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ABSTRACT. Based on the Euler-Maclaurin formula in the spirit of Wang [1] and sparked by
Wang and Han [2], we obtain a generalL2 inequality of Grüss type, which includes some existing
results as special cases.
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1. I NTRODUCTION

Inequalities of the Grüss type have been the subject renewed research interest in the past few
years. The monograph [3] has had much impact on the stream of current research in this area.

Inequalities of the Grüss type can be found in e.g. [4, 5, 6, 7, 8, 9, 10] and references therein.
Recently, N. Ujevíc in [10] proved the following two theorems among others.

Theorem 1.1. Let f : [0, 1] → R be an absolutely continuous function, whose derivatives
f ′ ∈ L2[0, 1]. Then,

(1.1)

∣∣∣∣16
[
f(0) + 4f

(
1

2

)
+ f(1)

]
−

∫ 1

0

f(t)dt

∣∣∣∣ ≤ 1

6

√
σ(f ′),
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whereσ(·) is defined by

(1.2) σ(f) = ‖f‖2
2 −

(∫ 1

0

f(t)dt

)2

.

Inequality (1.1) is sharp in the sense that the constant1
6

cannot be replaced by a smaller one.

Theorem 1.2.Under the assumptions of Theorem 1.1, for anyx ∈ [0, 1], we have

(1.3)

∣∣∣∣f(x)−
(

x− 1

2

)
[f(1)− f(0)]−

∫ 1

0

f(t)dt

∣∣∣∣ ≤ 1

2
√

3

√
σ(f ′).

Inequality (1.3) is sharp in the sense that the constant1/(2
√

3) cannot be replaced by a smaller
one.

Based on the Euler-Maclaurin formula in the spirit of Wang [1] and sparked by Wang and
Han [2], we obtain a generalL2 inequality of the Grüss type under very natural assumptions.
Our results improve and generalize some existing observations.

2. A L2 VERSION OF GRÜSSTYPE I NEQUALITY

In what follows, letf be defined on[0, 1],

||f ||2 =

(∫ 1

0

f(t)dt

)2

andL2[0, 1] = {f | ||f ||2 < ∞}.
Some more notations and the following lemmas are needed before we proceed. In the rest of

the paper, a standing assumption is thatx ∈ [0, 1], n is a positive integer and0 = t0 < t1 <
· · · < tn = 1 is an equidistant subdivision of the interval[0, 1] such thatti+1 − ti = h =
1/n, i = 0, 1, . . . , n− 1.

We start with the following lemma.

Lemma 2.1 ([1], cf. [11]). Let f : [0, 1] → R be such that its(k − 1)th derivativef (k−1)

is absolutely continuous for some positive integerk. Then for anyx ∈ [0, 1], we have the
Euler-Maclaurin formula

(2.1)
∫ 1

0

f(t)dt = Qk(f, x) + Ek(Qk; f, x),

where

(2.2)

Qk(f, x) = h
n−1∑
i=0

f(ti + xh)−
k∑

ν=1

f (ν−1)(1)− f (ν−1)(0)

ν!
Bν(x)hν ,

Ek(Qk; f, x) =
hk

k!

∫ 1

0

B̃k(x− nt)f (k)(t)dt,

andB̃k(t) := Bk(t− btc) whereBk(t) is thekth Bernoulli polynomial.

Lemma 2.2. For anyx, y ∈ [0, 1], we have

(2.3)
∫ 1

0

B̃k(x− t)B̃k(y − t)dt =
(−1)k−1(k!)2

(2k)!
B̃2k(x− y).
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Proof. We use a technique of [2]. Settingn = 1, t0 = 0 and

f(t) =
(−1)kk!

(2k)!
B̃2k(x− t),

in (2.1), then we have
f (k)(t) = B̃k(x− t).

By the periodicity ofB̃2k(t) and the property ofB2k(t) (see e.g. [12]), we can easily get

(2.4)
∫ 1

0

B̃2k(x− t)dt =

∫ 1

0

B2k(t)dt = 0.

Then we have

(2.5)
∫ 1

0

f(t)dt = 0.

From (2.2) and the periodicity of this special functionf , we have for anyy ∈ [0, 1]

(2.6)

Qk(f, y) = f(y)−
k∑

ν=1

f (ν−1)(1)− f (ν−1)(0)

ν!
Bν(y) = f(y),

Ek(Qk; f, y) =
1

k!

∫ 1

0

B̃k(y − t)B̃k(x− t)dt.

Now from (2.1), (2.5) and (2.6), (2.3) follows. �

By Lemmas 2.1 and 2.2, we have

Corollary 2.3. Suppose the conditions in Lemma 2.1 hold, then we have

(2.7) Ek(Qk; f, x) ≤ hkck(2)‖f (k)‖2,

where

ck(2) =

√
(−1)k−1

(2k)!
B2k.

Remark 2.4. From Corollary 2.3, the right side of (2.7) is independent ofx.

Lemma 2.5([1], cf. [11]). Suppose that the following quadrature rule

(2.8)
∫ 1

0

f(t)dt =
m−1∑
j=0

pjf(xj)

is exact for any polynomial of degree≤ k− 1 for some positive integerk. Letf : [0, 1] → R be
such that its(k − 1)th derivativef (k−1) is absolutely continuous. Then we have

(2.9)
∫ 1

0

f(t)dt = Q(f) + Ek(Q; f),

where

(2.10)

Q(f) = h

n−1∑
i=0

m−1∑
j=0

pjf(ti + xjh),

Ek(Q; f) =
hk

k!

∫ 1

0

gk(nt)f (k)(t)dt,
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and

(2.11) gk(t) =
m−1∑
j=0

pj(B̃k(xj − t)−Bk(xj)).

By the Hölder inequality, we have

(2.12) |Ek(Q; f)| ≤ ck(2)||f (k)||2,
where

(2.13) ck(2) =
hk

k!
||gk||2.

Remark 2.6. It is easy to see that (2.12) is sharp in the sense that the constantck(2) cannot be
replaced by a smaller one.

We are now able to find an explicit expression forck(2).

Theorem 2.7. Suppose that the quadrature rule(2.3) is exact for any polynomial of degree
≤ k − 1 for some positive integerk. Then the following equality is valid.

(2.14) ck(2) =
hk

k!

{
m−1∑
i,j=0

pipj

(
(−1)k−1(k!)2

(2k)!
B̃2k(xi − xj) + Bk(xi)Bk(xj)

)} 1
2

.

Proof. A straightforward computation on using (2.4) and Lemma 2.2 gives

‖gk‖2
2 =

m−1∑
i,j=0

pipj

∫ 1

0

(
B̃k(xi − t)−Bk(xi)

) (
B̃k(xj − t)−Bk(xj))

)
dt

=
m−1∑
i,j=0

pipj

∫ 1

0

(
B̃k(xi − t)B̃k(xj − t) + Bk(xi)Bk(xj)

)
dt

=
(−1)k−1(k!)2

(2k)!

m−1∑
i,j=0

pipjB̃2k(xi − xj) +
1

k!

m−1∑
i,j=0

pipjBk(xi)Bk(xj),

which in combination with (2.13) proves the conclusion as desired. �

3. EXAMPLES

Example 3.1. For the Trapezoid rule,m = 2, x0 = 0, x1 = 1, p0 = p1 = 1/2. It is well known
that the Trapezoid rule has degree of precision 1 (k = 2). A direct calculation using (2.14)
yields

c1(2) =
h

2
√

3
, c2(2) =

h2

2
√

30
.

If f is absolutely continuous, then we can obtain

(3.1)

∣∣∣∣12 [f(0) + f(1)]−
∫ 1

0

f(t)dt

∣∣∣∣ ≤ 1

2
√

3
||f ′||2.

Replacingf(t) by f(t)− t
∫ 1

0
f(t)dt in (3.1), we get

(3.2)

∣∣∣∣12 [f(0) + f(1)]−
∫ 1

0

f(t)dt

∣∣∣∣ ≤ 1

2
√

3

√
σ(f ′),

since the Trapezoid rule has degree of precision1.
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Example 3.2.Consider the following quadrature rule

(3.3)
∫ 1

0

f(t)dt =

(
x− 1

2

)
f(0) + f(x)−

(
x− 1

2

)
f(1), x ∈ [0, 1],

which has degree of precision1 (k = 2). A direct calculation using Corollary 2.3 gives

c1(2) =
1

2
√

3
,

from which and the similar argument of Example 3.1, follows (1.3).

Example 3.3. For Simpson’s rule,m = 3, x0 = 0, x1 = 1/2, x2 = 1, p0 = p2 = 1/6,
p1 = 2/3. It is well known that Simpson’s rule has degree of precision3 (k = 4). A direct
calculation leads to the following.

c1(2) =
h

6
; c2(2) =

h2

12
√

30
;

c3(2) =
h3

48
√

105
; c4(2) =

h4

576
√

14
.

The inequality (2.12) in combination withc1(2) = h/6 yields∣∣∣∣16
[
f(0) + 4f

(
1

2

)
+ f(1)

]
−

∫ 1

0

f(t)dt

∣∣∣∣ ≤ 1

6
||f ′||2.

Again replacingf(t) by f(t)− t
∫ 1

0
f(t)dt in the above inequality, we easily get Theorem 1.1.
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