London, 1989.

Erdös-Mordell Type Geometric Inequality Yu-Dong Wu, Chun-Lei Yu and Zhi-Hua Zhang
vol. 10, iss. 4, art. 106, 2009

Title Page
Contents


Page 10 of 11

```
Go Back
```

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b
[10] W.-X. SHEN, Introduction to Simplices, Hunan Normal University Press, Changsha, 2000, 179. (in Chinese)
[11] G. STEENSHOLT, Note on an elementary property of triangles, Amer. Math. Monthly, 63 (1956), 571-572.

Erdös-Mordell Type Geometric Inequality Yu-Dong Wu, Chun-Lei Yu and Zhi-Hua Zhang
vol. 10, iss. 4, art. 106, 2009

Title Page
Contents


Page 11 of 11
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

