Journal of Inequalities in Pure and Applied Mathematics

ON MULTIPLICATIVELY e-PERFECT NUMBERS

JÓZSEF SÁNDOR

Department of Mathematics
Babeş-Bolyai University
Str. Kogalniceanu, 400084 Cluj-Napoca
Romania.
EMail: jsandor@math.ubbcluj.ro
volume 5 , issue 4 , article 114 , 2004.

Received 14 June, 2004; accepted 16 December, 2004.

Communicated by: L. Tóth

Abstract
Contents
Home Page
Goack
Close

Abstract

Let $T_{e}(n)$ denote the product of exponential divisors of n. An integer n is called multiplicatively e-perfect, if $T_{e}(n)=n^{2}$. A characterization of multiplicatively e-perfect and similar numbers is given.

2000 Mathematics Subject Classification: 11A25, 11A99.
Key words: Perfect number, exponential divisor, multiplicatively perfect, sum of divisors, number of divisors.

Contents

1 Introduction . 3
2 Main Results 5
References

On Multiplicatively e-Perfect Numbers

József Sándor

Title Page
Contents

$\mathbf{4}$	
Go Back	
Close	
Quit	
Page 2 of 10	

J. Ineq. Pure and Appl. Math. 5(4) Art. 114, 2004 http://jipam.vu.edu.au

1. Introduction

If $n=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ is the prime factorization of $n>1$, a divisor $d \mid n$, called an exponential divisor (e-divisor, for short), of n is $d=p_{1}^{b_{1}} \ldots p_{r}^{b_{r}}$ with $b_{i} \mid \alpha_{i}$ $(i=\overline{1, r})$. This notion is due to E. G. Straus and M. V. Subbarao [11]. Let $\sigma_{e}(n)$ be the sum of divisors of n. For various arithmetic functions and convolutions on e-divisors, see J. Sándor and A. Bege [10]. Straus and Subbarao define n as exponentially perfect (or e-perfect for short) if

$$
\begin{equation*}
\sigma_{e}(n)=2 n \tag{1.1}
\end{equation*}
$$

Some examples of e-perfect numbers are: $2^{2} \cdot 3^{2}, 2^{2} \cdot 3^{3} \cdot 5^{2}, 2^{4} \cdot 3^{2} \cdot 11^{2}$, $2^{4} \cdot 3^{3} \cdot 5^{2} \cdot 11^{2}$, etc. If m is squarefree, then $\sigma_{e}(m)=m$, so if n is e-perfect, and $m=$ squarefree with $(m, n)=1$, then $m \cdot n$ is e-perfect, too. Thus it suffices to consider only powerful (i.e. no prime occurs to the first power) e-perfect numbers.

Straus and Subbarao [11] proved that there are no odd e-perfect numbers, and that for each r the number of e-perfect numbers with r prime factors is finite.

Is there an e-perfect number which is not divisible by 3 ? Straus and Subbarao conjecture that there is only a finite number of e-perfect numbers not divisible by any given prime p.
J. Fabrykowski and M.V. Subbarao [3] proved that any e-perfect number not divisible by 3 must be divisible by 2^{117}, greater than 10^{664}, and have at least 118 distinct prime factors.
P. Hagis, Jr. [4] showed that the density of e-perfect numbers is positive.

On Multiplicatively e-Perfect Numbers

József Sándor

Title Page
Contents

44	-
4	\checkmark
Go Back	
Close	
Quit	

Page 3 of 10
J. Ineq. Pure and Appl. Math. 5(4) Art. 114, 2004 http://jipam.vu.edu.au

For results on e-multiperfect numbers, i.e. satisfying

$$
\begin{equation*}
\sigma_{e}(n)=k n \tag{1.2}
\end{equation*}
$$

$(k>2)$, see W. Aiello, G. E. Hardy and M. V. Subbarao [1]. See also J. Hanumanthachari, V. V. Subrahmanya Sastri and V. Srinivasan [5], who considered also e-superperfect numbers, i.e. numbers n satisfying

$$
\begin{equation*}
\sigma_{e}\left(\sigma_{e}(n)\right)=2 n \tag{1.3}
\end{equation*}
$$

2. Main Results

Let $T(n)$ denote the product of divisors of n. Then n is said to be multiplicatively perfect (or m-perfect) if

$$
\begin{equation*}
T(n)=n^{2} \tag{2.1}
\end{equation*}
$$

and multiplicatively super-perfect, if

$$
T(T(n))=n^{2}
$$

For properties of these numbers, with generalizations, see J. Sándor [8].
A divisor d of n is said to be "unitary" if $\left(d, \frac{n}{d}\right)=1$. Let $T^{*}(n)$ be the product of unitary divisors of n. A. Bege [2] has studied the multiplicatively unitary perfect numbers, and proved certain results similar to those of Sándor. He considered also the case of "bi-unitary" divisors.

The aim of this paper is to study the multiplicatively e-perfect numbers. Let $T_{e}(n)$ denote the product of e-divisors of n. Then n is called multiplicatively e-perfect if

$$
\begin{equation*}
T_{e}(n)=n^{2} \tag{2.2}
\end{equation*}
$$

and multiplicatively e-superperfect if

$$
\begin{equation*}
T_{e}\left(T_{e}(n)\right)=n^{2} \tag{2.3}
\end{equation*}
$$

On Multiplicatively e-Perfect Numbers

József Sándor

Title Page
Contents

Go Back
Close
Quit
Page 5 of 10

The main result is contained in the following:
J. Ineq. Pure and Appl. Math. 5(4) Art. 114, 2004 http://jipam.vu.edu.au

Theorem 2.1. n is multiplicatively e-perfect if and only if $n=p^{\alpha}$, where p is a prime and α is an ordinary perfect number. n is multiplicatively e-superperfect if and only if $n=p^{\alpha}$, where p is a prime, and α is an ordinary superperfect number, i.e. $\sigma(\sigma(\alpha))=2 \alpha$.

Proof. First remark that if p prime,

$$
T_{e}\left(p^{\alpha}\right)=\prod_{d \mid \alpha} p^{\alpha}=p^{\sum_{d \mid \alpha}^{d} d}=p^{\sigma(\alpha)}
$$

Let $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$. Then the exponential divisors of n have the form $p_{1}^{d_{1}} \cdots p_{r}^{d_{r}}$ where $d_{1}\left|\alpha_{1}, \ldots, d_{r}\right| \alpha_{r}$. If d_{1}, \ldots, d_{r-1} are fixed, then these divisors are $p_{1}^{d_{1}} \cdots p_{r-1}^{d_{r-1}} p_{r}^{d}$ with $d \mid \alpha_{r}$ and the product of these divisors is $p_{1}^{d_{1} d\left(\alpha_{r}\right)} \cdots$ $p_{r-1}^{d_{r-1} d\left(\alpha_{r}\right)} p_{r}^{\sigma\left(\alpha_{r}\right)}$, where $d(a)$ is the number of divisors of a, and $\sigma(a)$ denotes the sum of divisors of a. For example, when $r=2$, we get $p_{1}^{d_{1} d\left(\alpha_{2}\right)} p_{2}^{\sigma\left(\alpha_{2}\right)}$. The product of these divisors is $p_{1}^{\sigma\left(d_{1}\right) d\left(\alpha_{2}\right)} p_{2}^{\sigma\left(\alpha_{2}\right) d\left(\alpha_{1}\right)}$. In the general case (by first fixing d_{1}, \ldots, d_{r-2}, etc.), it easily follows by induction that the following formula holds true:

$$
\begin{equation*}
T_{e}(n)=p_{1}^{\sigma\left(\alpha_{1}\right) d\left(\alpha_{2}\right) \cdots d\left(\alpha_{r}\right)} \cdots p_{r}^{\sigma\left(\alpha_{r}\right) d\left(\alpha_{1}\right) \cdots d\left(\alpha_{r-1}\right)} \tag{2.4}
\end{equation*}
$$

Now, if n is multiplicatively e-perfect, by (2.2), and the unique factorization theorem it follows that

$$
\left\{\begin{array}{c}
\sigma\left(\alpha_{1}\right) d\left(\alpha_{2}\right) \cdots d\left(\alpha_{r}\right)=2 \alpha_{1} \tag{2.5}\\
\cdots \\
\sigma\left(\alpha_{r}\right) d\left(\alpha_{1}\right) \cdots d\left(\alpha_{r-1}\right)=2 \alpha_{r}
\end{array}\right.
$$

On Multiplicatively e-Perfect Numbers

József Sándor

Title Page
Contents

Go Back
Close
Quit
Page 6 of 10
J. Ineq. Pure and Appl. Math. 5(4) Art. 114, 2004 http://jipam.vu.edu.au

This is impossible if all $\alpha_{i}=1(i=\overline{1, r})$. If at least an $\alpha_{i}=1$, let $\alpha_{1}=$ 1. Then $d\left(\alpha_{2}\right) \cdots d\left(\alpha_{r}\right)=2$, so one of $\alpha_{2}, \ldots, \alpha_{r}$ is a prime, the others are equal to 1 . Let $\alpha_{2}=p, \alpha_{3}=\cdots=\alpha_{r}=1$. But then the equation $\sigma\left(\alpha_{2}\right) d\left(\alpha_{1}\right) d\left(\alpha_{3}\right) \cdots d\left(\alpha_{r}\right)=2 \alpha_{2}$ of (2.5) gives $\sigma\left(\alpha_{2}\right)=2 \alpha_{2}$, i.e. $\sigma(p)=2 p$, which is impossible since $p+1=2 p$.

Therefore, we must have $\alpha_{i} \geq 2$ for all $i=\overline{1, r}$.
Let $r \geq 2$ in (2.5). Then the first equation of (2.5) implies

$$
\sigma\left(\alpha_{1}\right) d\left(\alpha_{2}\right) \cdots d\left(\alpha_{r}\right) \geq\left(\alpha_{1}+1\right) \cdot 2^{r-1} \geq 2\left(\alpha_{1}+1\right)>2 \alpha_{1}
$$

which is a contradiction. Thus we must have $r=1$, when $n=p_{1}^{\alpha_{1}}$ and $T_{e}(n)=$ $p_{1}^{\sigma\left(\alpha_{1}\right)}=n^{2 \alpha_{1}}$ iff $\sigma\left(\alpha_{1}\right)=2 \alpha_{1}$, i.e. if α_{1} is an ordinary perfect number. This proves the first part of the theorem.

By (2.4) we can write the following complicated formula:
(2.6) $T_{e}\left(T_{e}(n)\right)=p_{1}^{\sigma\left(\sigma\left(\alpha_{1}\right) d\left(\alpha_{2}\right) \cdots d\left(\alpha_{r}\right)\right) \cdots d\left(\sigma\left(\alpha_{r}\right) d\left(\alpha_{1}\right) \cdots d\left(\alpha_{r-1}\right)\right)}$

$$
\cdots p_{r}^{\sigma\left(\sigma\left(\alpha_{r}\right) d\left(\alpha_{1}\right) \cdots d\left(\alpha_{r-1}\right)\right) \cdots d\left(\sigma\left(\alpha_{1}\right) d\left(\alpha_{2}\right) \cdots d\left(\alpha_{r}\right)\right) .}
$$

Thus, if n is multiplicatively e-superperfect, then

$$
\left\{\begin{array}{c}
\sigma\left(\sigma\left(\alpha_{1}\right) d\left(\alpha_{2}\right) \cdots d\left(\alpha_{r}\right)\right) \cdots d\left(\sigma\left(\alpha_{r}\right) d\left(\alpha_{1}\right) \cdots d\left(\alpha_{r-1}\right)\right)=2 \alpha_{1} \tag{2.7}\\
\cdots \\
\sigma\left(\sigma\left(\alpha_{r}\right) d\left(\alpha_{1}\right) \cdots d\left(\alpha_{r-1}\right)\right) \cdots d\left(\alpha\left(\alpha_{1}\right) d\left(\alpha_{2}\right) \cdots d\left(\alpha_{r}\right)\right)=2 \alpha_{r}
\end{array}\right.
$$

As above, we must have $\alpha_{i} \geq 2$ for all $i=1,2, \ldots, r$.
But then, since $\sigma(a b) \geq a \sigma(b)$ and $\sigma(b) \geq b+1$ for $b \geq 2$, (2.7) gives a contradiction, if $r \geq 2$. For $r=1$, on the other hand, when $n=p_{1}^{\alpha_{1}}$ and

On Multiplicatively e-Perfect Numbers

József Sándor

Title Page
Contents

$\boldsymbol{4}$	
Go Back	
Close	
Quit	

Page 7 of 10
$T_{e}(n)=p_{1}^{\sigma\left(\alpha_{1}\right)}$ we get $T_{e}\left(T_{e}(n)\right)=p_{1}^{\sigma\left(\sigma\left(\alpha_{1}\right)\right)}$, and (2.3) implies $\sigma\left(\sigma\left(\alpha_{1}\right)\right)=2 \alpha_{1}$, i.e. α_{1} is an ordinary superperfect number.

Remark 2.1. No odd ordinary perfect or superperfect number is known. The even ordinary perfect numbers are given by the well-known Euclid-Euler theorem: $n=2^{k} p$, where $p=2^{k+1}-1$ is a prime ("Mersenne prime"). The even superperfect numbers have the general form (given by Suryanarayana-Kanold [12], [6]) $n=2^{k}$, where $2^{k+1}-1$ is a prime. For new proofs of these results, see e.g. [7], [9].

On Multiplicatively e-Perfect Numbers

József Sándor

Title Page
Contents

Go Back
Close
Quit
Page 8 of 10

References

[1] W. AIELLO, G.E. HARDY and M.V. SUBBARAO, On the existence of e-multiperfect numbers, Fib. Quart., 25 (1987), 65-71.
[2] A. BEGE, On multiplicatively unitary perfect numbers, Seminar on Fixed Point Theory, Cluj-Napoca, 2 (2001), 59-63.
[3] J. FABRYKOWSKI AND M.V. SUBBARAO, On e-perfect numbers not divisible by 3, Nieuw Arch. Wiskunde, 4(4) (1986), 165-173.
[4] P. HAGIS, JR., Some results concerning exponential divisors, Intern. J. Math. Math. Sci., 11(1988), 343-349.
[5] J. HANUMANTHACHARI, V.V. SUBRAHMANYA SASTRI AND V. SRINIVASAN, On e-perfect numbers, Math. Student, 46(1) (1978), 7180.
[6] H.J. KANOLD, Über super-perfect numbers, Elem. Math., 24(1969), 6162.
[7] J. SÁNDOR, On the composition of some arithmetic functions, Studia Univ. Babeş-Bolyai Math., 34(1) (1989), 7-14.
[8] J. SÁNDOR, On multiplicatively perfect numbers, J. Ineq. Pure Appl. Math., 2(1) (2001), Art. 3, 6 pp. (electronic). [ONLINE http:// jipam.vu.edu.au/article.php?sid=119]
[9] J. SÁNDOR, On an even perfect and superperfect number, Notes Number Theory Discr. Math., 7(1) (2001), 4-5.

On Multiplicatively e-Perfect Numbers

József Sándor

Title Page
Contents

Go Back
Close
Quit
Page 9 of 10
J. Ineq. Pure and Appl. Math. 5(4) Art. 114, 2004 http://jipam.vu.edu.au
[10] J. SÁNDOR AND A. BEGE, The Möbius function: generalizations and extensions, Adv. Stud. Contemp. Math., 6(2) (2003), 77-128.
[11] E.G. STRAUS AND M.V. SUBBARAO, On exponential divisors, Duke Math. J., 41 (1974), 465-471.
[12] D. SURYANARAYANA, Super-perfect numbers, Elem. Math., 24 (1969), 16-17.

J. Ineq. Pure and Appl. Math. 5(4) Art. 114, 2004 http://jipam.vu.edu.au

