ON A GEOMETRIC INEQUALITY BY J. SÁNDOR

YU-DONG WU

Department of Mathematics
Zhejiang Xinchang High School
Shaoxing 312500, Zhejiang
People's Republic of China
EMail: yudong.wu@yahoo.com.cn

ZHI-HUA ZHANG

Department of Mathematics
Shili Senior High School in Zixing
Chenzhou 423400, Hunan
People's Republic of China
EMail: zxzh1234@163.com

XIAO-GUANG CHU
Suzhou Hengtian Trading Co. Ltd
Suzhou 215128, Jiangsu
People's Republic of China
EMail: srr345@163.com

Received: $\quad 02$ May, 2009
Accepted: $\quad 25$ September, 2009
Communicated by:
L. Tóth

2000 AMS Sub. Class.:
Key words:

Abstract:

Acknowledgements:

51M16, 52A40.
Triangle, Hayashi's inequality, Hölder's inequality, Gerretsen's inequality, Euler's inequality.

In this short note, we sharpen and generalize a geometric inequality by J. Sándor. As applications of our results, we give an alternative proof of Sándor's inequality and solve two conjectures posed by Liu.

The authors would like to thank Mr. Jian Liu and Professor J. Sándor for their careful reading and some valuable suggestions on this paper.

Geometric Inequality by J. Sándor
Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page

Contents

44

Page 1 of 15
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

Contents

1 Introduction and Main Results 3
2 Preliminary Results 4
3 Proof of the Main Result 7 7
4 Applications 8
4.1 Alternative Proof of Theorem 1.1 8
4.2 Solution of Two Conjectures 8
4.3 Sharpened Form of Above Conjectures 10
4.4 Generalization of Inequality (4.3) 11
5 Two Open Problems 14

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Contents

journal of inequalities in pure and applied mathematics
issn: 1443-575b

1. Introduction and Main Results

Let P be an arbitrary point P in the plane of triangle $A B C$. Let a, b, c be the lengths of these sides, \triangle the area, s the semi-perimeter, R the circumradius and r the inradius, respectively. Denote by R_{1}, R_{2}, R_{3} the distances from P to the vertices A, B, C, respectively.

The following interesting geometric inequality from 1986 is due to J. Sándor [8], a proof of this inequality can be found in the monograph [9].

Theorem 1.1. For triangle $A B C$ and an arbitrary point P, we have

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{2}+\left(R_{2} R_{3}\right)^{2}+\left(R_{3} R_{1}\right)^{2} \geq \frac{16}{9} \triangle^{2} \tag{1.1}
\end{equation*}
$$

Recently, J. Liu [6] also independently proved inequality (1.1).
In this short note, we sharpen and generalize inequality (1.1) and obtain the following results.

Theorem 1.2. We have

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{2}+\left(R_{2} R_{3}\right)^{2}+\left(R_{3} R_{1}\right)^{2} \geq \frac{a^{2} b^{2} c^{2}}{a^{2}+b^{2}+c^{2}} \tag{1.2}
\end{equation*}
$$

Theorem 1.3. If

$$
k \geq k_{0}=\frac{2(\ln 3-\ln 2)}{3 \ln 3-4 \ln 2} \approx 1.549800462
$$

then

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{k}+\left(R_{2} R_{3}\right)^{k}+\left(R_{3} R_{1}\right)^{k} \geq 3\left(\frac{4}{9} \sqrt{3} \triangle\right)^{k} \tag{1.3}
\end{equation*}
$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Contents

Page 3 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

2. Preliminary Results

Lemma 2.1 (Hayashi's inequality, see [7, pp. 297, 311]). For any $\triangle A B C$ and an arbitrary point P, we have

$$
\begin{equation*}
a R_{2} R_{3}+b R_{3} R_{1}+c R_{1} R_{2} \geq a b c \tag{2.1}
\end{equation*}
$$

with equality holding if and only if P is the orthocenter of the acute triangle $A B C$ or one of the vertices of the triangle $A B C$.
Lemma 2.2 (see [2] and [4]). For $\triangle A B C$, if

$$
0 \leq t \leq t_{0}=\frac{\ln 9-\ln 4}{\ln 4-\ln 3}
$$

then we have

$$
\begin{equation*}
a^{t}+b^{t}+c^{t} \leq 3(\sqrt{3} R)^{t} \tag{2.2}
\end{equation*}
$$

Lemma 2.3. Let

$$
k \geq k_{0}=\frac{2(\ln 3-\ln 2)}{3 \ln 3-4 \ln 2} \approx 1.549800462
$$

Then

$$
\begin{equation*}
\frac{(a b c)^{k}}{\left[a^{\frac{k}{k-1}}+b^{\frac{k}{k-1}}+c^{\frac{k}{k-1}}\right]^{k-1}} \geq 3\left(\frac{4}{9} \sqrt{3} \triangle\right)^{k} . \tag{2.3}
\end{equation*}
$$

Proof. From the well known identities $a b c=4 R r s$ and $\triangle=r s$, inequality (2.3) is equivalent to

$$
\frac{(4 R r s)^{k}}{\left[a^{\frac{k}{k-1}}+b^{\frac{k}{k-1}}+c^{\frac{k}{k-1}}\right]^{k-1}} \geq 3\left(\frac{4}{9} \sqrt{3} r s\right)^{k}
$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Contents

Page 4 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

$$
\begin{equation*}
a^{\frac{k}{k-1}}+b^{\frac{k}{k-1}}+c^{\frac{k}{k-1}} \leq 3(\sqrt{3} R)^{\frac{k}{k-1}} \tag{2.4}
\end{equation*}
$$

It is easy to see that the function

$$
f(x)=\frac{x}{x-1}
$$

is strictly monotone decreasing on $(1,+\infty)$. If we let

$$
t=\frac{k}{k-1}=f(k) \quad\left(k \geq k_{0}=\frac{2(\ln 3-\ln 2)}{3 \ln 3-4 \ln 2}\right)
$$

then

$$
0<f(k)=t \leq \frac{\ln 9-\ln 4}{\ln 4-\ln 3}=f\left(k_{0}\right)
$$

and inequality (2.4) is equivalent to (2.2).
The proof of Lemma 2.3 is thus complete from Lemma 2.2.
Lemma 2.4 ([3]). For any $\lambda \geq 1$, we have
(2.5) $[R-\lambda(\lambda+1) r] s^{2}+r\left[4\left(\lambda^{2}-4\right) R^{2}+\left(5 \lambda^{2}+12 \lambda+4\right) R r+\left(\lambda^{2}+3 \lambda+2\right) r^{2}\right] \geq 0$.

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Contents
44

Page 5 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. The identity directly follows from the known identities $a+b+c=2 s$, $a b+b c+c a=s^{2}+4 R r+r^{2}, a b c=4 R r s$ and the following identity:

$$
\begin{aligned}
& a^{9}+b^{9}+c^{9} \\
& =3 a^{3} b^{3} c^{3}-45 a b c(a b+b c+c a)(a+b+c)^{4}+54 a b c(a b+b c+c a)^{2}(a+b+c)^{2} \\
& \quad-27 a^{2} b^{2} c^{2}(a b+b c+c a)(a+b+c)+(a+b+c)^{9} \\
& \quad-9(a b+b c+c a)(a+b+c)^{7}+9(a b+b c+c a)^{4}(a+b+c) \\
& \quad-30(a b+b c+c a)^{3}(a+b+c)^{3}+18 a^{2} b^{2} c^{2}(a+b+c)^{3} \\
& \quad+27(a b+b c+c a)^{2}(a+b+c)^{5}+9 a b c(a+b+c)^{6}-9 a b c(a b+b c+c a)^{3} .
\end{aligned}
$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Lemma 2.6 ([5]). If $x, y, z \geq 0$, then

$$
x+y+z+3 \sqrt[3]{x y z} \geq 2(\sqrt{x y}+\sqrt{y z}+\sqrt{z x})
$$

Contents
44

Page 6 of 15
Go Back
Full Screen

Close

journal of inequalities in pure and applied mathematics
issn: 1443-575b

3. Proof of the Main Result

The proof of Theorem 1.2 is easy to find from the following inequality (3.1) for $k=2$ of the proof of Theorem 1.3. Now, we prove Theorem 1.3.
The proof of Theorem 1.3. Hölder's inequality and Lemma 2.1 imply for $k>1$ that

$$
\begin{aligned}
& {\left[a^{\frac{k}{k-1}}+b^{\frac{k}{k-1}}+c^{\frac{k}{k-1}}\right]^{\frac{k-1}{k}}\left[\left(R_{1} R_{2}\right)^{k}+\left(R_{2} R_{3}\right)^{k}+\left(R_{3} R_{1}\right)^{k}\right]^{\frac{1}{k}}} \\
& \quad \geq a R_{2} R_{3}+b R_{3} R_{1}+c R_{1} R_{2} \geq a b c
\end{aligned}
$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009
or

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{k}+\left(R_{2} R_{3}\right)^{k}+\left(R_{3} R_{1}\right)^{k} \geq \frac{(a b c)^{k}}{\left[a^{\frac{k}{k-1}}+b^{\frac{k}{k-1}}+c^{\frac{k}{k-1}}\right]^{k-1}} \tag{3.1}
\end{equation*}
$$

Combining inequality (3.1) and Lemma 2.3, we immediately see that Theorem 1.3 is true.

Title Page	
Contents	
$\mathbf{4 4}$	
$\mathbf{4}$	
Page 7 of 15	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

4. Applications

4.1. Alternative Proof of Theorem 1.1

From Theorem 1.2, in order to prove inequality (1.1), we only need to prove the following inequality:

$$
\begin{equation*}
\frac{a^{2} b^{2} c^{2}}{a^{2}+b^{2}+c^{2}} \geq \frac{16}{9} \triangle^{2} \tag{4.1}
\end{equation*}
$$

With the known identities $a b c=4 R r s$ and $\triangle=r s$, inequality (4.1) is equivalent to

$$
a^{2}+b^{2}+c^{2} \leq 9 R^{2}
$$

This is simply inequality (2.2) for $t=2<t_{0}$ in Lemma 2.2. This completes the proof of inequality (1.1).
Remark 1. The above proof of inequality (1.1) is simpler than Liu's proof [6].

4.2. Solution of Two Conjectures

In 2008, J. Liu [6] posed the following two geometric inequality conjectures, (4.2) and (4.3), involving R_{1}, R_{2}, R_{3}, R and r.

Conjecture 4.1. For $\triangle A B C$ and an arbitrary point P, we have

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{2}+\left(R_{2} R_{3}\right)^{2}+\left(R_{3} R_{1}\right)^{2} \geq 8\left(R^{2}+2 r^{2}\right) r^{2} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{\frac{3}{2}}+\left(R_{2} R_{3}\right)^{\frac{3}{2}}+\left(R_{3} R_{1}\right)^{\frac{3}{2}} \geq 24 r^{3} \tag{4.3}
\end{equation*}
$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Contents

Page 8 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. First of all, from Gerretsen's inequality [1, pp. 50, Theorem 5.8]

$$
s^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$

and Euler's inequality [1, pp. 48, Theorem 5.1]

$$
R \geq 2 r
$$

we have

$$
\begin{aligned}
& 2 r^{2}\left(4 R^{2}+4 R r+3 r^{2}-s^{2}\right)+(R-2 r) \\
&\left(4 R^{2}+R r+2 r^{2}\right) r \geq 0 \\
& \Longleftrightarrow \frac{16 R^{2} r^{2} s^{2}}{2\left(s^{2}-4 R r-r^{2}\right)} \geq 8\left(R^{2}+2 r^{2}\right) r^{2}
\end{aligned}
$$

Using Theorem 1.2 and the known identities [7, pp.52]

$$
a b c=4 R r s \quad \text { and } \quad a^{3}+b^{3}+c^{3}=2 s\left(s^{2}-6 R r-3 r^{2}\right)
$$

we see that inequality (4.2) holds true.
Secondly, from (3.1), in order to prove inequality (4.3), we only need to prove

$$
\begin{equation*}
\frac{(a b c)^{\frac{3}{2}}}{\left[a^{3}+b^{3}+c^{3}\right]^{\frac{1}{2}}} \geq 24 r^{3} \tag{4.4}
\end{equation*}
$$

With the known identities [7, pp. 52]

$$
a b c=4 R r s \quad \text { and } \quad a^{3}+b^{3}+c^{3}=2 s\left(s^{2}-6 R r-3 r^{2}\right)
$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Contents

Page 9 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

From Gerretsen's inequality [1, pp. 50, Theorem 5.8]

$$
16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$

and Euler's inequality [1, pp. 48, Theorem 5.1]

$$
R \geq 2 r
$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009
Corollary 4.2. For $\triangle A B C$ and an arbitrary point P, we have

$$
\begin{equation*}
R_{1}^{3}+R_{2}^{3}+R_{3}^{3}+3 R_{1} R_{2} R_{3} \geq 48 r^{3} \tag{4.6}
\end{equation*}
$$

Proof. Inequality (4.6) can directly be obtained from Lemma 2.6 and inequality (4.3).

4.3. Sharpened Form of Above Conjectures

The inequalities (4.2) and (4.3) of Conjecture 4.1 can be sharpened as follows.
Theorem 4.3. For $\triangle A B C$ and an arbitrary point P, we have

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{2}+\left(R_{2} R_{3}\right)^{2}+\left(R_{3} R_{1}\right)^{2} \geq 8(R+r) R r^{2} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{\frac{3}{2}}+\left(R_{2} R_{3}\right)^{\frac{3}{2}}+\left(R_{3} R_{1}\right)^{\frac{3}{2}} \geq 12 R r^{2} . \tag{4.8}
\end{equation*}
$$

Proof. The proof of inequality (4.7) is left to the readers. Now, we prove inequality (4.8).

Title Page
Contents

Page 10 of 15

Go Back

Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

From inequality (2.5) for $\lambda=2$ in Lemma 2.4, the well-known Gerretsen's inequality [1, pp. 50, Theorem 5.8]

$$
16 R r-5 r^{2} \leq s^{2} \leq 4 R^{2}+4 R r+3 r^{2}
$$

Euler's inequality [1, pp. 48, Theorem 5.1]

$$
R \geq 2 r
$$

and the known identities [7, pp. 52]

$$
a b c=4 R r s \text { and } a^{3}+b^{3}+c^{3}=2 s\left(s^{2}-6 R r-3 r^{2}\right),
$$

we obtain that

$$
\begin{align*}
& {\left[(R-6 r) s^{2}+12 r^{2}(4 R+r)\right]+3 r\left(4 R^{2}+4 R r+3 r^{2}-s^{2}\right)} \tag{4.9}\\
& \quad+R\left(s^{2}-16 R r+5 r^{2}\right)+r(R-2 r)(4 R-3 r) \geq 0
\end{aligned} \begin{aligned}
& \Longleftrightarrow \frac{(4 R r s)^{\frac{3}{2}}}{\left[2 s\left(s^{2}-6 R r-3 r^{2}\right)\right]^{\frac{1}{2}} \geq 12 R r^{2}} \\
& \Longleftrightarrow \frac{(a b c)^{\frac{3}{2}}}{\left[a^{3}+b^{3}+c^{3}\right]^{\frac{1}{2}}} \geq 12 R r^{2} .
\end{align*}
$$

Inequality (4.8) follows by Lemma 2.4.
Theorem 4.3 is thus proved.

4.4. Generalization of Inequality (4.3)

Theorem 4.4. If $k \geq \frac{9}{8}$, then

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{k}+\left(R_{2} R_{3}\right)^{k}+\left(R_{3} R_{1}\right)^{k} \geq 3\left(4 r^{2}\right)^{k} \tag{4.10}
\end{equation*}
$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Contents

Page 11 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Proof. From the monotonicity of the power mean, we only need to prove that inequality (4.10) holds for $k=\frac{9}{8}$. By using inequality (3.1), we only need to prove the following inequality

$$
\begin{equation*}
\frac{(a b c)^{\frac{9}{8}}}{\left(a^{9}+b^{9}+c^{9}\right)^{\frac{1}{8}}} \geq 3\left(4 r^{2}\right)^{\frac{9}{8}} \tag{4.11}
\end{equation*}
$$

From Gerretsen's inequality [1, pp. 50, Theorem 5.8]

$$
s^{2} \geq 16 R r-5 r^{2}
$$

and Euler's inequality [1, pp. 48, Theorem 5.1]

$$
R \geq 2 r
$$

it is obvious that

$$
\begin{gathered}
P=(R-2 r)\left[4096 R^{10}+12544 R^{9} r+34992 R^{8} r^{2}+89667 R^{7} r^{3}+218700 R^{6} r^{4}\right. \\
+516132 R^{5} r^{5}+1189728 R^{4} r^{6}+2493180 R^{3} r^{7}+6018624(R-2 r) R r^{8} \\
\left.+6753456 r^{10}+201204\left(R^{2}-4 r^{2}\right) R r^{7}\right]+2799360 r^{11}>0,
\end{gathered}
$$

and

$$
\begin{aligned}
Q=\left(s^{2}\right. & \left.-16 R r+5 r^{2}\right)\left\{R^{9}\left(s^{2}-16 R r+5 r^{2}\right)\right. \\
& +3 R^{4} r(R-2 r)\left(16 R^{5}+27 R^{4} r+54 R^{3} r^{2}\right. \\
& \left.+108 R^{2} r^{3}+216 R r^{4}+432 r^{5}\right)+324 r^{7}\left[8\left(R^{2}-12 r^{2}\right)^{2}+30 r^{2}(R-2 r)^{2}\right. \\
& \left.\left.+39 R r^{3}+267 r^{4}\right]\right\}+17496 r^{7}\left(R^{2}-3 R r+6 r^{2}\right)\left(R^{2}-12 R r+24 r^{2}\right)^{2} \\
& +3 r^{2}(R-2 r)\left\{(R - 2 r) \left[256 R^{9}+864 R^{8} r+2457 R^{2} r^{2}\left(R^{5}-32 r^{5}\right)\right.\right. \\
& +6372 R^{2} r^{3}\left(R^{4}-16 r^{4}\right)+15660 R^{2} r^{4}\left(R^{3}-8 r^{3}\right)+31320 R^{2} r^{5}\left(R^{2}-4 r^{2}\right) \\
& \left.+220104 R^{2} r^{6}(R-2 r)+2618784(R-2 r) r^{8}+51840 R^{2} r^{7}+501120 R r^{8}\right] \\
& \left.+687312 r^{10}\right\}>0 .
\end{aligned}
$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Contents

Page 12 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

Therefore, with the fundamental inequality [7, pp.1-3]

$$
-s^{4}+\left(4 R^{2}+20 R r-2 r^{2}\right) s^{2}-r(4 R+r)^{3} \geq 0
$$

we have

$$
\begin{aligned}
& W=\left(R^{9}-13122 r^{9}\right) s^{8}+236196 r^{10}(2 r+R) s^{6}-236196 r^{11}\left(7 r^{2}+12 R^{2}+21 R r\right) s^{4} \\
&+78732 r^{12}\left(105 R r^{2}+160 R^{3}+240 R^{2} r+14 r^{3}\right) s^{2} \\
& \quad-118098 r^{13}(2 R+r)(4 R+r)^{3} \\
&=13122 r^{9}\left[s^{4}+9 r^{3}(2 R+r)\right]\left[-s^{4}+\left(4 R^{2}+20 R r-2 r^{2}\right) s^{2}-r(4 R+r)^{3}\right] \\
& \quad+r^{3} s^{2}(R-2 r) P+s^{2}\left(s^{2}-16 R r+5 r^{2}\right) Q \\
& \geq 0 .
\end{aligned}
$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Contents

Page 13 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

5. Two Open Problems

Finally, we pose two open problems as follows.
Open Problem 1. For a triangle $A B C$ and an arbitrary point P, prove or disprove

$$
\begin{equation*}
R_{1}^{3}+R_{2}^{3}+R_{3}^{3}+6 R_{1} R_{2} R_{3} \geq 72 r^{3} \tag{5.1}
\end{equation*}
$$

Open Problem 2. For a triangle $A B C$ and an arbitrary point P, determine the best constant k such that the following inequality holds:

$$
\begin{equation*}
\left(R_{1} R_{2}\right)^{\frac{3}{2}}+\left(R_{2} R_{3}\right)^{\frac{3}{2}}+\left(R_{3} R_{1}\right)^{\frac{3}{2}} \geq 12[R+k(R-2 r)] r^{2} \tag{5.2}
\end{equation*}
$$

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page	
Contents	
$\mathbf{4 4}$	
$\mathbf{4}$	
Page 14 of 15	
Go Back	
Full Screen	
Close	

journal of inequalities in pure and applied mathematics
issn: 1443-575b

References

[1] O. BOTTEMA, R.Ž. DJORDEVIĆ, R.R. JANIĆ, D.S. MITRINOVIĆ AND P.M. VASIĆ, Geometric Inequalities, Wolters-Noordhoff Publishing, Groningen, The Netherlands, 1969.
[2] J. BERKES, Einige Dreiecksungleichungen, Elem. Math., 18 (1963), 31-32. (in German)
[3] X.-G. CHU, Two triangle inequalities containing parameter, J. Binzhou Teachers College, 16(1) (2000), 27-30. (in Chinese)
[4] J.-C. KUANG, Chángyòng Bùděngshi (Applied Inequalities), 3rd ed., Shandong Science and Technology Press, Jinan City, Shandong Province, China, 2004, 194.
[5] S.-H. LI, AM-GM Inequality and Cauchy Inequality, East China Normal University Press, Shanghai City, China, 2005, 35. (in Chinese)
[6] J. LIU, Nine sine inequality, manuscript, 2008, 33. (in Chinese)
[7] D.S. MITRINOVIĆ, J.E. PEČARIĆ AND V. VOLENEC, Recent Advances in Geometric Inequalities, Acad. Publ., Dordrecht, Boston, London, 1989.
[8] J. SÁNDOR, Problem 20942*, Mat. Lapok, 11-12 (1986), 486.
[9] J. SÁNDOR, Geometric Theorems, Diophantine Equations and Arithmetic Functions, American Research Press, Rehoboth, NM, USA, 2002, 31. [ONLINE: www.gallup.unm.edu/~smarandache/JozsefSandor2. pdf]

Geometric Inequality by J. Sándor Yu-Dong Wu, Zhi-Hua Zhang and Xiao-guang Chu
vol. 10, iss. 4, art. 118, 2009

Title Page
Contents

Page 15 of 15
Go Back
Full Screen
Close
journal of inequalities in pure and applied mathematics
issn: 1443-575b

