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ABSTRACT. In this short note, we sharpen and generalize a geometric inequality by J. Sándor.
As applications of our results, we give an alternative proof of Sándor’s inequality and solve two
conjectures posed by Liu.
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1. I NTRODUCTION AND M AIN RESULTS

Let P be an arbitrary pointP in the plane of triangleABC. Leta, b, c be the lengths of these

sides,4 the area,s the semi-perimeter,R the circumradius andr the inradius, respectively.

Denote byR1, R2, R3 the distances fromP to the verticesA, B, C, respectively.

The following interesting geometric inequality from 1986 is due to J. Sándor [8], a proof of

this inequality can be found in the monograph [9].

The authors would like to thank Mr. Jian Liu and Professor J. Sándor for their careful reading and some valuable suggestions on this paper.
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Theorem 1.1.For triangleABC and an arbitrary pointP , we have

(1.1) (R1R2)
2 + (R2R3)

2 + (R3R1)
2 ≥ 16

9
42 .

Recently, J. Liu [6] also independently proved inequality (1.1).

In this short note, we sharpen and generalize inequality (1.1) and obtain the following results.

Theorem 1.2.We have

(1.2) (R1R2)
2 + (R2R3)

2 + (R3R1)
2 ≥ a2b2c2

a2 + b2 + c2
.

Theorem 1.3. If

k ≥ k0 =
2(ln 3− ln 2)

3 ln 3− 4 ln 2
≈ 1.549800462,

then

(1.3) (R1R2)
k + (R2R3)

k + (R3R1)
k ≥ 3

(
4

9

√
34

)k

.

2. PRELIMINARY RESULTS

Lemma 2.1 (Hayashi’s inequality, see [7, pp. 297, 311]). For any4ABC and an arbitrary

pointP , we have

(2.1) aR2R3 + bR3R1 + cR1R2 ≥ abc,

with equality holding if and only ifP is the orthocenter of the acute triangleABC or one of the

vertices of the triangleABC.

Lemma 2.2(see [2] and [4]). For4ABC, if

0 ≤ t ≤ t0 =
ln 9− ln 4

ln 4− ln 3
,

then we have

(2.2) at + bt + ct ≤ 3
(√

3R
)t

.

Lemma 2.3. Let

k ≥ k0 =
2(ln 3− ln 2)

3 ln 3− 4 ln 2
≈ 1.549800462.

Then

(2.3)
(abc)k[

a
k

k−1 + b
k

k−1 + c
k

k−1

]k−1
≥ 3

(
4

9

√
34

)k

.

Proof. From the well known identitiesabc = 4Rrs and4 = rs, inequality (2.3) is equivalent

to
(4Rrs)k[

a
k

k−1 + b
k

k−1 + c
k

k−1

]k−1
≥ 3

(
4

9

√
3rs

)k

,
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or

(2.4) a
k

k−1 + b
k

k−1 + c
k

k−1 ≤ 3
(√

3R
) k

k−1
.

It is easy to see that the function

f(x) =
x

x− 1

is strictly monotone decreasing on(1, +∞). If we let

t =
k

k − 1
= f(k)

(
k ≥ k0 =

2(ln 3− ln 2)

3 ln 3− 4 ln 2

)
,

then

0 < f(k) = t ≤ ln 9− ln 4

ln 4− ln 3
= f(k0),

and inequality (2.4) is equivalent to (2.2).

The proof of Lemma 2.3 is thus complete from Lemma 2.2. �

Lemma 2.4([3]). For anyλ ≥ 1, we have

(2.5) [R− λ(λ + 1)r]s2 + r[4(λ2 − 4)R2 + (5λ2 + 12λ + 4)Rr + (λ2 + 3λ + 2)r2] ≥ 0.

Lemma 2.5. In triangleABC, we have

a9 + b9 + c9 = 2s[s8 − 18r(R + 2r)s6 + 18r2(21Rr + 7r2 + 12R2)s4

− 6r3(105r2R + 240rR2 + 14r3 + 160R3)s2 + 9r4(r + 2R)(r + 4R)3].

Proof. The identity directly follows from the known identitiesa + b + c = 2s, ab + bc + ca =

s2 + 4Rr + r2, abc = 4Rrs and the following identity:

a9 + b9 + c9

= 3a3b3c3 − 45abc(ab + bc + ca)(a + b + c)4 + 54abc(ab + bc + ca)2(a + b + c)2

− 27a2b2c2(ab + bc + ca)(a + b + c) + (a + b + c)9

− 9(ab + bc + ca)(a + b + c)7 + 9(ab + bc + ca)4(a + b + c)

− 30(ab + bc + ca)3(a + b + c)3 + 18a2b2c2(a + b + c)3

+ 27(ab + bc + ca)2(a + b + c)5 + 9abc(a + b + c)6 − 9abc(ab + bc + ca)3.

�

Lemma 2.6([5]). If x, y, z ≥ 0, then

x + y + z + 3 3
√

xyz ≥ 2
(√

xy +
√

yz +
√

zx
)
.
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3. PROOF OF THE M AIN RESULT

The proof of Theorem 1.2 is easy to find from the following inequality (3.1) fork = 2 of the

proof of Theorem 1.3. Now, we prove Theorem 1.3.

The proof of Theorem 1.3. Hölder’s inequalityand Lemma 2.1 imply fork > 1 that[
a

k
k−1 + b

k
k−1 + c

k
k−1

] k−1
k

[(R1R2)
k + (R2R3)

k + (R3R1)
k]

1
k

≥ aR2R3 + bR3R1 + cR1R2 ≥ abc,

or

(3.1) (R1R2)
k + (R2R3)

k + (R3R1)
k ≥ (abc)k[

a
k

k−1 + b
k

k−1 + c
k

k−1

]k−1
.

Combining inequality (3.1) and Lemma 2.3, we immediately see that Theorem 1.3 is true.�

4. APPLICATIONS

4.1. Alternative Proof of Theorem 1.1. From Theorem 1.2, in order to prove inequality (1.1),

we only need to prove the following inequality:

(4.1)
a2b2c2

a2 + b2 + c2
≥ 16

9
42 .

With the known identitiesabc = 4Rrs and4 = rs, inequality (4.1) is equivalent to

a2 + b2 + c2 ≤ 9R2.

This is simply inequality (2.2) fort = 2 < t0 in Lemma 2.2. This completes the proof of

inequality (1.1).

Remark 1. The above proof of inequality (1.1) is simpler than Liu’s proof [6].

4.2. Solution of Two Conjectures. In 2008, J. Liu [6] posed the following two geometric

inequality conjectures, (4.2) and (4.3), involvingR1, R2, R3, R andr.

Conjecture 4.1. For4ABC and an arbitrary pointP , we have

(4.2) (R1R2)
2 + (R2R3)

2 + (R3R1)
2 ≥ 8(R2 + 2r2)r2,

and

(4.3) (R1R2)
3
2 + (R2R3)

3
2 + (R3R1)

3
2 ≥ 24r3.

Proof. First of all, fromGerretsen’s inequality[1, pp. 50, Theorem 5.8]

s2 ≤ 4R2 + 4Rr + 3r2

andEuler’s inequality[1, pp. 48, Theorem 5.1]

R ≥ 2r,
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we have

2r2(4R2 + 4Rr + 3r2 − s2) + (R− 2r)(4R2 + Rr + 2r2)r ≥ 0

⇐⇒ 16R2r2s2

2(s2 − 4Rr − r2)
≥ 8(R2 + 2r2)r2.

Using Theorem 1.2 and the known identities [7, pp.52]

abc = 4Rrs and a3 + b3 + c3 = 2s(s2 − 6Rr − 3r2),

we see that inequality (4.2) holds true.

Secondly, from (3.1), in order to prove inequality (4.3), we only need to prove

(4.4)
(abc)

3
2

[a3 + b3 + c3]
1
2

≥ 24r3.

With the known identities [7, pp. 52]

abc = 4Rrs and a3 + b3 + c3 = 2s(s2 − 6Rr − 3r2),

inequality (4.4) is equivalent to

(4.5)
(4Rrs)

3
2

[2s(s2 − 6Rr − 3r2)]
1
2

≥ 24r3

⇐⇒ 18r3(4R2 + 4Rr + 3r2 − s2) + R3(s2 − 16Rr + 5r2)

+ Rr(R− 2r)(16R2 + 27Rr − 18r2) ≥ 0.

FromGerretsen’s inequality[1, pp. 50, Theorem 5.8]

16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2

andEuler’s inequality[1, pp. 48, Theorem 5.1]

R ≥ 2r,

we can conclude that inequality (4.5) holds, further, inequality (4.4) is true.

This completes the proof of Conjecture 4.1. �

Corollary 4.2. For4ABC and an arbitrary pointP , we have

(4.6) R3
1 + R3

2 + R3
3 + 3R1R2R3 ≥ 48r3.

Proof. Inequality (4.6) can directly be obtained from Lemma 2.6 and inequality (4.3). �

4.3. Sharpened Form of Above Conjectures.The inequalities (4.2) and (4.3) of Conjecture

4.1 can be sharpened as follows.

Theorem 4.3.For4ABC and an arbitrary pointP , we have

(4.7) (R1R2)
2 + (R2R3)

2 + (R3R1)
2 ≥ 8(R + r)Rr2,

and

(4.8) (R1R2)
3
2 + (R2R3)

3
2 + (R3R1)

3
2 ≥ 12Rr2.
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Proof. The proof of inequality (4.7) is left to the readers. Now, we prove inequality (4.8).

From inequality (2.5) forλ = 2 in Lemma 2.4, the well-knownGerretsen’s inequality[1,

pp. 50, Theorem 5.8]

16Rr − 5r2 ≤ s2 ≤ 4R2 + 4Rr + 3r2,

Euler’s inequality[1, pp. 48, Theorem 5.1]

R ≥ 2r

and the known identities [7, pp. 52]

abc = 4Rrs anda3 + b3 + c3 = 2s(s2 − 6Rr − 3r2),

we obtain that

[(R− 6r)s2 + 12r2(4R + r)] + 3r(4R2 + 4Rr + 3r2 − s2)(4.9)

+ R(s2 − 16Rr + 5r2) + r(R− 2r)(4R− 3r) ≥ 0

⇐⇒ (4Rrs)
3
2

[2s(s2 − 6Rr − 3r2)]
1
2

≥ 12Rr2

⇐⇒ (abc)
3
2

[a3 + b3 + c3]
1
2

≥ 12Rr2.

Inequality (4.8) follows by Lemma 2.4.

Theorem 4.3 is thus proved. �

4.4. Generalization of Inequality (4.3).

Theorem 4.4. If k ≥ 9
8
, then

(4.10) (R1R2)
k + (R2R3)

k + (R3R1)
k ≥ 3(4r2)k.

Proof. From the monotonicity of the power mean, we only need to prove that inequality (4.10)

holds fork = 9
8
. By using inequality (3.1), we only need to prove the following inequality

(4.11)
(abc)

9
8

(a9 + b9 + c9)
1
8

≥ 3(4r2)
9
8 .

FromGerretsen’s inequality[1, pp. 50, Theorem 5.8]

s2 ≥ 16Rr − 5r2

andEuler’s inequality[1, pp. 48, Theorem 5.1]

R ≥ 2r,

it is obvious that

P = (R− 2r)[4096R10 + 12544R9r + 34992R8r2 + 89667R7r3 + 218700R6r4

+ 516132R5r5 + 1189728R4r6 + 2493180R3r7 + 6018624(R− 2r)Rr8

+ 6753456r10 + 201204(R2 − 4r2)Rr7] + 2799360r11 > 0,
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and

Q = (s2 − 16Rr + 5r2){R9(s2 − 16Rr + 5r2) + 3R4r(R− 2r)(16R5 + 27R4r + 54R3r2

+ 108R2r3 + 216Rr4 + 432r5) + 324r7[8(R2 − 12r2)2 + 30r2(R− 2r)2

+ 39Rr3 + 267r4]}+ 17496r7(R2 − 3Rr + 6r2)(R2 − 12Rr + 24r2)2

+ 3r2(R− 2r){(R− 2r)[256R9 + 864R8r + 2457R2r2(R5 − 32r5)

+ 6372R2r3(R4 − 16r4) + 15660R2r4(R3 − 8r3) + 31320R2r5(R2 − 4r2)

+ 220104R2r6(R− 2r) + 2618784(R− 2r)r8 + 51840R2r7 + 501120Rr8]

+ 687312r10} > 0.

Therefore, with the fundamental inequality [7, pp.1–3]

−s4 + (4R2 + 20Rr − 2r2)s2 − r(4R + r)3 ≥ 0,

we have

W = (R9 − 13122r9)s8 + 236196r10(2r + R)s6 − 236196r11(7r2 + 12R2 + 21Rr)s4

+ 78732r12(105Rr2 + 160R3 + 240R2r + 14r3)s2 − 118098r13(2R + r)(4R + r)3

= 13122r9[s4 + 9r3(2R + r)][−s4 + (4R2 + 20Rr − 2r2)s2 − r(4R + r)3]

+ r3s2(R− 2r)P + s2(s2 − 16Rr + 5r2)Q

≥ 0.

Hence, from Lemma 2.4, we get that

(4.12) 3

(
Rs

3r

)9

− (a9 + b9 + c9) =
s

6561r9
W ≥ 0,

or

(4.13) 3

(
Rs

3r

)9

≥ a9 + b9 + c9.

Inequality (4.13) is simply (4.11). Thus, we complete the proof of Theorem 4.4. �

5. TWO OPEN PROBLEMS

Finally, we pose two open problems as follows.

Open Problem 1. For a triangleABC and an arbitrary pointP , prove or disprove

(5.1) R3
1 + R3

2 + R3
3 + 6R1R2R3 ≥ 72r3.

Open Problem 2. For a triangleABC and an arbitrary pointP , determine the best constant

k such that the following inequality holds:

(5.2) (R1R2)
3
2 + (R2R3)

3
2 + (R3R1)

3
2 ≥ 12[R + k(R− 2r)]r2.
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