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Abstract

Using the concept of majorant sequences (see [4, ch. XXI], [5], [7], [8]) some
new inequalities for Walsh polynomials with complex semi-monotone, complex
semi-convex, complex monotone and complex convex coefficients are given.
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We consider the Walsh orthonormal systém), (z)}5° , defined o0, 1) in the
Paley enumeration. Thus,(z) = 1 and for each positive integer with dyadic

development
p

n:ZQ”i, vy > vy > >, >0,
i=1

we have

p
Inequalities for Walsh
wn(:v) = H Ty, (1')7 Polynomials with
=1 Semi-Monotone and
. . Semi-Convex Coefficients
where{r,(z)}2 , denotes the Rademacher system of functions defined by (see,

e.g. [L, p. 60], [3, p. 9-10)) Zivorad Tomovski
ry(z) =signsin2"7(z) (vr=0,1,2,...; 0 <z <1).
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In this paper we shall consider the Walsh polynomials_ = \,wy(x) with f——
complex-valued coefficients\, }. onents
Let AN, = X\, — A\p1 @and AN, = A(AN,) = AN, — Ay = Ay — <44 >»
2 i1+ Apgo, foralln =1,2,3. ... < >
Petrovt [6] proved the following complementary triangle inequality for a
sequence of complex numbedlrs, 2o, . . ., 2, }. Go Back
Theorem A. Leta be a real number and < ¢ < 7. If {21, 20,...,2,} are Close
complex numbers suchthat- 0 < argz, < a+60,v=1,2,...,n,then Quit
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For0 < 6 < 7 denote byK () the coneK (0) = {z : |arg 2| < 6}.

Let {b;} be a positive nondecreasing sequence. The following definitions
are given in ] and [2]. The sequence of complex numbdlrs;} is said to
be complex semi-monotoneif there exists a coné’(¢) such thatA (}j—:) €
K(0) or A(uiby) € K(0). Forb, = 1, the sequencéu;} shall be called a
complex monotonesequence. On the other hand, the sequdngé is said
to becomplex semi-convexif there exists a coné& (), such thatA? (;j—g) €
K () or A?(uxb,) € K(0). Forb, = 1, the sequencéu;} shall be called a
complex convex sequence

The following two Theorems were proved by Tomovski ih@nd [].

Theorem B ([7]). Let{z;} be a sequence such that ;" z;| < A, (Vn,m €
N, m > n), whereA is a positive number.

(i) If A (g—) e K(9), then

i 1 1 b,
> wez §AK1+—> |ty | + —|un|], (Vn,m € N,m > n).
— cos 0

(i) If A(ugby) € K(6), then

— 1 1 by
Zukzk SA{(l—l——) |wy, | + —|um|} . (Yn,m e N;m > n).
pt cos 6 b

cos 6 b,
qa J
Theorem C ([2]). LetA = max [>_ > z.
(OSAAS N Py
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(i) If {us} is a sequence of complex numbers suchﬁ?a@—:) € K(6), then

1 umfl bm un
< — -n
= ['um| o (1 i C059> ‘A (bm—l)‘ " cost . (bn> H ’

(Vn,m € N;m > n).
(i) If {ux} is a sequence of complex numbers such th&tub.) € K(6),
then Inequalities for Walsh

Polynomials with
Semi-Monotone and
m
E U2k
k=n

m
E U2k
k=n

Semi-Convex Coefficients

< Aol 40 (14 ) (8wt + Aot

cos Zivorad Tomovski

(Vn,m € Nym > n).
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For the main results we require the following Lemma.

Lemma 2.1. For all p,q,r € N, p < ¢ the following inequalities hold:

() Zwk

<—O<:c<1

q J
i | lities for Walsh
URIPILAC
J=p k=l Semi-Monotone and
2(g—p+1) — 01(]9 q l’) D<ax<l1 Semi-Convex Coefficients
< Zivorad Tomovski
m —|— 5 + Ag=ptl) p+1) +1= C'g(p,q,r l‘) X € (2_T,2_r+1>
Title Page
Proof. (i) Let D,(z) = > {7, wz( ) be the Dirichlet kernel. Then it is known —
that (see{, p. 28])|Dy(z)| < 1,0 < z < 1. Hence
q 5 <44 >»
Y wi(@)| = [Dyii(x) = Dy()] < [Dyia(2)] + | Dy()] < - < >
k=p
(i) By (i) we get Cojac
j q p+1) Close
<3S i) < o< ou
j=p k=l Jj=p | k=l f
. : : : . Page 6 of 15
I(_et F?]():):) = n%l Y r—o Di(z) be the Fejer kernel. Applying Fine’s inequality a9e 0
see |
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c (27,27,

we get
Zzwk@v) = Z(Djﬂ(il?)—DZ(l“))‘
<[S- e 22

< I(q+1) 2 (0)] + [Dga ()] + | Do()]

g—p+1
FlpEpa(e) + 2
8 8 2q—p+1) e
<—- +—=+——=+1 e (277,27,
x(x—Q—T)+x2+ T +h (27, )
L]

Applying the inequality (i) of the above lemma and TheorBnmwe obtain
following theorem.

Theorem 2.2. Let0 < z < 1.

() If {ux} is a sequence of complex numbers such méf;—:) € K(0), then

<2 (14— ol + —— 2,
=g cosf ) cosf b, Unl

(Vn,m € N;m > n).
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(i) If {ux} is a sequence of complex numbers such fat.b,) € K(0), then

< 2110 ) bl + ]
COS@un Gbm

(Vn,m € Nym > n).

Specially forb, = 1 we get the following inequalities for Walsh polynomials
with complex monotone coefficients.

Corollary 2.3. Let0 < x < 1. If {us} is a sequence of complex numbers such
that Auy, € K(0), then

1 1
<1 * cos@) [ + COSQ|U”|} , (Yn,m € Nym > n).

Corollary 2.4. Let0 < = < 1. If {u} is a complex monotone sequence such
thatklim u, = 0, then

< | |.

z cos

In [4] (chapter XXI), [] Mitrinovi¢ and Péaric obtained inequalities for

cosine and sine polynomials with monotone nonnegative coefficients. Applying
Theorem2.2, we get analogical results for Walsh polynomials with monotone

nonnegative coefficients.
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Corollary 2.5. Let0 < x < 1.

(i) If {ax} is a nonnegative sequence such thatb, '} is a decreasing se-
guence, then

m

Z arwi ()

k=n

< % (Z—f), (Yn,m € N;m > n).

(i) If {ax} is a nonnegative sequence such thatb, } is an increasing se-
guence, then

m

Z arwi ()

k=n

< a?m (I;—T:), (Vn,m € N,;m > n).

Now, applying the inequality (ii) of Lemma.1, we obtain new inequalities
for Walsh polynomials with complex semi-convex coefficients.
Theorem 2.6.
() If {u,} is a sequence of complex numbers suchﬂhé%) € K(0), then

'Cl(m,n,x) [\Um\‘i‘bm 1( +c059 ’A (um 1)’

a(w)]0<r<

Cy(m,n,r, ) [|um| + b1 (1 + cose ’A (um 1))

()] et

bm 2
cos 0

cos 0

\

forall n,m,r € N,m > n.
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(ii) If {us} is a sequence of complex numbers such th&tub,) € K(0),
then

(C'l(m,n,x) [|un|+bg1 (1+ L )

cos

(| (tnbn)| + [ A (b ))] : 0 < & < 1

<

Z upwg ()

Co(m,n, 7, 2) [[un] + b, (14 =L5)

cos 0

X (|A(unbn)| + |A(tm-1bm-1)])] : 2 € (277,277

\

forall n,m,r € N,m > n.

Proof. (i) Applying Abel’s transformation twice and the triangle inequality, we
get:

m

m m—1 7
Z Z—:(bkwk) = b_ Zbkwk + A (bmll) Z Zbkwk
k=n ™ k=n M=/ j=n k=n
m—2 r 7
P8 () Y b
’u ’r n i j=n k=n ) 1 o
m—2 r 7
+ bm_g TZ; A2 <Z_:> ]2; kz:;wk .
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Using the Petrow inequality and inequality (ii) of Lemma.1, we obtain:

m m m—1 7
kZukwk(x) < || kak + byt A(um 1) Zkzwk
=n =n j=n n
bm_2 m—2
cos 6 Z < )Zkzwk
r=n j=n n

(Cl(m,n,x) [|Um’+bm 1 (1+ 55) ’A (Z: i)‘

4 =2 A(g—:)” 0<z<l1

cos 0

IN

Co(m,n,r, ) [\um| + b1 ( cose ‘A <um 1)‘
A()|] e @2y

(i) Analogously as the proof of (i), we obtain:

b —
+ 2

\ cos 0

k=n
7 m
= |upb, Zb Wy — Z A (wj—1bj—1 ZZb;lwk
j=n+1 r=n k=r
by) Z by Wi — Attm1bnr) Y > b wg
k=n r=n k=r
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m m—1 m
< Junbaby" Zwk +0,0 Y A uyab) Z
= Jj=n+1 n k=r
+ b A(unby)| Zwk + b A (U 1bm1)| ii
k=n =n k=
Hence,
Zukwk(x) < g Z 0 Z A*(uj_1bj_y ZZwk
k=n k=n COS j=n+1 r=n k=r
+ b A(unby,) Zwk 4+ b A (161 | iiwk
k=n r=n k=r

IN

fbo, =1, k=nn—+1,...

corollary.

(C'l(m,n,x) [|un|+b;1 (1+ L )

cos 6

X (|A(unbn)| + |A(Um—1bm-1)])] : 0 <z < 1,

Co(m,n,r,x) [[un| + b7 (1 + 555)
% (1A ()| + [A(trbu)])] < 2 € (277,277,

Corollary 2.7. Let{u;} be a complex-convex sequence. Then,

,m from Theorenm2.6, we obtain the following
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(Ol(man7x> [|Um| + (]‘ + C0159
X Aty + g | At ]

<

Z upwy(x)

. X\Aum,1| +L|Aun|}

cos 0

forall n,m,r € N;m > n.

)

O<ax<xl

Co(m,n, 7, @) [|um| + (1+ =25)

cos 6

cx e (277,277

Remark 1. Similarly, the results of Theoregh2, Theoren?.6, Corollary 2.3,
Corollary 2.5and Corollary2.7 were given by the author in/[ &] for trigono-
metric polynomials with complex valued coefficients.

Corollary 2.8.

(i) If {ax} is @ nonnegative sequence such thath; '} is a convex sequence,

then

(C’l(m,n,x) [\am| + 2b,,—1

) #2232

Z arwi ()

+bm—2

A (5]

\

forall n,m,r € N,m > n.

(i) If {ax} is a nonnegative sequence such thatb, } is a convex sequence,

Co(m,n,r, ) [|aml + 201 |A <%>‘

A (5=

}:0<x<1

—1

} Lz e (277,27
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then

(Ci(m,n, ) [|an] + 27| A(anb,)]

m +HA(am-1bm-1)]] : 0 <z <1
Zakwk(w) <
k=n Co(m,n,r,x) [|an| + 20, | A(a,b,)|

+|A(am_1bm_1)|] 1 xr e (2774, 27T+1)
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