Journal of Inequalities in Pure and Applied Mathematics

PARTIAL SUMS OF CERTAIN MEROMORPHIC $p-{\sf VALENT}$ FUNCTIONS

M.K. AOUF AND H. SILVERMAN

Department of Mathematics Faculty of Science University of Mansoura Mansoura 35516, Egypt. *EMail*: mkaouf127@yahoo.com

Department of Mathematics University of Charleston Charleston, South Carolina 29424, USA. *EMail*: silvermanh@cofc.edu

©2000 Victoria University ISSN (electronic): 1443-5756 110-06

volume 7, issue 4, article 119, 2006.

Received 13 April, 2006; accepted 19 June, 2006.

Communicated by: H.M. Srivastava

Abstract

In this paper we establish some results concerning the partial sums of meromorphic *p*-valent starlike functions and meromorphic *p*-valent convex functions.

2000 Mathematics Subject Classification: 30C45.

Key words: Partial sums, Meromorphic *p*-valent starlike functions, Meromorphic *p*-valent convex functions.

Contents

1	Introduction	3
2	Main Results	6
Refe	erences	

Partial Sums Of Certain Meromorphic *p*-Valent Functions

J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

Introduction

Let $\sum(p)$ $(p \in \mathbb{N} = \{1, 2, ...\})$ denote the class of functions of the form

(1.1)
$$f(z) = \frac{1}{z^p} + \sum_{k=1}^{\infty} a_{k+p-1} z^{k+p-1} \qquad (p \in \mathbb{N})$$

which are analytic and p-valent in the punctured disc $U^* = \{z : 0 < |z| < 1\}$. A function f(z) in $\sum(p)$ is said to belong to $\sum^*(p, \alpha)$, the class of meromorphically *p*-valent starlike functions of order α ($0 \le \alpha < p$), if and only if

(1.2)
$$-\operatorname{Re}\left\{\frac{zf'(z)}{f(z)}\right\} > \alpha \qquad (0 \le \alpha < p; z \in U = U^* \cup \{0\}).$$

A function f(z) in $\sum(p)$ is said to belong to $\sum_{k}(p,\alpha)$, the class of p-valent convex functions of order $\alpha (0 \le \alpha < p)$, if and only if

(1.3)
$$-\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \alpha \qquad (0 \le \alpha < p; z \in U).$$

It follows from (1.2) and (1.3) that

 \sim

(1.4)
$$f(z) \in \sum_{k} (p, \alpha) \iff -\frac{zf'(z)}{p} \in \sum^{*} (p, \alpha).$$

The classes $\sum_{k}^{*}(p,\alpha)$ and $\sum_{k}(p,\alpha)$ were studied by Kumar and Shukla [6]. A sufficient condition for a function f(z) of the form (1.1) to be in $\sum^{*}(p, \alpha)$ is that

(1.5)
$$\sum_{k=1}^{\infty} (k+p-1+\alpha) |a_{k+p-1}| \le (p-\alpha)$$

Meromorphic *p*-Valent Functions

```
M.K. Aouf and H. Silverman
```


J. Ineg. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

and to be in $\sum_k (p, \alpha)$ is that

(1.6)
$$\sum_{k=1}^{\infty} \left(\frac{k+p-1}{p} \right) (k+p-1+\alpha) |a_{k+p-1}| \le (p-\alpha).$$

Further, we note that these sufficient conditions are also necessary for functions of the form (1.1) with positive or negative coefficients (see [1], [2], [5], [9], [14] and [15]). Recently, Silverman [11] determined sharp lower bounds on the real part of the quotients between the normalized starlike or convex functions and their sequences of partial sums. Also, Li and Owa [7] obtained the sharp radius which for the normalized univalent functions in U, the partial sums of the well known Libera integral operator [8] imply starlikeness. Further, for various other interesting developments concerning partial sums of analytic univalent functions (see [3], [10], [12], [13] and [16]).

Recently, Cho and Owa [4] have investigated the ratio of a function of the form (1.1) (with p = 1) to its sequence of partial sums $f_n(z) = \frac{1}{z} + \sum_{k=1}^n a_k z^k$ when the coefficients are sufficiently small to satisfy either condition (1.5) or (1.6) with p = 1. Also Cho and Owa [4] have determined sharp lower bounds for $\operatorname{Re}\left\{\frac{f(z)}{f_n(z)}\right\}$, $\operatorname{Re}\left\{\frac{f_n(z)}{f(z)}\right\}$, $\operatorname{Re}\left\{\frac{f'(z)}{f'_n(z)}\right\}$, and $\operatorname{Re}\left\{\frac{f'_n(z)}{f'_n(z)}\right\}$.

In this paper, applying methods used by Silverman [11] and Cho and Owa [4], we will investigate the ratio of a function of the form (1.1) to its sequence of partial sums

$$f_{n+p-1}(z) = \frac{1}{z^p} + \sum_{k=1}^{n+p-1} a_{k+p-1} z^{k+p-1}$$

when the coefficients are sufficiently small to satisfy either condition (1.5) or

Partial Sums Of Certain Meromorphic *p*-Valent Functions

J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

(1.6). More precisely, we will determine sharp lower bounds for $\operatorname{Re}\left\{\frac{f(z)}{f_{n+p-1}(z)}\right\}$, $\operatorname{Re}\left\{\frac{f_{n+p-1}(z)}{f(z)}\right\}$, $\operatorname{Re}\left\{\frac{f'(z)}{f'_{n+p-1}(z)}\right\}$, and $\operatorname{Re}\left\{\frac{f'_{n+p-1}(z)}{f'(z)}\right\}$. In the sequel, we will make use of the well-known result that $\operatorname{Re}\left\{\frac{1+w(z)}{1-w(z)}\right\}$ >

 $0 \ (z \in U)$ if and only if $w(z) = \sum_{k=1}^{\infty} c_k z^k$ satisfies the inequality $|w(z)| \le |z|$. Unless otherwise stated, we will assume that f is of the form (1.1) and its sequence of partial sums is denoted by

$$f_{n+p-1}(z) = \frac{1}{z^p} + \sum_{k=1}^{n+p-1} a_{k+p-1} z^{k+p-1}.$$

Partial Sums Of Certain Meromorphic *p*-Valent Functions

J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

2. Main Results

Theorem 2.1. If f of the form (1.1) satisfies condition (1.5), then

(2.1)
$$\operatorname{Re}\left\{\frac{f(z)}{f_{n+p-1}(z)}\right\} \ge \frac{n+p-1+2\alpha}{n+2p-1+\alpha} \quad (z \in U).$$

The result is sharp for every n and p, with extremal function

(2.2)
$$f(z) = \frac{1}{z^p} + \frac{p - \alpha}{n + 2p - 1 + \alpha} z^{n+2p-1} \qquad (n \ge 0; p \in \mathbb{N}).$$

Proof. We may write

$$\begin{split} \frac{n+2p-1+\alpha}{p-\alpha} \left[\frac{f(z)}{f_{n+p-1}(z)} - \frac{n+p-1+2\alpha}{n+2p-1+\alpha} \right] \\ &= \frac{1+\sum_{k=1}^{n+p-1} a_{k+p-1} z^{k+2p-1} + \left(\frac{n+2p-1+\alpha}{p-\alpha}\right) \sum_{k=n+p}^{\infty} a_{k+p-1} z^{k+2p-1}}{1+\sum_{k=1}^{n+p-1} a_{k+p-1} z^{k+2p-1}} \\ &= \frac{1+A(z)}{1+B(z)}. \end{split}$$
Set $\frac{1+A(z)}{1+B(z)} = \frac{1+w(z)}{1-w(z)}$, so that $w(z) = \frac{A(z)-B(z)}{2+A(z)+B(z)}$. Then

$$w(z) = \frac{\left(\frac{n+2p-1+\alpha}{p-\alpha}\right)\sum_{k=n+p}^{\infty} a_{k+p-1} z^{k+2p-1}}{2+2\sum_{k=1}^{n+p-1} a_{k+p-1} z^{k+2p-1} + \left(\frac{n+2p-1+\alpha}{p-\alpha}\right)\sum_{k=n+p}^{\infty} a_{k+p-1} z^{k+2p-1}}$$

Partial Sums Of Certain Meromorphic *p*-Valent Functions

```
M.K. Aouf and H. Silverman
```


J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

and

$$|w(z)| \le \frac{\left(\frac{n+2p-1+\alpha}{p-\alpha}\right)\sum_{k=n+p}^{\infty}|a_{k+p-1}|}{2-2\sum_{k=1}^{n+p-1}|a_{k+p-1}| - \left(\frac{n+2p-1+\alpha}{p-\alpha}\right)\sum_{k=n+p}^{\infty}|a_{k+p-1}|}.$$

Now $|w(z)| \leq 1$ if and only if

$$2\left(\frac{n+2p-1+\alpha}{p-\alpha}\right)\sum_{k=n+p}^{\infty}|a_{k+p-1}| \le 2-2\sum_{k=1}^{n+p-1}|a_{k+p-1}|,$$

which is equivalent to

(2.3)
$$\sum_{k=1}^{n+p-1} |a_{k+p-1}| + \left(\frac{n+2p-1+\alpha}{p-\alpha}\right) \sum_{k=n+p}^{\infty} |a_{k+p-1}| \le 1.$$

It suffices to show that the left hand side of (2.3) is bounded above by $\sum_{k=1}^{\infty} \left(\frac{k+p-1+\alpha}{p-\alpha}\right) |a_{k+p-1}|$, which is equivalent to

$$\sum_{k=1}^{n+p-1} \left(\frac{k+2\alpha - 1}{p-\alpha} \right) |a_{k+p-1}| + \sum_{k=n+p}^{\infty} \left(\frac{k-n-p}{p-\alpha} \right) |a_{k+p-1}| \ge 0.$$

To see that the function f given by (2.2) gives the sharp result, we observe for $z = re^{\pi i/(n+3p-1)}$ that

$$\frac{f(z)}{f_{n+p-1}(z)} = 1 + \frac{p-\alpha}{n+2p-1+\alpha} z^{n+3p-1} \to 1 - \frac{p-\alpha}{n+2p-1+\alpha}$$
$$= \frac{n+p-1+2\alpha}{n+2p-1+\alpha} \quad \text{when } r \to 1^-.$$

Partial Sums Of Certain Meromorphic *p*-Valent Functions

```
M.K. Aouf and H. Silverman
```


J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

Therefore we complete the proof of Theorem 2.1.

Theorem 2.2. If f of the form (1.1) satisfies condition (1.6), then

(2.4) Re
$$\left\{ \frac{f(z)}{f_{n+p-1}(z)} \right\}$$

 $\geq \frac{(n+2p)(n+2p-2+\alpha)+(1-p)(1+p-\alpha)}{(n+2p-1)(n+2p-1+\alpha)}$ $(z \in U)$

The result is sharp for every n and p, *with extremal function*

(2.5)
$$f(z) = \frac{1}{z^p} + \frac{p(p-\alpha)}{(n+2p-1)(n+2p-1+\alpha)} z^{n+2p-1} \quad (n \ge 0; p \in \mathbb{N}).$$

Proof. We write

$$\begin{aligned} &\frac{(n+2p-1)(n+2p-1+\alpha)}{p(p-\alpha)} \\ &\times \left[\frac{f(z)}{f_{n+p-1}(z)} - \frac{(n+2p)(n+2p-2+\alpha) + (1-p)(1+p-\alpha)}{(n+2p-1)(n+2p-1+\alpha)}\right] \\ &= \frac{1+\sum_{k=1}^{n+p-1} a_{k+p-1} z^{k+2p-1} + \frac{(n+2p-1)(n+2p-1+\alpha)}{p(p-\alpha)} \sum_{k=n+p}^{\infty} a_{k+p-1} z^{k+2p-1}}{1+\sum_{k=1}^{n+p-1} a_{k+p-1} z^{k+2p-1}} \\ &= \frac{1+w(z)}{1-w(z)}, \end{aligned}$$

Partial Sums Of Certain Meromorphic *p*-Valent Functions

M.K. Aouf and H. Silverman

J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

where

$$w(z) = \frac{\frac{(n+2p-1)(n+2p-1+\alpha)}{p(p-\alpha)} \sum_{k=n+p}^{\infty} a_{k+p-1} z^{k+2p-1}}{2+2\sum_{k=1}^{n+p-1} a_{k+p-1} z^{k+2p-1} + \frac{(n+2p-1)(n+2p-1+\alpha)}{p(p-\alpha)} \sum_{k=n+p}^{\infty} a_{k+p-1} z^{k+2p-1}}.$$

Now

$$|w(z)| \le \frac{\frac{(n+2p-1)(n+2p-1+\alpha)}{p(p-\alpha)} \sum_{k=n+p}^{\infty} |a_{k+p-1}|}{2 - 2 \sum_{k=1}^{n+p-1} |a_{k+p-1}| - \frac{(n+2p-1)(n+2p-1+\alpha)}{p(p-\alpha)} \sum_{k=n+p}^{\infty} |a_{k+p-1}|} \le 1,$$

if

(2.6)
$$\sum_{k=1}^{n+p-1} |a_{k+p-1}| + \frac{(n+2p-1)(n+2p-1+\alpha)}{p(p-\alpha)} \sum_{k=n+p}^{\infty} |a_{k+p-1}| \le 1.$$

The left hand side of (2.6) is bounded above by

$$\sum_{k=1}^{\infty} \frac{(k+p-1)(k+p-1+\alpha)}{p(p-\alpha)} |a_{k+p-1}|$$

Partial Sums Of Certain Meromorphic *p*-Valent Functions

J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

$$\frac{1}{p(p-\alpha)} \left\{ \sum_{k=1}^{n+p-1} \left[(k+p-1)(k+p-1+\alpha) - p(p-\alpha) \right] |a_{k+p-1}| + \sum_{k=n+p}^{\infty} \left[(k+p-1)(k+p-1+\alpha) - (n+2p-1)(n+2p-1+\alpha) \right] |a_{k+p-1}| \right\} \ge 0,$$

J I M P A

Partial Sums Of Certain Meromorphic *p*-Valent Functions

M.K. Aouf and H. Silverman

and the proof is completed.

We next determine bounds for $\operatorname{Re}\left\{\frac{f_{n+p-1}(z)}{f(z)}\right\}$.

Theorem 2.3.

(a) If f of the form (1.1) satisfies condition (1.5), then

(2.7)
$$\operatorname{Re}\left\{\frac{f_{n+p-1}(z)}{f(z)}\right\} \ge \frac{n+2p-1+\alpha}{n+3p-1} \qquad (z \in U).$$

(b) If f of the form (1.1) satisfies condition (1.6), then

(2.8)
$$\operatorname{Re}\left\{\frac{f_{n+p-1}(z)}{f(z)}\right\}$$

$$\geq \frac{(n+2p-1)(n+2p-1+\alpha)}{(n+2p-1)(n+2p)-n(1-\alpha)+(1-p)(1-p-\alpha)} \qquad (z \in U).$$

J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

Equalities hold in (a) and (b) for the functions given by (2.2) and (2.5), respectively.

Proof. We prove (a). The proof of (b) is similar to (a) and will be omitted. We write

$$\frac{(n+2p-1)}{(p-\alpha)} \left[\frac{f_{n+p-1}(z)}{f(z)} - \frac{n+2p-1+\alpha}{n+3p-1} \right]$$

=
$$\frac{1+\sum_{k=1}^{n+p-1} a_{k+p-1} z^{k+2p-1} - \left(\frac{n+2p-1+\alpha}{p-\alpha}\right) \sum_{k=n+p}^{\infty} a_{k+p-1} z^{k+2p-1}}{1+\sum_{k=1}^{\infty} a_{k+p-1} z^{k+2p-1}}$$

=
$$\frac{1+w(z)}{1-w(z)},$$

where

$$|w(z)| \le \frac{\left(\frac{n+3p-1}{p-\alpha}\right)\sum_{k=n+p}^{\infty}|a_{k+p-1}|}{2-2\sum_{k=1}^{n+p-1}|a_{k+p-1}| - \left(\frac{n+p-1+2\alpha}{p-\alpha}\right)\sum_{k=n+p}^{\infty}|a_{k+p-1}|} \le 1.$$

The last inequality is equivalent to

(2.9)
$$\sum_{k=1}^{n+p-1} |a_{k+p-1}| + \left(\frac{n+2p-1+\alpha}{p-\alpha}\right) \sum_{k=n+p}^{\infty} |a_{k+p-1}| \le 1.$$

Since the left hand side of (2.9) is bounded above by $\sum_{k=1}^{\infty} \frac{(n+p-1+\alpha)}{(p-\alpha)} |a_{k+p-1}|$, the proof is completed.

Partial Sums Of Certain Meromorphic *p*-Valent Functions

J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

We next turn to ratios involving derivatives.

Theorem 2.4. If f of the form (1.1) satisfies condition (1.5), then

(2.10)
$$\operatorname{Re}\left\{\frac{f'(z)}{f'_{n+p-1}(z)}\right\} \ge \frac{2p(n+2p-1)-\alpha(n+p-1)}{p(n+2p-1+\alpha)} \quad (z \in U),$$

(2.11)
$$\operatorname{Re}\left\{\frac{f'_{n+p-1}(z)}{f'(z)}\right\} \ge \frac{p(n+2p-1+\alpha)}{\alpha(n+3p-1)} \quad (z \in U; \alpha \neq 0).$$

The extremal function for the case (2.10) is given by (2.2) and the extremal function for the case (2.11) is given by (2.2) with $\alpha \neq 0$.

The proof of Theorem 2.4 follows the pattern of those in Theorem 2.1 and (a) of Theorem 2.3 and so the details may be omitted.

Remark 1. Putting p = 1 in Theorem 2.4, we obtain the following corollary:

Corollary 2.5. If f of the form (1.1) (with p = 1) satisfies condition (1.5) (with p = 1), then

(2.12)
$$\operatorname{Re}\left\{\frac{f'(z)}{f'_n(z)}\right\} \ge \frac{2(n+1) - \alpha n}{n+1+\alpha} \qquad (z \in U),$$

(2.13)
$$\operatorname{Re}\left\{\frac{f'_n(z)}{f'(z)}\right\} \ge \frac{n+1+\alpha}{\alpha(n+2)} \qquad (z \in U; \alpha \neq 0).$$

The extremal function for the case (2.12) is given by (2.2) (with p = 1) and the extremal function for the case (2.13) is given by (2.2) (with p = 1 and $\alpha \neq 0$).

Partial Sums Of Certain Meromorphic *p*-Valent Functions

```
M.K. Aouf and H. Silverman
```


J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

Remark 2. We note that Corollary 2.5 corrects the result obtained by Cho and Owa [4, Theorem 5].

Theorem 2.6. If f of the form (1.1) satisfies condition (1.6), then

(2.14)
$$\operatorname{Re}\left\{\frac{f'(z)}{f'_{n+p-1}(z)}\right\} \ge \frac{n+p-1+2\alpha}{n+2p-1+\alpha} \quad (z \in U),$$

(2.15)
$$\operatorname{Re}\left\{\frac{f'_{n+p-1}(z)}{f'(z)}\right\} \ge \frac{n+2p-1+\alpha}{n+3p-1} \qquad (z \in U).$$

In both cases, the extremal function is given by (2.5).

Proof. It is well known that $f \in \sum_{k} (p, \alpha) \Leftrightarrow -\frac{zf'(z)}{p} \in \sum^{*} (p, \alpha)$. In particular, f satisfies condition (1.6) if and only if $-\frac{zf'(z)}{p}$ satisfies condition (1.5). Thus, (2.14) is an immediate consequence of Theorem 2.1 and (2.15) follows directly from Theorem 2.3 (a).

Remark 3. Putting p = 1 in the above results we get the results obtained by Cho and Owa [4].

Page 13 of 15

J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

References

- [1] M.K. AOUF, On a class of meromorphic multivalent functions with positive coefficients, *Math. Japon.*, **35** (1990), 603–608.
- [2] M.K. AOUF AND A.E. SHAMMAKY, A certain subclass of meromorphically *p*-valent convex functions with negative coefficients, *J. Approx. Theory and Appl.*, 1(2) (2005), 157–177.
- [3] L. BRICKMAN, D.J. HALLENBECK, T.H. MACGREGOR AND D. WILKEN, Convex hulls and extreme points of families of starlike and convex mappings, *Trans. Amer. Math. Soc.*, 185 (1973), 413–428.
- [4] N.E. CHO AND S. OWA, Partial sums of certain meromorphic functions, J. Ineq. Pure and Appl. Math., 5(2) (2004), Art. 30. [ONLINE: http: //jipam.vu.edu.au/article.php?sid=377].
- [5] H.E. DARWISH, M.K. AOUF AND G.S. SĂLĂGEAN, On Some classes of meromorphically *p*-valent starlike functions with positive coefficients, *Libertas Math.*, **20** (2000), 49–54.
- [6] V. KUMAR AND S.L. SHUKLA, Certain integrals for classes of *p*-valent meromorphic functions, *Bull. Austral. Math. Soc.*, **25** (1982), 85–97.
- [7] J.L. LI AND S. OWA, On partial sums of the Libera integral operator, J. *Math. Anal. Appl.*, **213** (1997), 444–454.
- [8] R.J. LIBERA, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1965), 755–758.

Partial Sums Of Certain Meromorphic *p*-Valent Functions

J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au

- [9] M.L. MOGRA, Meromorphic multivalent functions with positive coefficients. I, *Math. Japon.*, **35**(1) (1990), 1–11.
- [10] T. SHELL-SMALL, A note on partial sums of convex schlicht functions, Bull. London Math. Soc., 2 (1970), 165–168.
- [11] H. SILVERMAN, Partial sums of starlike and convex functions, *J. Math. Anal. Appl.*, **209** (1997), 221–227.
- [12] E.M. SILVIA, On partial sums of convex functions of order α , *Houston J. Math.*, **11** (1985), 397–404.
- [13] R. SINGH AND S. SINGH, Convolution properties of a class of starlike functions, *Proc. Amer. Math. Soc.*, **106** (1989), 145–152.
- [14] H.M. SRIVASTAVA, H.M. HOSSEN AND M.K. AOUF, A unified presentation of some classes of meromorphically multivalent functions, *Comput. Math. Appl.*, **38** (1999), 63–70.
- [15] B.A. URALEGADDI AND M.D. GANIGI, Meromorphic multivalent functions with positive coefficients, *Nep. Math. Sci. Rep.*, **11** (1986), 95– 102.
- [16] D. YANG AND S. OWA, Subclasses of certain analytic functions, *Hokkaido Math. J.*, **32** (2003), 127–136.

 $\begin{array}{l} \mbox{Partial Sums Of Certain} \\ \mbox{Meromorphic } p\mbox{-Valent} \\ \mbox{Functions} \end{array}$

J. Ineq. Pure and Appl. Math. 7(4) Art. 119, 2006 http://jipam.vu.edu.au