ON A GEOMETRIC INEQUALITY BY J. SÁNDOR

YU-DONG WU, ZHI-HUA ZHANG, AND XIAO-GUANG CHU
Department of Mathematics
Zhejiang Xinchang High School Shaoxing 312500, ZheJiang
People's Republic of China
yudong.wu@yahoo.com.cn
Department of Mathematics
Shili Senior High School in Zixing
Chenzhou 423400, Hunan
People's Republic of China
zxzh1234@163.com
Suzhou Hengtian Trading Co. Ltd
SUZHOU 215128, JIANGSU
People's Republic of China
srr345@163.com

Received 02 May, 2009; accepted 25 September, 2009
Communicated by L. Tóth
Dedicated to Professor Mowaffaq Hajja.

Abstract

In this short note, we sharpen and generalize a geometric inequality by J. Sándor. As applications of our results, we give an alternative proof of Sándor's inequality and solve two conjectures posed by Liu.

Key words and phrases: Triangle, Hayashi's inequality, Hölder's inequality, Gerretsen's inequality, Euler's inequality.

2000 Mathematics Subject Classification 51M16, 52A40.

1. Introduction and Main Results

Let P be an arbitrary point P in the plane of triangle $A B C$. Let a, b, c be the lengths of these sides, \triangle the area, s the semi-perimeter, R the circumradius and r the inradius, respectively. Denote by R_{1}, R_{2}, R_{3} the distances from P to the vertices A, B, C, respectively.

The following interesting geometric inequality from 1986 is due to J. Sándor [8], a proof of this inequality can be found in the monograph [9].

[^0]Theorem 1.1. For triangle $A B C$ and an arbitrary point P, we have

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{2}+\left(R_{2} R_{3}\right)^{2}+\left(R_{3} R_{1}\right)^{2} \geq \frac{16}{9} \triangle^{2} \tag{1.1}
\end{equation*}
$$

Recently, J. Liu [6] also independently proved inequality (1.1).
In this short note, we sharpen and generalize inequality (1.1) and obtain the following results.
Theorem 1.2. We have

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{2}+\left(R_{2} R_{3}\right)^{2}+\left(R_{3} R_{1}\right)^{2} \geq \frac{a^{2} b^{2} c^{2}}{a^{2}+b^{2}+c^{2}} \tag{1.2}
\end{equation*}
$$

Theorem 1.3. If

$$
k \geq k_{0}=\frac{2(\ln 3-\ln 2)}{3 \ln 3-4 \ln 2} \approx 1.549800462
$$

then

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{k}+\left(R_{2} R_{3}\right)^{k}+\left(R_{3} R_{1}\right)^{k} \geq 3\left(\frac{4}{9} \sqrt{3} \triangle\right)^{k} \tag{1.3}
\end{equation*}
$$

2. Preliminary Results

Lemma 2.1 (Hayashi's inequality, see [7, pp. 297, 311]). For any $\triangle A B C$ and an arbitrary point P, we have

$$
\begin{equation*}
a R_{2} R_{3}+b R_{3} R_{1}+c R_{1} R_{2} \geq a b c \tag{2.1}
\end{equation*}
$$

with equality holding if and only if P is the orthocenter of the acute triangle $A B C$ or one of the vertices of the triangle $A B C$.

Lemma 2.2 (see [2] and [4]). For $\triangle A B C$, if

$$
0 \leq t \leq t_{0}=\frac{\ln 9-\ln 4}{\ln 4-\ln 3},
$$

then we have

$$
\begin{equation*}
a^{t}+b^{t}+c^{t} \leq 3(\sqrt{3} R)^{t} \tag{2.2}
\end{equation*}
$$

Lemma 2.3. Let

$$
k \geq k_{0}=\frac{2(\ln 3-\ln 2)}{3 \ln 3-4 \ln 2} \approx 1.549800462
$$

Then

$$
\begin{equation*}
\frac{(a b c)^{k}}{\left[a^{\frac{k}{k-1}}+b^{\frac{k}{k-1}}+c^{\frac{k}{k-1}}\right]^{k-1}} \geq 3\left(\frac{4}{9} \sqrt{3} \triangle\right)^{k} \tag{2.3}
\end{equation*}
$$

Proof. From the well known identities $a b c=4 R r s$ and $\triangle=r s$, inequality (2.3) is equivalent to

$$
\frac{(4 R r s)^{k}}{\left[a^{\frac{k}{k-1}}+b^{\frac{k}{k-1}}+c^{\frac{k}{k-1}}\right]^{k-1}} \geq 3\left(\frac{4}{9} \sqrt{3} r s\right)^{k}
$$

or

$$
\begin{equation*}
a^{\frac{k}{k-1}}+b^{\frac{k}{k-1}}+c^{\frac{k}{k-1}} \leq 3(\sqrt{3} R)^{\frac{k}{k-1}} \tag{2.4}
\end{equation*}
$$

It is easy to see that the function

$$
f(x)=\frac{x}{x-1}
$$

is strictly monotone decreasing on $(1,+\infty)$. If we let

$$
t=\frac{k}{k-1}=f(k) \quad\left(k \geq k_{0}=\frac{2(\ln 3-\ln 2)}{3 \ln 3-4 \ln 2}\right)
$$

then

$$
0<f(k)=t \leq \frac{\ln 9-\ln 4}{\ln 4-\ln 3}=f\left(k_{0}\right)
$$

and inequality (2.4) is equivalent to (2.2).
The proof of Lemma 2.3 is thus complete from Lemma 2.2 .
Lemma 2.4 ([3]). For any $\lambda \geq 1$, we have

$$
\begin{equation*}
[R-\lambda(\lambda+1) r] s^{2}+r\left[4\left(\lambda^{2}-4\right) R^{2}+\left(5 \lambda^{2}+12 \lambda+4\right) R r+\left(\lambda^{2}+3 \lambda+2\right) r^{2}\right] \geq 0 \tag{2.5}
\end{equation*}
$$

Lemma 2.5. In triangle $A B C$, we have

$$
\begin{aligned}
& a^{9}+b^{9}+c^{9}=2 s\left[s^{8}-18 r(R+2 r) s^{6}+18 r^{2}\left(21 R r+7 r^{2}+12 R^{2}\right) s^{4}\right. \\
&\left.-6 r^{3}\left(105 r^{2} R+240 r R^{2}+14 r^{3}+160 R^{3}\right) s^{2}+9 r^{4}(r+2 R)(r+4 R)^{3}\right] .
\end{aligned}
$$

Proof. The identity directly follows from the known identities $a+b+c=2 s, a b+b c+c a=$ $s^{2}+4 R r+r^{2}, a b c=4 R r s$ and the following identity:

$$
\begin{aligned}
& a^{9}+b^{9}+c^{9} \\
& =3 a^{3} b^{3} c^{3}-45 a b c(a b+b c+c a)(a+b+c)^{4}+54 a b c(a b+b c+c a)^{2}(a+b+c)^{2} \\
& \quad-27 a^{2} b^{2} c^{2}(a b+b c+c a)(a+b+c)+(a+b+c)^{9} \\
& \quad-9(a b+b c+c a)(a+b+c)^{7}+9(a b+b c+c a)^{4}(a+b+c) \\
& \quad-30(a b+b c+c a)^{3}(a+b+c)^{3}+18 a^{2} b^{2} c^{2}(a+b+c)^{3} \\
& \quad+27(a b+b c+c a)^{2}(a+b+c)^{5}+9 a b c(a+b+c)^{6}-9 a b c(a b+b c+c a)^{3} .
\end{aligned}
$$

Lemma 2.6 ([5]). If $x, y, z \geq 0$, then

$$
x+y+z+3 \sqrt[3]{x y z} \geq 2(\sqrt{x y}+\sqrt{y z}+\sqrt{z x})
$$

3. Proof of the Main Result

The proof of Theorem 1.2 is easy to find from the following inequality (3.1) for $k=2$ of the proof of Theorem 1.3 . Now, we prove Theorem 1.3 .

The proof of Theorem 1.3 Hölder's inequality and Lemma 2.1 imply for $k>1$ that

$$
\begin{aligned}
& {\left[a^{\frac{k}{k-1}}+b^{\frac{k}{k-1}}+c^{\frac{k}{k-1}}\right]^{\frac{k-1}{k}}\left[\left(R_{1} R_{2}\right)^{k}+\left(R_{2} R_{3}\right)^{k}+\left(R_{3} R_{1}\right)^{k}\right]^{\frac{1}{k}} } \\
& \geq a R_{2} R_{3}+b R_{3} R_{1}+c R_{1} R_{2} \geq a b c
\end{aligned}
$$

or

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{k}+\left(R_{2} R_{3}\right)^{k}+\left(R_{3} R_{1}\right)^{k} \geq \frac{(a b c)^{k}}{\left[a^{\frac{k}{k-1}}+b^{\frac{k}{k-1}}+c^{\frac{k}{k-1}}\right]^{k-1}} . \tag{3.1}
\end{equation*}
$$

Combining inequality (3.1) and Lemma 2.3, we immediately see that Theorem 1.3 is true.

4. Applications

4.1. Alternative Proof of Theorem 1.1, From Theorem 1.2, in order to prove inequality (1.1), we only need to prove the following inequality:

$$
\begin{equation*}
\frac{a^{2} b^{2} c^{2}}{a^{2}+b^{2}+c^{2}} \geq \frac{16}{9} \triangle^{2} \tag{4.1}
\end{equation*}
$$

With the known identities $a b c=4 R r s$ and $\triangle=r s$, inequality (4.1) is equivalent to

$$
a^{2}+b^{2}+c^{2} \leq 9 R^{2}
$$

This is simply inequality (2.2) for $t=2<t_{0}$ in Lemma 2.2. This completes the proof of inequality (1.1).

Remark 1. The above proof of inequality (1.1) is simpler than Liu's proof [6].
4.2. Solution of Two Conjectures. In 2008, J. Liu [6] posed the following two geometric inequality conjectures, (4.2) and (4.3), involving R_{1}, R_{2}, R_{3}, R and r.

Conjecture 4.1. For $\triangle A B C$ and an arbitrary point P, we have

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{2}+\left(R_{2} R_{3}\right)^{2}+\left(R_{3} R_{1}\right)^{2} \geq 8\left(R^{2}+2 r^{2}\right) r^{2} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{\frac{3}{2}}+\left(R_{2} R_{3}\right)^{\frac{3}{2}}+\left(R_{3} R_{1}\right)^{\frac{3}{2}} \geq 24 r^{3} . \tag{4.3}
\end{equation*}
$$

Proof. First of all, from Gerretsen's inequality [1, pp. 50, Theorem 5.8]

$$
s^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$

and Euler's inequality [1, pp. 48, Theorem 5.1]

$$
R \geq 2 r
$$

we have

$$
\begin{aligned}
2 r^{2}\left(4 R^{2}+4 R r+3 r^{2}-s^{2}\right)+(R-2 r)\left(4 R^{2}+\right. & \left.R r+2 r^{2}\right) r \geq 0 \\
& \Longleftrightarrow \frac{16 R^{2} r^{2} s^{2}}{2\left(s^{2}-4 R r-r^{2}\right)} \geq 8\left(R^{2}+2 r^{2}\right) r^{2} .
\end{aligned}
$$

Using Theorem 1.2 and the known identities [7, pp.52]

$$
a b c=4 R r s \quad \text { and } \quad a^{3}+b^{3}+c^{3}=2 s\left(s^{2}-6 R r-3 r^{2}\right),
$$

we see that inequality (4.2) holds true.
Secondly, from (3.1), in order to prove inequality (4.3), we only need to prove

$$
\begin{equation*}
\frac{(a b c)^{\frac{3}{2}}}{\left[a^{3}+b^{3}+c^{3}\right]^{\frac{1}{2}}} \geq 24 r^{3} \tag{4.4}
\end{equation*}
$$

With the known identities [7] pp. 52]

$$
a b c=4 R r s \quad \text { and } \quad a^{3}+b^{3}+c^{3}=2 s\left(s^{2}-6 R r-3 r^{2}\right)
$$

inequality (4.4) is equivalent to

$$
\text { (4.5) } \begin{aligned}
& \frac{(4 R r s)^{\frac{3}{2}}}{\left[2 s\left(s^{2}-6 R r-3 r^{2}\right)\right]^{\frac{1}{2}}} \geq 24 r^{3} \\
& \Longleftrightarrow 18 r^{3}\left(4 R^{2}+4 R r+3 r^{2}-s^{2}\right)+R^{3}\left(s^{2}-16 R r+5 r^{2}\right) \\
&+R r(R-2 r)\left(16 R^{2}+27 R r-18 r^{2}\right) \geq 0
\end{aligned}
$$

From Gerretsen's inequality [1] pp. 50, Theorem 5.8]

$$
16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$

and Euler's inequality [1, pp. 48, Theorem 5.1]

$$
R \geq 2 r
$$

we can conclude that inequality (4.5) holds, further, inequality (4.4) is true.
This completes the proof of Conjecture 4.1.
Corollary 4.2. For $\triangle A B C$ and an arbitrary point P, we have

$$
\begin{equation*}
R_{1}^{3}+R_{2}^{3}+R_{3}^{3}+3 R_{1} R_{2} R_{3} \geq 48 r^{3} \tag{4.6}
\end{equation*}
$$

Proof. Inequality (4.6) can directly be obtained from Lemma 2.6 and inequality (4.3).
4.3. Sharpened Form of Above Conjectures. The inequalities (4.2) and (4.3) of Conjecture 4.1 can be sharpened as follows.

Theorem 4.3. For $\triangle A B C$ and an arbitrary point P, we have

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{2}+\left(R_{2} R_{3}\right)^{2}+\left(R_{3} R_{1}\right)^{2} \geq 8(R+r) R r^{2} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{\frac{3}{2}}+\left(R_{2} R_{3}\right)^{\frac{3}{2}}+\left(R_{3} R_{1}\right)^{\frac{3}{2}} \geq 12 R r^{2} \tag{4.8}
\end{equation*}
$$

Proof. The proof of inequality (4.7) is left to the readers. Now, we prove inequality (4.8).
From inequality (2.5) for $\lambda=2$ in Lemma 2.4, the well-known Gerretsen's inequality [1, pp. 50, Theorem 5.8]

$$
16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$

Euler's inequality [1, pp. 48, Theorem 5.1]

$$
R \geq 2 r
$$

and the known identities [7, pp. 52]

$$
a b c=4 R r s \text { and } a^{3}+b^{3}+c^{3}=2 s\left(s^{2}-6 R r-3 r^{2}\right),
$$

we obtain that

$$
\begin{align*}
& {\left[(R-6 r) s^{2}+12 r^{2}(4 R+r)\right]+3 r\left(4 R^{2}+4 R r+3 r^{2}-s^{2}\right)} \tag{4.9}\\
& \quad+R\left(s^{2}-16 R r+5 r^{2}\right)+r(R-2 r)(4 R-3 r) \geq 0 \\
& \Longleftrightarrow \frac{(4 R r s)^{\frac{3}{2}}}{\left[2 s\left(s^{2}-6 R r-3 r^{2}\right)\right]^{\frac{1}{2}}} \geq 12 R r^{2} \\
& \Longleftrightarrow \frac{(a b c)^{\frac{3}{2}}}{\left[a^{3}+b^{3}+c^{3}\right]^{\frac{1}{2}}} \geq 12 R r^{2} .
\end{align*}
$$

Inequality (4.8) follows by Lemma 2.4 .
Theorem 4.3 is thus proved.

4.4. Generalization of Inequality (4.3).

Theorem 4.4. If $k \geq \frac{9}{8}$, then

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{k}+\left(R_{2} R_{3}\right)^{k}+\left(R_{3} R_{1}\right)^{k} \geq 3\left(4 r^{2}\right)^{k} . \tag{4.10}
\end{equation*}
$$

Proof. From the monotonicity of the power mean, we only need to prove that inequality (4.10) holds for $k=\frac{9}{8}$. By using inequality (3.1), we only need to prove the following inequality

$$
\begin{equation*}
\frac{(a b c)^{\frac{9}{8}}}{\left(a^{9}+b^{9}+c^{9}\right)^{\frac{1}{8}}} \geq 3\left(4 r^{2}\right)^{\frac{9}{8}} \tag{4.11}
\end{equation*}
$$

From Gerretsen's inequality [1, pp. 50, Theorem 5.8]

$$
s^{2} \geq 16 R r-5 r^{2}
$$

and Euler's inequality [1, pp. 48, Theorem 5.1]

$$
R \geq 2 r
$$

it is obvious that

$$
\begin{aligned}
& P=(R-2 r)\left[4096 R^{10}+12544 R^{9} r+34992 R^{8} r^{2}+89667 R^{7} r^{3}+218700 R^{6} r^{4}\right. \\
& +516132 R^{5} r^{5}+1189728 R^{4} r^{6}+2493180 R^{3} r^{7}+6018624(R-2 r) R r^{8} \\
& \left.+6753456 r^{10}+201204\left(R^{2}-4 r^{2}\right) R r^{7}\right]+2799360 r^{11}>0,
\end{aligned}
$$

and

$$
\begin{aligned}
Q=\left(s^{2}\right. & \left.-16 R r+5 r^{2}\right)\left\{R^{9}\left(s^{2}-16 R r+5 r^{2}\right)+3 R^{4} r(R-2 r)\left(16 R^{5}+27 R^{4} r+54 R^{3} r^{2}\right.\right. \\
& \left.+108 R^{2} r^{3}+216 R r^{4}+432 r^{5}\right)+324 r^{7}\left[8\left(R^{2}-12 r^{2}\right)^{2}+30 r^{2}(R-2 r)^{2}\right. \\
& \left.\left.+39 R r^{3}+267 r^{4}\right]\right\}+17496 r^{7}\left(R^{2}-3 R r+6 r^{2}\right)\left(R^{2}-12 R r+24 r^{2}\right)^{2} \\
& +3 r^{2}(R-2 r)\left\{(R - 2 r) \left[256 R^{9}+864 R^{8} r+2457 R^{2} r^{2}\left(R^{5}-32 r^{5}\right)\right.\right. \\
& +6372 R^{2} r^{3}\left(R^{4}-16 r^{4}\right)+15660 R^{2} r^{4}\left(R^{3}-8 r^{3}\right)+31320 R^{2} r^{5}\left(R^{2}-4 r^{2}\right) \\
& \left.+220104 R^{2} r^{6}(R-2 r)+2618784(R-2 r) r^{8}+51840 R^{2} r^{7}+501120 R r^{8}\right] \\
& \left.+687312 r^{10}\right\}>0 .
\end{aligned}
$$

Therefore, with the fundamental inequality [7, pp.1-3]

$$
-s^{4}+\left(4 R^{2}+20 R r-2 r^{2}\right) s^{2}-r(4 R+r)^{3} \geq 0
$$

we have

$$
\begin{aligned}
W= & \left(R^{9}-13122 r^{9}\right) s^{8}+236196 r^{10}(2 r+R) s^{6}-236196 r^{11}\left(7 r^{2}+12 R^{2}+21 R r\right) s^{4} \\
& \quad+78732 r^{12}\left(105 R r^{2}+160 R^{3}+240 R^{2} r+14 r^{3}\right) s^{2}-118098 r^{13}(2 R+r)(4 R+r)^{3} \\
= & 13122 r^{9}\left[s^{4}+9 r^{3}(2 R+r)\right]\left[-s^{4}+\left(4 R^{2}+20 R r-2 r^{2}\right) s^{2}-r(4 R+r)^{3}\right] \\
& \quad+r^{3} s^{2}(R-2 r) P+s^{2}\left(s^{2}-16 R r+5 r^{2}\right) Q \\
\geq & 0 .
\end{aligned}
$$

Hence, from Lemma 2.4, we get that

$$
\begin{equation*}
3\left(\frac{R s}{3 r}\right)^{9}-\left(a^{9}+b^{9}+c^{9}\right)=\frac{s}{6561 r^{9}} W \geq 0 \tag{4.12}
\end{equation*}
$$

or

$$
\begin{equation*}
3\left(\frac{R s}{3 r}\right)^{9} \geq a^{9}+b^{9}+c^{9} \tag{4.13}
\end{equation*}
$$

Inequality (4.13) is simply (4.11). Thus, we complete the proof of Theorem 4.4.

5. Two Open Problems

Finally, we pose two open problems as follows.
Open Problem 1. For a triangle $A B C$ and an arbitrary point P, prove or disprove

$$
\begin{equation*}
R_{1}^{3}+R_{2}^{3}+R_{3}^{3}+6 R_{1} R_{2} R_{3} \geq 72 r^{3} \tag{5.1}
\end{equation*}
$$

Open Problem 2. For a triangle $A B C$ and an arbitrary point P, determine the best constant k such that the following inequality holds:

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{\frac{3}{2}}+\left(R_{2} R_{3}\right)^{\frac{3}{2}}+\left(R_{3} R_{1}\right)^{\frac{3}{2}} \geq 12[R+k(R-2 r)] r^{2} . \tag{5.2}
\end{equation*}
$$

References

[1] O. BOTTEMA, R.Ž. DJORDEVIĆ, R.R. JANIĆ, D.S. MITRINOVIĆ AND P.M. VASIĆ, Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969.
[2] J. BERKES, Einige Dreiecksungleichungen, Elem. Math., 18 (1963), 31-32. (in German)
[3] X.-G. CHU, Two triangle inequalities containing parameter, J. Binzhou Teachers College, 16(1) (2000), 27-30. (in Chinese)
[4] J.-C. KUANG, Chángyòng Bùděngshi (Applied Inequalities), 3rd ed., Shandong Science and Technology Press, Jinan City, Shandong Province, China, 2004, 194.
[5] S.-H. LI, AM-GM Inequality and Cauchy Inequality, East China Normal University Press, Shanghai City, China, 2005, 35. (in Chinese)
[6] J. LIU, Nine sine inequality, manuscript, 2008, 33. (in Chinese)
[7] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND V. VOLENEC, Recent Advances in Geometric Inequalities, Acad. Publ., Dordrecht, Boston, London, 1989.
[8] J. SÁNDOR, Problem 20942*, Mat. Lapok, 11-12 (1986), 486.
[9] J. SÁNDOR, Geometric Theorems, Diophantine Equations and Arithmetic Functions, American Research Press, Rehoboth, NM, USA, 2002, 31. [ONLINE: www.gallup.unm.edu/ ~smarandache/JozsefSandor2.pdf

[^0]: The authors would like to thank Mr. Jian Liu and Professor J. Sándor for their careful reading and some valuable suggestions on this paper. 117-09

