ON A GEOMETRIC INEQUALITY BY J. SÁNDOR

YU-DONG WU

Department of Mathematics Zhejiang Xinchang High School Shaoxing 312500, Zhejiang People's Republic of China

EMail: yudong.wu@yahoo.com.cn

ZHI-HUA ZHANG

Department of Mathematics Shili Senior High School in Zixing

Chenzhou 423400, Hunan People's Republic of China

EMail: zxzh1234@163.com

XIAO-GUANG CHU

Suzhou Hengtian Trading Co. Ltd

Suzhou 215128, Jiangsu People's Republic of China EMail: str345@163.com

Received: 02 May, 2009

Accepted: 25 September, 2009

Communicated by: L. Tóth

2000 AMS Sub. Class.: 51M16, 52A40.

Key words: Triangle, Hayashi's inequality, Hölder's inequality, Gerretsen's inequality, Eu-

ler's inequality.

Abstract: In this short note, we sharpen and generalize a geometric inequality by J. Sándor.

As applications of our results, we give an alternative proof of Sándor's inequality

and solve two conjectures posed by Liu.

Acknowledgements: The authors would like to thank Mr. Jian Liu and Professor J. Sándor for their

careful reading and some valuable suggestions on this paper.

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

>>

Page 1 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Contents

1	Introduction and Main Results	3
2	Preliminary Results	4
3	Proof of the Main Result	7
1	Applications	8
	4.1 Alternative Proof of Theorem 1.1	8
	4.2 Solution of Two Conjectures	8
	4.3 Sharpened Form of Above Conjectures	10
	4.4 Generalization of Inequality (4.3)	11
5	Two Open Problems	14

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

Page 2 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

1. Introduction and Main Results

Let P be an arbitrary point P in the plane of triangle ABC. Let a, b, c be the lengths of these sides, \triangle the area, s the semi-perimeter, R the circumradius and r the inradius, respectively. Denote by R_1 , R_2 , R_3 the distances from P to the vertices A, B, C, respectively.

The following interesting geometric inequality from 1986 is due to J. Sándor [8], a proof of this inequality can be found in the monograph [9].

Theorem 1.1. For triangle ABC and an arbitrary point P, we have

$$(1.1) (R_1 R_2)^2 + (R_2 R_3)^2 + (R_3 R_1)^2 \ge \frac{16}{9} \triangle^2.$$

Recently, J. Liu [6] also independently proved inequality (1.1).

In this short note, we sharpen and generalize inequality (1.1) and obtain the following results.

Theorem 1.2. We have

$$(1.2) (R_1R_2)^2 + (R_2R_3)^2 + (R_3R_1)^2 \ge \frac{a^2b^2c^2}{a^2 + b^2 + c^2}.$$

Theorem 1.3. If

$$k \ge k_0 = \frac{2(\ln 3 - \ln 2)}{3\ln 3 - 4\ln 2} \approx 1.549800462,$$

then

(1.3)
$$(R_1 R_2)^k + (R_2 R_3)^k + (R_3 R_1)^k \ge 3 \left(\frac{4}{9} \sqrt{3} \triangle\right)^k.$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

Page 3 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

2. Preliminary Results

Lemma 2.1 (Hayashi's inequality, see [7, pp. 297, 311]). For any $\triangle ABC$ and an arbitrary point P, we have

$$(2.1) aR_2R_3 + bR_3R_1 + cR_1R_2 \ge abc,$$

with equality holding if and only if P is the orthocenter of the acute triangle ABC or one of the vertices of the triangle ABC.

Lemma 2.2 (see [2] and [4]). For $\triangle ABC$, if

$$0 \le t \le t_0 = \frac{\ln 9 - \ln 4}{\ln 4 - \ln 3},$$

then we have

$$(2.2) a^t + b^t + c^t \le 3\left(\sqrt{3}R\right)^t.$$

Lemma 2.3. Let

$$k \ge k_0 = \frac{2(\ln 3 - \ln 2)}{3\ln 3 - 4\ln 2} \approx 1.549800462.$$

Then

(2.3)
$$\frac{(abc)^k}{\left[a^{\frac{k}{k-1}} + b^{\frac{k}{k-1}} + c^{\frac{k}{k-1}}\right]^{k-1}} \ge 3\left(\frac{4}{9}\sqrt{3}\triangle\right)^k.$$

Proof. From the well known identities abc = 4Rrs and $\triangle = rs$, inequality (2.3) is equivalent to

$$\frac{(4Rrs)^k}{\left[a^{\frac{k}{k-1}} + b^{\frac{k}{k-1}} + c^{\frac{k}{k-1}}\right]^{k-1}} \ge 3\left(\frac{4}{9}\sqrt{3}rs\right)^k,$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page Contents

Page 4 of 15

Go Back

Full Screen
Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

or

(2.4)
$$a^{\frac{k}{k-1}} + b^{\frac{k}{k-1}} + c^{\frac{k}{k-1}} \le 3\left(\sqrt{3}R\right)^{\frac{k}{k-1}}.$$

It is easy to see that the function

$$f(x) = \frac{x}{x-1}$$

is strictly monotone decreasing on $(1, +\infty)$. If we let

$$t = \frac{k}{k-1} = f(k)$$
 $\left(k \ge k_0 = \frac{2(\ln 3 - \ln 2)}{3\ln 3 - 4\ln 2}\right),$

then

$$0 < f(k) = t \le \frac{\ln 9 - \ln 4}{\ln 4 - \ln 3} = f(k_0),$$

and inequality (2.4) is equivalent to (2.2).

The proof of Lemma 2.3 is thus complete from Lemma 2.2.

Lemma 2.4 ([3]). For any $\lambda \geq 1$, we have

$$(2.5) \ [R - \lambda(\lambda+1)r]s^2 + r[4(\lambda^2-4)R^2 + (5\lambda^2+12\lambda+4)Rr + (\lambda^2+3\lambda+2)r^2] \ge 0.$$

Lemma 2.5. In triangle ABC, we have

$$a^{9} + b^{9} + c^{9} = 2s[s^{8} - 18r(R + 2r)s^{6} + 18r^{2}(21Rr + 7r^{2} + 12R^{2})s^{4} - 6r^{3}(105r^{2}R + 240rR^{2} + 14r^{3} + 160R^{3})s^{2} + 9r^{4}(r + 2R)(r + 4R)^{3}].$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof. The identity directly follows from the known identities a + b + c = 2s, $ab + bc + ca = s^2 + 4Rr + r^2$, abc = 4Rrs and the following identity:

$$a^{9} + b^{9} + c^{9}$$

$$= 3a^{3}b^{3}c^{3} - 45abc(ab + bc + ca)(a + b + c)^{4} + 54abc(ab + bc + ca)^{2}(a + b + c)^{2}$$

$$- 27a^{2}b^{2}c^{2}(ab + bc + ca)(a + b + c) + (a + b + c)^{9}$$

$$- 9(ab + bc + ca)(a + b + c)^{7} + 9(ab + bc + ca)^{4}(a + b + c)$$

$$- 30(ab + bc + ca)^{3}(a + b + c)^{3} + 18a^{2}b^{2}c^{2}(a + b + c)^{3}$$

$$+ 27(ab + bc + ca)^{2}(a + b + c)^{5} + 9abc(a + b + c)^{6} - 9abc(ab + bc + ca)^{3}.$$

Lemma 2.6 ([5]). If $x, y, z \ge 0$, then

$$x + y + z + 3\sqrt[3]{xyz} \ge 2\left(\sqrt{xy} + \sqrt{yz} + \sqrt{zx}\right).$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

journal of inequalities in pure and applied mathematics

Full Screen

Close

issn: 1443-5756

3. Proof of the Main Result

The proof of Theorem 1.2 is easy to find from the following inequality (3.1) for k = 2 of the proof of Theorem 1.3. Now, we prove Theorem 1.3.

The proof of Theorem 1.3. Hölder's inequality and Lemma 2.1 imply for k > 1 that

$$\left[a^{\frac{k}{k-1}} + b^{\frac{k}{k-1}} + c^{\frac{k}{k-1}}\right]^{\frac{k-1}{k}} \left[(R_1 R_2)^k + (R_2 R_3)^k + (R_3 R_1)^k \right]^{\frac{1}{k}}$$

$$\geq aR_2 R_3 + bR_3 R_1 + cR_1 R_2 \geq abc,$$

or

$$(3.1) (R_1 R_2)^k + (R_2 R_3)^k + (R_3 R_1)^k \ge \frac{(abc)^k}{\left\lceil a^{\frac{k}{k-1}} + b^{\frac{k}{k-1}} + c^{\frac{k}{k-1}} \right\rceil^{k-1}}.$$

Combining inequality (3.1) and Lemma 2.3, we immediately see that Theorem 1.3 is true. \Box

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

Page 7 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

4. Applications

4.1. Alternative Proof of Theorem 1.1

From Theorem 1.2, in order to prove inequality (1.1), we only need to prove the following inequality:

(4.1)
$$\frac{a^2b^2c^2}{a^2+b^2+c^2} \ge \frac{16}{9} \triangle^2.$$

With the known identities abc = 4Rrs and $\triangle = rs$, inequality (4.1) is equivalent to

$$a^2 + b^2 + c^2 \le 9R^2.$$

This is simply inequality (2.2) for $t = 2 < t_0$ in Lemma 2.2. This completes the proof of inequality (1.1).

Remark 1. The above proof of inequality (1.1) is simpler than Liu's proof [6].

4.2. Solution of Two Conjectures

In 2008, J. Liu [6] posed the following two geometric inequality conjectures, (4.2) and (4.3), involving R_1 , R_2 , R_3 , R and r.

Conjecture 4.1. For $\triangle ABC$ and an arbitrary point P, we have

$$(4.2) (R_1R_2)^2 + (R_2R_3)^2 + (R_3R_1)^2 \ge 8(R^2 + 2r^2)r^2,$$

and

$$(4.3) (R_1R_2)^{\frac{3}{2}} + (R_2R_3)^{\frac{3}{2}} + (R_3R_1)^{\frac{3}{2}} \ge 24r^3.$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

Page 8 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof. First of all, from *Gerretsen's inequality* [1, pp. 50, Theorem 5.8]

$$s^2 \le 4R^2 + 4Rr + 3r^2$$

and Euler's inequality [1, pp. 48, Theorem 5.1]

$$R \geq 2r$$
,

we have

$$2r^{2}(4R^{2} + 4Rr + 3r^{2} - s^{2}) + (R - 2r)(4R^{2} + Rr + 2r^{2})r \ge 0$$

$$\iff \frac{16R^{2}r^{2}s^{2}}{2(s^{2} - 4Rr - r^{2})} \ge 8(R^{2} + 2r^{2})r^{2}.$$

Using Theorem 1.2 and the known identities [7, pp.52]

$$abc = 4Rrs$$
 and $a^3 + b^3 + c^3 = 2s(s^2 - 6Rr - 3r^2),$

we see that inequality (4.2) holds true.

Secondly, from (3.1), in order to prove inequality (4.3), we only need to prove

(4.4)
$$\frac{(abc)^{\frac{3}{2}}}{[a^3 + b^3 + c^3]^{\frac{1}{2}}} \ge 24r^3.$$

With the known identities [7, pp. 52]

$$abc = 4Rrs$$
 and $a^3 + b^3 + c^3 = 2s(s^2 - 6Rr - 3r^2),$

inequality (4.4) is equivalent to

$$(4.5) \frac{(4Rrs)^{\frac{3}{2}}}{[2s(s^2 - 6Rr - 3r^2)]^{\frac{1}{2}}} \ge 24r^3$$

$$\iff 18r^3(4R^2 + 4Rr + 3r^2 - s^2) + R^3(s^2 - 16Rr + 5r^2)$$

$$+ Rr(R - 2r)(16R^2 + 27Rr - 18r^2) \ge 0.$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

From Gerretsen's inequality [1, pp. 50, Theorem 5.8]

$$16Rr - 5r^2 \le s^2 \le 4R^2 + 4Rr + 3r^2$$

and Euler's inequality [1, pp. 48, Theorem 5.1]

we can conclude that inequality (4.5) holds, further, inequality (4.4) is true. This completes the proof of Conjecture 4.1.

Corollary 4.2. For $\triangle ABC$ and an arbitrary point P, we have

$$(4.6) R_1^3 + R_2^3 + R_3^3 + 3R_1R_2R_3 \ge 48r^3.$$

Proof. Inequality (4.6) can directly be obtained from Lemma 2.6 and inequality (4.3).

4.3. Sharpened Form of Above Conjectures

The inequalities (4.2) and (4.3) of Conjecture 4.1 can be sharpened as follows.

Theorem 4.3. For $\triangle ABC$ and an arbitrary point P, we have

$$(4.7) (R_1R_2)^2 + (R_2R_3)^2 + (R_3R_1)^2 \ge 8(R+r)Rr^2,$$

and

$$(4.8) (R_1R_2)^{\frac{3}{2}} + (R_2R_3)^{\frac{3}{2}} + (R_3R_1)^{\frac{3}{2}} \ge 12Rr^2.$$

Proof. The proof of inequality (4.7) is left to the readers. Now, we prove inequality (4.8).

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Г

Title Page

Contents

Page 10 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

From inequality (2.5) for $\lambda=2$ in Lemma 2.4, the well-known *Gerretsen's inequality* [1, pp. 50, Theorem 5.8]

$$16Rr - 5r^2 \le s^2 \le 4R^2 + 4Rr + 3r^2,$$

Euler's inequality [1, pp. 48, Theorem 5.1]

$$R \ge 2r$$

and the known identities [7, pp. 52]

$$abc = 4Rrs$$
 and $a^3 + b^3 + c^3 = 2s(s^2 - 6Rr - 3r^2)$,

we obtain that

$$(4.9) [(R-6r)s^{2} + 12r^{2}(4R+r)] + 3r(4R^{2} + 4Rr + 3r^{2} - s^{2}) + R(s^{2} - 16Rr + 5r^{2}) + r(R - 2r)(4R - 3r) \ge 0 \Leftrightarrow \frac{(4Rrs)^{\frac{3}{2}}}{[2s(s^{2} - 6Rr - 3r^{2})]^{\frac{1}{2}}} \ge 12Rr^{2} \Leftrightarrow \frac{(abc)^{\frac{3}{2}}}{[a^{3} + b^{3} + c^{3}]^{\frac{1}{2}}} \ge 12Rr^{2}.$$

Inequality (4.8) follows by Lemma 2.4.

Theorem 4.3 is thus proved.

4.4. Generalization of Inequality (4.3)

Theorem 4.4. If $k \geq \frac{9}{8}$, then

$$(4.10) (R_1R_2)^k + (R_2R_3)^k + (R_3R_1)^k \ge 3(4r^2)^k.$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

Page 11 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Proof. From the monotonicity of the power mean, we only need to prove that inequality (4.10) holds for $k = \frac{9}{8}$. By using inequality (3.1), we only need to prove the following inequality

$$\frac{(abc)^{\frac{9}{8}}}{(a^9 + b^9 + c^9)^{\frac{1}{8}}} \ge 3(4r^2)^{\frac{9}{8}}.$$

From Gerretsen's inequality [1, pp. 50, Theorem 5.8]

$$s^2 \ge 16Rr - 5r^2$$

and Euler's inequality [1, pp. 48, Theorem 5.1]

$$R \geq 2r$$
,

it is obvious that

$$P = (R - 2r)[4096R^{10} + 12544R^9r + 34992R^8r^2 + 89667R^7r^3 + 218700R^6r^4 + 516132R^5r^5 + 1189728R^4r^6 + 2493180R^3r^7 + 6018624(R - 2r)Rr^8 + 6753456r^{10} + 201204(R^2 - 4r^2)Rr^7] + 2799360r^{11} > 0,$$

and

$$\begin{split} Q &= (s^2 - 16Rr + 5r^2)\{R^9(s^2 - 16Rr + 5r^2) \\ &+ 3R^4r(R - 2r)(16R^5 + 27R^4r + 54R^3r^2 \\ &+ 108R^2r^3 + 216Rr^4 + 432r^5) + 324r^7[8(R^2 - 12r^2)^2 + 30r^2(R - 2r)^2 \\ &+ 39Rr^3 + 267r^4]\} + 17496r^7(R^2 - 3Rr + 6r^2)(R^2 - 12Rr + 24r^2)^2 \\ &+ 3r^2(R - 2r)\{(R - 2r)[256R^9 + 864R^8r + 2457R^2r^2(R^5 - 32r^5) \\ &+ 6372R^2r^3(R^4 - 16r^4) + 15660R^2r^4(R^3 - 8r^3) + 31320R^2r^5(R^2 - 4r^2) \\ &+ 220104R^2r^6(R - 2r) + 2618784(R - 2r)r^8 + 51840R^2r^7 + 501120Rr^8] \\ &+ 687312r^{10}\} > 0. \end{split}$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

Page 12 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

Therefore, with the fundamental inequality [7, pp.1–3]

$$-s^4 + (4R^2 + 20Rr - 2r^2)s^2 - r(4R + r)^3 \ge 0,$$

we have

$$\begin{split} W &= (R^9 - 13122r^9)s^8 + 236196r^{10}(2r+R)s^6 - 236196r^{11}(7r^2 + 12R^2 + 21Rr)s^4 \\ &\quad + 78732r^{12}(105Rr^2 + 160R^3 + 240R^2r + 14r^3)s^2 \\ &\quad - 118098r^{13}(2R+r)(4R+r)^3 \\ &= 13122r^9[s^4 + 9r^3(2R+r)][-s^4 + (4R^2 + 20Rr - 2r^2)s^2 - r(4R+r)^3] \\ &\quad + r^3s^2(R-2r)P + s^2(s^2 - 16Rr + 5r^2)Q \\ &> 0. \end{split}$$

Hence, from Lemma 2.4, we get that

(4.12)
$$3\left(\frac{Rs}{3r}\right)^9 - (a^9 + b^9 + c^9) = \frac{s}{6561r^9}W \ge 0,$$

or

$$3\left(\frac{Rs}{3r}\right)^9 \ge a^9 + b^9 + c^9.$$

Inequality (4.13) is simply (4.11). Thus, we complete the proof of Theorem 4.4. \Box

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

Page 13 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756

5. Two Open Problems

Finally, we pose two open problems as follows.

Open Problem 1. For a triangle ABC and an arbitrary point P, prove or disprove

(5.1)
$$R_1^3 + R_2^3 + R_3^3 + 6R_1R_2R_3 \ge 72r^3.$$

Open Problem 2. For a triangle ABC and an arbitrary point P, determine the best constant k such that the following inequality holds:

$$(5.2) (R_1R_2)^{\frac{3}{2}} + (R_2R_3)^{\frac{3}{2}} + (R_3R_1)^{\frac{3}{2}} \ge 12[R + k(R - 2r)]r^2.$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

Page 14 of 15

Go Back

Full Screen

journal of inequalities in pure and applied mathematics

Close

issn: 1443-5756

References

- [1] O. BOTTEMA, R.Ž. DJORDEVIĆ, R.R. JANIĆ, D.S. MITRINOVIĆ AND P.M. VASIĆ, *Geometric Inequalities*, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969.
- [2] J. BERKES, Einige Dreiecksungleichungen, *Elem. Math.*, **18** (1963), 31–32. (in German)
- [3] X.-G. CHU, Two triangle inequalities containing parameter, *J. Binzhou Teachers College*, **16**(1) (2000), 27–30. (in Chinese)
- [4] J.-C. KUANG, *Chángyòng Bùděngshi (Applied Inequalities)*, 3rd ed., Shandong Science and Technology Press, Jinan City, Shandong Province, China, 2004, 194.
- [5] S.-H. LI, AM–GM Inequality and Cauchy Inequality, East China Normal University Press, Shanghai City, China, 2005, 35. (in Chinese)
- [6] J. LIU, Nine sine inequality, manuscript, 2008, 33. (in Chinese)
- [7] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND V. VOLENEC, *Recent Advances in Geometric Inequalities*, Acad. Publ., Dordrecht, Boston, London, 1989.
- [8] J. SÁNDOR, Problem 20942*, Mat. Lapok, 11-12 (1986), 486.
- [9] J. SÁNDOR, Geometric Theorems, Diophantine Equations and Arithmetic Functions, American Research Press, Rehoboth, NM, USA, 2002, 31. [ON-LINE: www.gallup.unm.edu/~smarandache/JozsefSandor2.pdf]

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu

vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

Page 15 of 15

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

issn: 1443-5756