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Abstract

Based on the Euler-Maclaurin formula in the spirit of Wang [1] and sparked
by Wang and Han [2], we obtain a general L, inequality of Griiss type, which
includes some existing results as special cases.

2000 Mathematics Subject Classification: Primary 65D32; Secondary 41A55.
Key words: Euler-Maclaurin formula, Error estimate, Gruss type inequality.

This work is supported by NNSF (Grant No. 10275054) and Hangzhou Normal Col-
lege (Grant No. 2004 XNZ 03 and No. 112).

Contents
1 Introduction. . . ... ... i 3
2 A Lyversion of Griss Type Inequality .. ............... 5
3 Examples. ... e 10

References

A General Ly Inequality of
Gruss Type

Hongmin Ren and Shijun Yang

Title Page

44 44
< >
Go Back
Close
Quit
Page 2 of 13

J. Ineq. Pure and Appl. Math. 7(2) Art. 54, 2006
http://jipam.vu.edu.au


http://jipam.vu.edu.au/
mailto:
mailto:rhm@mail.hzrtvu.edu.cn
mailto:
mailto:sjyang@hztc.edu.cn
http://jipam.vu.edu.au/
http://www.ams.org/msc/

Inequalities of the Griss type have been the subject renewed research interest
in the past few years. The monograph lias had much impact on the stream
of current research in this area.

Inequalities of the Grlss type can be found in e4.5[ 6, 7, 8, 9, 10] and
references therein.

Recently, N. Ujewt in [1(] proved the following two theorems among others.

Theorem 1.1.Let f : [0, 1] — R be an absolutely continuous function, whose A General Ls Inequality of
derivativesf’ € L0, 1]. Then, Clnls Wwip=
1 1 Hongmin Ren and Shijun Yang
@y [t o+ (3)+sw] - [ row| < gvam
whereo (-) is defined by IS PR
1 2 Contents

(12 o) =1~ ([ o) <! »
Inequality (L.1) is sharp in the sense that the const%ntannot be replaced by 4 >
a smaller one. Go Back
Theorem 1.2. Under the assumptions of Theordni, for anyx € [0, 1], we Close
have

1 1 1 Quit
@9 |10~ (o= 3) U - g1 [ roi| < ;= vawm pago 30113
Inequality (L.3) is sharp in the sense that the constap{2+/3) cannot be re- e e ==

placed by a smaller one. http://jipam.vu.edu.au
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Based on the Euler-Maclaurin formula in the spirit of Wanpdnd sparked
by Wang and Han’i], we obtain a generdl, inequality of the Gruss type under
very natural assumptions. Our results improve and generalize some existing
observations.
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In what follows, letf be defined on0, 1],

I = ([ f(t>dt)2

and Ly [0, 1] = {f] [|f]|2 < oo}
Some more notations and the following lemmas are needed before we pro-
ceed. In the rest of the paper, a standing assumption isctiaf0, 1], » is a _
- . . .y Co . A General L Inequality of
positive integer and = ¢, < t; < --- < t, = 1is an equidistant subdivision Griiss Type
of the interval[0, 1] such thatt,;; —t; =h=1/n,i=0,1,...,n— 1.
We start with the following lemma.

Lemma 2.1 ([l], cf. [11]). Let f : [0,1] — R be such that itk — 1)th

Hongmin Ren and Shijun Yang

derivative f(*~1 is absolutely continuous for some positive inteelhen for Title Page
anyz € [0, 1], we have the Euler-Maclaurin formula Contents
1
44 44
2.) | 0t = Quis) + EQui ),
0 < | 2
where
_— Eo 1)( ) f( 1)( ) Go Back
_ f ) = 0 v [
) —hZf(ti+xh) —Z ” B, (z)h", Close
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and By (t) := By, (t — |t]) whereB,(t) is thekth Bernoulli polynomial. http://jipam.vu.edu.au
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Lemma 2.2. For anyz,y € [0, 1], we have

1 " “1)E1(END2 o
@y [ Ble-oBt-on =T B -y
0 (2k)!
Proof. We use a technique of]. Settingn =1, ¢, = 0 and
—1)*k! ~
£ = R B @ -,

(2k)!
in (2.1), then we have B
FP () = Bi(x — ).

By the periodicity ofB,,(¢) and the property of3.,(t) (see e.g. 17]), we can
easily get

2.4 sz—dleg dt = 0.
(2.4) /O k( 1t)1t/O R(H)dt =0
Then we have

(2.5) /01 f(t)dt = 0.

From (2.2) and the periodicity of this special functigh) we have for any €
[0,1]

F (v—-1) _ £(v-1)
Qulf) =) -3 7 (1)V!f (0)

v=1

B,(y) = f(v),
(2.6)

1 [t~ ~
Bi(Qui ) = o /0 Buly — ) Balo — t)dt.
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Now from (2.1), (2.5 and @.6), (2.3) follows. O
By Lemmas2.1and2.2, we have

Corollary 2.3. Suppose the conditions in Lemd hold, then we have

2.7) Ee(Qx; frx) < hEer(2)]1f P2,
where
_ e
cx(2) = (k)] Ba.

Remark 1. From Corollary 2.3, the right side of2.7) is independent of.

Lemma 2.4 ([1], cf. [11]). Suppose that the following quadrature rule

(2.8) / 0 P f(x5)

is exact for any polynomial of degree k& — 1 for some positive integek.
Let f : [0,1] — R be such that itk — 1)th derivative f*~) is absolutely
continuous. Then we have

(2.9) / 0

(f) + Eu(Q; f),
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where

§<f):h : pjf(ti+xjh)7
(2.10) o
A
Bi@if) = 5 [ a9 oy
and
(2.11) o) = 3" oy (Bale; — 1) — Buly)

By the Hdolder inequality, we have

(2.12) |EL(Q; 1) <e2)|If®)]]2,
where

hk
(2.13) ar(2) = 77 llgrll2-

Remark 2. It is easy to see thgP.12 is sharp in the sense that the constant
¢,(2) cannot be replaced by a smaller one.

We are now able to find an explicit expression#p(2).
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Theorem 2.5. Suppose that the quadrature rul2.3) is exact for any polyno-
mial of degree< k — 1 for some positive integér. Then the following equality
is valid.

(2.14) 7,(2)

-

{szp]( —1) 1)(]{') ng( —xj)—i—Bk(xi)Bk(xj))}.

4,j=0

A General Ly Inequality of

Proof. A straightforward computation on using.{) and Lemma2.2 gives Cles e

lgxll = Z plp]/ ( —t) — Bk(xz)) <§k($] —t) — Bk(xj))) dt
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B Title Page
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4,7=0 <« b
m—1 m—1
(~1) (k) 1 « |
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Example 3.1. For the Trapezoid rulem = 2,20 = 0,21 = 1,pp = p; = 1/2.
It is well known that the Trapezoid rule has degree of precisioh £(2). A
direct calculation using2.14) yields

6@ = w) -
c = —, = —.
! 23 21/30
If fis absolutely continuous, then we can obtain

A General Ly Inequality of
Gruss Type

@) 30O+l [ roa) < ik

Replacingf(t) by f(t) — tfo t)dt in (3.1), we get

Hongmin Ren and Shijun Yang

) Title Page
1 1
(3.2) 3O+ £ = [ s < /o), Contents
since the Trapezoid rule has degree of precision « dd
Example 3.2. Consider the following quadrature rule < 4
! 1 1 Go Back
@3 [ s =(a-3) 10+ 1@ - (2= 3) 10, 2l .
which has degree of precisian(k = 2). A direct calculation using Corollary Quit
2.3gives 1 Page 10 of 13
C1 (2) = —F,
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from which and the similar argument of Examplé, follows(1.3). http://jipam.vu.edu.au
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Example 3.3.For Simpson’'sruleyn = 3,20 = 0,21 = 1/2, 29 = 1,pg = pa =
1/6, p1 = 2/3. Itis well known that Simpson’s rule has degree of precision
(k = 4). A direct calculation leads to the following.

h B2
2)=—=; ©(2)= ;
a2 =5 2@ 121/30
B3 B
(2) = — . &(2) = — .
3(2) 48/105 12) 576y/14

The inequality(2.12) in combination witte, (2) = h/6 yields

i [roear (5) +s00] - [ ] < i

Again replacingf (t) by f(t —tfo
Theoreml. 1l

t)dt in the above inequality, we easily get
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