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Abstract

In this paper we establish some results concerning the partial sums of mero-
morphic p-valent starlike functions and meromorphic p-valent convex functions.
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1. Introduction
Let

∑
(p) (p ∈ N = {1, 2, . . . }) denote the class of functions of the form

(1.1) f(z) =
1

zp
+

∞∑
k=1

ak+p−1z
k+p−1 (p ∈ N)

which are analytic andp−valent in the punctured discU∗ = {z : 0 < |z| < 1}.
A function f(z) in

∑
(p) is said to belong to

∑∗(p, α), the class of meromor-
phicallyp-valent starlike functions of orderα (0 ≤ α < p), if and only if

(1.2) −Re

{
zf ′(z)

f(z)

}
> α (0 ≤ α < p; z ∈ U = U∗ ∪ {0}).

A function f(z) in
∑

(p) is said to belong to
∑

k(p, α) , the class ofp−valent
convex functions of orderα(0 ≤ α < p), if and only if

(1.3) −Re

{
1 +

zf ′′(z)

f ′(z)

}
> α (0 ≤ α < p; z ∈ U).

It follows from (1.2) and(1.3) that

(1.4) f(z) ∈
∑

k
(p, α) ⇐⇒ −zf ′(z)

p
∈

∑∗
(p, α).

The classes
∑∗(p, α)and

∑
k(p, α) were studied by Kumar and Shukla [6]. A

sufficient condition for a functionf(z) of the form (1.1) to be in
∑∗(p, α) is

that

(1.5)
∞∑

k=1

(k + p− 1 + α) |ak+p−1| ≤ (p− α)
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and to be in
∑

k(p, α) is that

(1.6)
∞∑

k=1

(
k + p− 1

p

)
(k + p− 1 + α) |ak+p−1| ≤ (p− α).

Further, we note that these sufficient conditions are also necessary for functions
of the form (1.1) with positive or negative coefficients (see [1], [2], [5], [9], [14]
and [15]). Recently , Silverman [11] determined sharp lower bounds on the
real part of the quotients between the normalized starlike or convex functions
and their sequences of partial sums. Also, Li and Owa [7] obtained the sharp
radius which for the normalized univalent functions inU , the partial sums of the
well known Libera integral operator [8] imply starlikeness. Further , for various
other interesting developments concerning partial sums of analytic univalent
functions (see [3], [10], [12], [13] and [16]).

Recently , Cho and Owa [4] have investigated the ratio of a function of the
form (1.1) (with p = 1) to its sequence of partial sumsfn(z) = 1

z
+

∑n
k=1 akz

k

when the coefficients are sufficiently small to satisfy either condition (1.5) or
(1.6) with p = 1. Also Cho and Owa [4] have determined sharp lower bounds

for Re
{

f(z)
fn(z)

}
, Re

{
fn(z)
f(z)

}
, Re

{
f ′(z)
f ′n(z)

}
, andRe

{
f ′n(z)
f ′(z)

}
.

In this paper, applying methods used by Silverman [11] and Cho and Owa
[4], we will investigate the ratio of a function of the form (1.1) to its sequence
of partial sums

fn+p−1(z) =
1

zp
+

n+p−1∑
k=1

ak+p−1z
k+p−1

when the coefficients are sufficiently small to satisfy either condition(1.5) or
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(1.6). More precisely, we will determine sharp lower bounds forRe
{

f(z)
fn+p−1(z)

}
,

Re
{

fn+p−1(z)

f(z)

}
, Re

{
f ′(z)

f ′n+p−1(z)

}
, andRe

{
f ′n+p−1(z)

f ′(z)

}
.

In the sequel, we will make use of the well-known result thatRe
{

1+w(z)
1−w(z)

}
>

0 (z ∈ U) if and only if w(z) =
∑∞

k=1 ckz
k satisfies the inequality|w(z)| ≤

|z| . Unless otherwise stated, we will assume thatf is of the form (1.1) and its
sequence of partial sums is denoted by

fn+p−1(z) =
1

zp
+

n+p−1∑
k=1

ak+p−1z
k+p−1.
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2. Main Results
Theorem 2.1. If f of the form (1.1) satisfies condition(1.5), then

(2.1) Re

{
f(z)

fn+p−1(z)

}
≥ n + p− 1 + 2α

n + 2p− 1 + α
(z ∈ U).

The result is sharp for everyn andp, with extremal function

(2.2) f(z) =
1

zp
+

p− α

n + 2p− 1 + α
zn+2p−1 (n ≥ 0; p ∈ N).

Proof. We may write

n + 2p− 1 + α

p− α

[
f(z)

fn+p−1(z)
− n + p− 1 + 2α

n + 2p− 1 + α

]

=
1 +

∑n+p−1
k=1 ak+p−1z

k+2p−1 +
(

n+2p−1+α
p−α

) ∑∞
k=n+p ak+p−1z

k+2p−1

1 +
∑n+p−1

k=1 ak+p−1zk+2p−1

=
1 + A(z)

1 + B(z)
.

Set 1+A(z)
1+B(z)

= 1+w(z)
1−w(z)

, so thatw(z) = A(z)−B(z)
2+A(z)+B(z)

. Then

w(z) =

(
n+2p−1+α

p−α

) ∑∞
k=n+p ak+p−1z

k+2p−1

2 + 2
∑n+p−1

k=1 ak+p−1zk+2p−1 +
(

n+2p−1+α
p−α

) ∑∞
k=n+p ak+p−1zk+2p−1
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and

|w(z)| ≤

(
n+2p−1+α

p−α

) ∑∞
k=n+p |ak+p−1|

2− 2
∑n+p−1

k=1 |ak+p−1| −
(

n+2p−1+α
p−α

) ∑∞
k=n+p |ak+p−1|

.

Now |w(z)| ≤ 1 if and only if

2

(
n + 2p− 1 + α

p− α

) ∞∑
k=n+p

|ak+p−1| ≤ 2− 2

n+p−1∑
k=1

|ak+p−1| ,

which is equivalent to

(2.3)
n+p−1∑

k=1

|ak+p−1|+
(

n + 2p− 1 + α

p− α

) ∞∑
k=n+p

|ak+p−1| ≤ 1.

It suffices to show that the left hand side of(2.3) is bounded above by∑∞
k=1

(
k+p−1+α

p−α

)
|ak+p−1| , which is equivalent to

n+p−1∑
k=1

(
k + 2α− 1

p− α

)
|ak+p−1|+

∞∑
k=n+p

(
k − n− p

p− α

)
|ak+p−1| ≥ 0.

To see that the functionf given by(2.2) gives the sharp result, we observe for
z = reπi/(n+3p−1) that

f(z)

fn+p−1(z)
= 1 +

p− α

n + 2p− 1 + α
zn+3p−1 → 1− p− α

n + 2p− 1 + α

=
n + p− 1 + 2α

n + 2p− 1 + α
whenr → 1−.
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Therefore we complete the proof of Theorem2.1.

Theorem 2.2. If f of the form (1.1) satisfies condition (1.6), then

(2.4) Re

{
f(z)

fn+p−1(z)

}
≥ (n + 2p)(n + 2p− 2 + α) + (1− p)(1 + p− α)

(n + 2p− 1)(n + 2p− 1 + α)
(z ∈ U).

The result is sharp for everyn andp, with extremal function

(2.5) f(z) =
1

zp
+

p(p− α)

(n + 2p− 1)(n + 2p− 1 + α)
zn+2p−1 (n ≥ 0; p ∈ N).

Proof. We write

(n + 2p− 1)(n + 2p− 1 + α)

p(p− α)

×
[

f(z)

fn+p−1(z)
− (n + 2p)(n + 2p− 2 + α) + (1− p)(1 + p− α)

(n + 2p− 1)(n + 2p− 1 + α)

]

=

1 +
n+p−1∑

k=1

ak+p−1z
k+2p−1 + (n+2p−1)(n+2p−1+α)

p(p−α)

∞∑
k=n+p

ak+p−1z
k+2p−1

1 +
n+p−1∑

k=1

ak+p−1zk+2p−1

=
1 + w(z)

1− w(z)
,
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where

w(z) =

(n+2p−1)(n+2p−1+α)
p(p−α)

∞∑
k=n+p

ak+p−1z
k+2p−1

2 + 2
n+p−1∑

k=1

ak+p−1zk+2p−1 + (n+2p−1)(n+2p−1+α)
p(p−α)

∞∑
k=n+p

ak+p−1zk+2p−1

.

Now

|w(z)| ≤

(n+2p−1)(n+2p−1+α)
p(p−α)

∞∑
k=n+p

|ak+p−1|

2− 2
n+p−1∑

k=1

|ak+p−1| − (n+2p−1)(n+2p−1+α)
p(p−α)

∞∑
k=n+p

|ak+p−1|
≤ 1,

if

(2.6)
n+p−1∑

k=1

|ak+p−1|+
(n + 2p− 1)(n + 2p− 1 + α)

p(p− α)

∞∑
k=n+p

|ak+p−1| ≤ 1.

The left hand side of (2.6) is bounded above by

∞∑
k=1

(k + p− 1)(k + p− 1 + α)

p(p− α)
|ak+p−1|
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if

1

p(p− α)

{
n+p−1∑

k=1

[(k + p− 1)(k + p− 1 + α)− p(p− α)] |ak+p−1|

+
∞∑

k=n+p

[(k + p− 1)(k + p− 1 + α)

− (n + 2p− 1)(n + 2p− 1 + α)] |ak+p−1|

}
≥ 0,

and the proof is completed.

We next determine bounds forRe
{

fn+p−1(z)

f(z)

}
.

Theorem 2.3.

(a) If f of the form(1.1) satisfies condition(1.5), then

(2.7) Re

{
fn+p−1(z)

f(z)

}
≥ n + 2p− 1 + α

n + 3p− 1
(z ∈ U).

(b) If f of the form(1.1) satisfies condition(1.6), then

(2.8) Re

{
fn+p−1)(z)

f(z)

}
≥ (n + 2p− 1)(n + 2p− 1 + α)

(n + 2p− 1)(n + 2p)− n(1− α) + (1− p)(1− p− α)
(z ∈ U).
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Equalities hold in (a) and (b) for the functions given by(2.2) and (2.5),
respectively.

Proof. We prove (a). The proof of (b) is similar to (a) and will be omitted. We
write

(n + 2p− 1)

(p− α)

[
fn+p−1)(z)

f(z)
− n + 2p− 1 + α

n + 3p− 1

]

=
1 +

∑n+p−1
k=1 ak+p−1z

k+2p−1 −
(

n+2p−1+α
p−α

) ∑∞
k=n+p ak+p−1z

k+2p−1

1 +
∑∞

k=1 ak+p−1zk+2p−1

=
1 + w(z)

1− w(z)
,

where

|w(z)| ≤

(
n+3p−1

p−α

) ∑∞
k=n+p |ak+p−1|

2− 2
∑n+p−1

k=1 |ak+p−1| −
(

n+p−1+2α
p−α

) ∑∞
k=n+p |ak+p−1|

≤ 1.

The last inequality is equivalent to

(2.9)
n+p−1∑

k=1

|ak+p−1|+
(

n + 2p− 1 + α

p− α

) ∞∑
k=n+p

|ak+p−1| ≤ 1.

Since the left hand side of (2.9) is bounded above by
∑∞

k=1
(n+p−1+α)

(p−α)
|ak+p−1| ,

the proof is completed.
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We next turn to ratios involving derivatives.

Theorem 2.4. If f of the form (1.1) satisfies condition (1.5), then

(2.10) Re

{
f ′(z)

f ′n+p−1(z)

}
≥ 2p(n + 2p− 1)− α(n + p− 1)

p(n + 2p− 1 + α)
(z ∈ U),

(2.11) Re

{
f ′n+p−1(z)

f ′(z)

}
≥ p(n + 2p− 1 + α)

α(n + 3p− 1)
(z ∈ U ; α 6= 0).

The extremal function for the case(2.10) is given by(2.2) and the extremal
function for the case(2.11) is given by(2.2) with α 6= 0.

The proof of Theorem2.4 follows the pattern of those in Theorem2.1 and
(a) of Theorem2.3and so the details may be omitted.

Remark 1. Puttingp = 1 in Theorem2.4, we obtain the following corollary:

Corollary 2.5. If f of the form (1.1) (with p = 1) satisfies condition (1.5) (with
p = 1), then

(2.12) Re

{
f ′(z)

f ′n(z)

}
≥ 2(n + 1)− αn

n + 1 + α
(z ∈ U),

(2.13) Re

{
f ′n(z)

f ′(z)

}
≥ n + 1 + α

α(n + 2)
(z ∈ U ; α 6= 0).

The extremal function for the case (2.12) is given by (2.2) (with p = 1) and the
extremal function for the case (2.13) is given by (2.2) (with p = 1 andα 6= 0).
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Remark 2. We note that Corollary2.5corrects the result obtained by Cho and
Owa [4, Theorem 5].

Theorem 2.6. If f of the form(1.1) satisfies condition(1.6), then

(2.14) Re

{
f ′(z)

f ′n+p−1(z)

}
≥ n + p− 1 + 2α

n + 2p− 1 + α
(z ∈ U),

(2.15) Re

{
f ′n+p−1(z)

f ′(z)

}
≥ n + 2p− 1 + α

n + 3p− 1
(z ∈ U).

In both cases, the extremal function is given by(2.5).

Proof. It is well known thatf ∈
∑

k(p, α) ⇔ − zf ′(z)
p
∈

∑∗(p, α). In particular,

f satisfies condition (1.6) if and only if− zf ′(z)
p

satisfies condition (1.5). Thus,
(2.14) is an immediate consequence of Theorem2.1and (2.15) follows directly
from Theorem2.3(a).

Remark 3. Putting p = 1 in the above results we get the results obtained by
Cho and Owa [4].
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