AN EXTENSION OF THE REGION OF VARIABILITY OF A SUBCLASS OF UNIVALENT FUNCTIONS

SUKHWINDER SINGH, SUSHMA GUPTA, AND SUKHJIT SINGH
Department of Applied Sciences
B.B.S.B. Engineering College
Fatehgarh Sahib-140 407, Punjab, India
ssbilling@gmail.com
Department of Mathematics
S.L.I.E.T. Longowal-148 106, Punjab, India
sushmagupta1@yahoo.com
sukhjit_d@yahoo.com

Received 03 May, 2009; accepted 05 November, 2009
Communicated by S.S. Dragomir

Abstract. We show that for $\alpha \in(0,2]$, if $f \in \mathcal{A}$ with $f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies the condition

$$
(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec F(z)
$$

then f is univalent in \mathbb{E}, where F is the conformal mapping of the unit disk \mathbb{E} with $F(0)=1$
and

$$
F(\mathbb{E})=\mathbb{C} \backslash\{w \in \mathbb{C}: \Re w=\alpha,|\Im w| \geq \sqrt{\alpha(2-\alpha)}\}
$$

Our result extends the region of variability of the differential operator

$$
(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)
$$

implying univalence of $f \in \mathcal{A}$ in \mathbb{E}, for $0<\alpha \leq 2$.

Key words and phrases: Analytic Function, Univalent function, Starlike function, Differential subordination.

2000 Mathematics Subject Classification. 30C80, 30C45.

1. Introduction and Preliminaries

Let \mathcal{H} be the class of functions analytic in $\mathbb{E}=\{z:|z|<1\}$ and for $a \in \mathbb{C}$ (set of complex numbers) and $n \in \mathbb{N}$ (set of natural numbers), let $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting of functions of the form $f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots$. Let \mathcal{A} be the class of functions f, analytic in \mathbb{E} and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$.
Let f be analytic in \mathbb{E}, g analytic and univalent in \mathbb{E} and $f(0)=g(0)$. Then, by the symbol $f(z) \prec g(z)(f$ subordinate to $g)$ in \mathbb{E}, we shall mean $f(\mathbb{E}) \subset g(\mathbb{E})$.

[^0]Let $\psi: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{C}$ be an analytic function, p be an analytic function in \mathbb{E}, with $\left(p(z), z p^{\prime}(z)\right) \in$ $\mathbb{C} \times \mathbb{C}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E}, then the function p is said to satisfy first order differential subordination if

$$
\begin{equation*}
\psi\left(p(z), z p^{\prime}(z)\right) \prec h(z), \quad \psi(p(0), 0)=h(0) \tag{1.1}
\end{equation*}
$$

A univalent function q is called a dominant of the differential subordination (1.1) if $p(0)=q(0)$ and $p \prec q$ for all p satisfying (1.1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1.1), is said to be the best dominant of (1.1). The best dominant is unique up to a rotation of \mathbb{E}.

Denote by $\mathcal{S}^{*}(\alpha)$ and $\mathcal{K}(\alpha)$, respectively, the classes of starlike functions of order α and convex functions of order α, which are analytically defined as follows:

$$
\mathcal{S}^{*}(\alpha)=\left\{f \in \mathcal{A}: \Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in \mathbb{E}, 0 \leq \alpha<1\right\}
$$

and

$$
\mathcal{K}(\alpha)=\left\{f \in \mathcal{A}: \Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathbb{E}, 0 \leq \alpha<1\right\}
$$

We write $\mathcal{S}^{*}=\mathcal{S}^{*}(0)$, the class of univalent starlike convex functions (w.r.t. the origin) and $\mathcal{K}(0)=\mathcal{K}$, the class of univalent convex functions.

A function $f \in \mathcal{A}$ is said to be close-to-convex if there is a real number $\alpha,-\pi / 2<\alpha<\pi / 2$, and a convex function g (not necessarily normalized) such that

$$
\Re\left(e^{i \alpha} \frac{f^{\prime}(z)}{g^{\prime}(z)}\right)>0, \quad z \in \mathbb{E}
$$

It is well-known that every close-to-convex function is univalent. In 1934/35, Noshiro [4] and Warchawski [8] obtained a simple but interesting criterion for univalence of analytic functions. They proved that if an analytic function f satisfies the condition $\Re f^{\prime}(z)>0$ for all z in \mathbb{E}, then f is close-to-convex and hence univalent in \mathbb{E}.

Let ϕ be analytic in a domain containing $f(\mathbb{E}), \phi(0)=0$ and $\Re \phi^{\prime}(0)>0$, then, the function $f \in \mathcal{A}$ is said to be ϕ-like in \mathbb{E} if

$$
\Re\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)>0, \quad z \in \mathbb{E}
$$

This concept was introduced by Brickman [2]. He proved that an analytic function $f \in \mathcal{A}$ is univalent if and only if f is ϕ-like for some ϕ. Later, Ruscheweyh [5] investigated the following general class of ϕ-like functions:

Let ϕ be analytic in a domain containing $f(\mathbb{E}), \phi(0)=0, \phi^{\prime}(0)=1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$. Then the function $f \in \mathcal{A}$ is called ϕ-like with respect to a univalent function $q, q(0)=1$, if

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z), \quad z \in \mathbb{E}
$$

Let $\mathcal{H}_{\alpha}(\beta)$ denote the class of functions $f \in \mathcal{A}$ which satisfy the condition

$$
\Re\left[(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>\beta, \quad z \in \mathbb{E}
$$

where α and β are pre-assigned real numbers. Al-Amiri and Reade [1], in 1975, have shown that for $\alpha \leq 0$ and for $\alpha=1$, the functions in $\mathcal{H}_{\alpha}(0)$ are univalent in \mathbb{E}. In 2005, Singh, Singh and Gupta [7] proved that for $0<\alpha<1$, the functions in $\mathcal{H}_{\alpha}(\alpha)$ are also univalent. In 2007, Singh, Gupta and Singh [6] proved that the functions in $\mathcal{H}_{\alpha}(\beta)$ satisfy the differential inequality $\Re f^{\prime}(z)>0, z \in \mathbb{E}$. Hence they are univalent for all real numbers α and β satisfying
$\alpha \leq \beta<1$ and the result is sharp in the sense that the constant β cannot be replaced by any real number less than α.

The main objective of this paper is to extend the region of variability of the operator

$$
(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)
$$

implying univalence of $f \in \mathcal{A}$ in \mathbb{E}, for $0<\alpha \leq 2$. We prove a subordination theorem and as applications of the main result, we find the sufficient conditions for $f \in \mathcal{A}$ to be univalent, starlike and ϕ-like.

To prove our main results, we need the following lemma due to Miller and Mocanu.
Lemma 1.1 ([3, p.132, Theorem 3.4 h$]$). Let q be univalent in \mathbb{E} and let θ and ϕ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\phi(w) \neq 0$, when $w \in q(\mathbb{E})$.
$\operatorname{Set} Q(z)=z q^{\prime}(z) \phi[q(z)], h(z)=\theta[q(z)]+Q(z)$ and suppose that either
(i) h is convex, or
(ii) Q is starlike.

In addition, assume that
(iii) $\Re \frac{z h^{\prime}(z)}{Q(z)}>0, z \in \mathbb{E}$.

If p is analytic in \mathbb{E}, with $p(0)=q(0), p(\mathbb{E}) \subset \mathbb{D}$ and

$$
\theta[p(z)]+z p^{\prime}(z) \phi[p(z)] \prec \theta[q(z)]+z q^{\prime}(z) \phi[q(z)],
$$

then $p \prec q$ and q is the best dominant.

2. Main Result

Theorem 2.1. Let $\alpha \neq 0$ be a complex number. Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} such that

$$
\begin{equation*}
\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}\right]>\max \left\{0, \Re\left(\frac{\alpha-1}{\alpha} q(z)\right)\right\} \tag{2.1}
\end{equation*}
$$

If $p, p(z) \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
\begin{equation*}
(1-\alpha)(p(z)-1)+\alpha \frac{z p^{\prime}(z)}{p(z)} \prec(1-\alpha)(q(z)-1)+\alpha \frac{z q^{\prime}(z)}{q(z)} \tag{2.2}
\end{equation*}
$$

then $p \prec q$ and q is the best dominant.
Proof. Let us define the functions θ and ϕ as follows:

$$
\theta(w)=(1-\alpha)(w-1)
$$

and

$$
\phi(w)=\frac{\alpha}{w} .
$$

Obviously, the functions θ and ϕ are analytic in domain $\mathbb{D}=\mathbb{C} \backslash\{0\}$ and $\phi(w) \neq 0$ in \mathbb{D}.
Now, define the functions Q and h as follows:

$$
Q(z)=z q^{\prime}(z) \phi(q(z))=\alpha \frac{z q^{\prime}(z)}{q(z)}
$$

and

$$
h(z)=\theta(q(z))+Q(z)=(1-\alpha)(q(z)-1)+\alpha \frac{z q^{\prime}(z)}{q(z)} .
$$

Then in view of condition (2.1), we have
(1) Q is starlike in \mathbb{E} and
(2) $\Re \frac{z h^{\prime}(z)}{Q(z)}>0, z \in \mathbb{E}$.

Thus conditions (ii) and (iii) of Lemma 1.1, are satisfied.
In view of (2.2), we have

$$
\theta[p(z)]+z p^{\prime}(z) \phi[p(z)] \prec \theta[q(z)]+z q^{\prime}(z) \phi[q(z)] .
$$

Therefore, the proof, now, follows from Lemma 1.1 .

3. Applications to Univalent Functions

On writing $p(z)=f^{\prime}(z)$ in Theorem 2.1, we obtain the following result.
Theorem 3.1. Let $\alpha \neq 0$ be a complex number. Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} and satisfy the condition (2.1) of Theorem 2.1. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
(1-\alpha)\left(f^{\prime}(z)-1\right)+\alpha \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec(1-\alpha)(q(z)-1)+\alpha \frac{z q^{\prime}(z)}{q(z)}
$$

then $f^{\prime}(z) \prec q(z)$ and q is the best dominant.
On writing $p(z)=\frac{z f^{\prime}(z)}{f(z)}$ in Theorem 2.1, we obtain the following result.
Theorem 3.2. Let $\alpha \neq 0$ be a complex number. Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} and satisfy the condition (2.1) of Theorem 2.1. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
(1-2 \alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec(1-\alpha) q(z)+\alpha \frac{z q^{\prime}(z)}{q(z)}
$$

then $\frac{z f^{\prime}(z)}{f(z)} \prec q(z)$ and q is the best dominant.
By taking $p(z)=\frac{z f^{\prime}(z)}{\phi(f(z))}$ in Theorem 2.1. we obtain the following result.
Theorem 3.3. Let $\alpha \neq 0$ be a complex number. Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} and satisfy the condition (2.1) of Theorem 2.1. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(f(z))} \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
(1-\alpha) \frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z[\phi(f(z))]^{\prime}}{\phi(f(z))}\right) \prec(1-\alpha) q(z)+\alpha \frac{z q^{\prime}(z)}{q(z)}
$$

where ϕ is analytic in a domain containing $f(\mathbb{E}), \phi(0)=0, \phi^{\prime}(0)=1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$, then $\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z)$ and q is the best dominant.

Remark 1. When we select the dominant $q(z)=\frac{1+z}{1-z}, z \in \mathbb{E}$, then

$$
Q(z)=\frac{\alpha z q^{\prime}(z)}{q(z)}=\frac{2 \alpha z}{1-z^{2}},
$$

and

$$
\frac{z Q^{\prime}(z)}{Q(z)}=\frac{1+z^{2}}{1-z^{2}}
$$

Therefore, we have

$$
\Re \frac{z Q^{\prime}(z)}{Q(z)}>0, \quad z \in \mathbb{E}
$$

and hence Q is starlike. We also have

$$
1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+\frac{1-\alpha}{\alpha} q(z)=\frac{1+z^{2}}{1-z^{2}}+\frac{1-\alpha}{\alpha} \frac{1+z}{1-z} .
$$

Thus, for any real number $0<\alpha \leq 2$, we obtain

$$
\Re\left[1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+\frac{1-\alpha}{\alpha} q(z)\right]>0, \quad z \in \mathbb{E} .
$$

Therefore, $q(z)=\frac{1+z}{1-z}, z \in \mathbb{E}$, satisfies the conditions of Theorem 3.1. Theorem 3.2 and Theorem 3.3.

Moreover,

$$
(1-\alpha)(q(z)-1)+\alpha \frac{z q^{\prime}(z)}{q(z)}=2(1-\alpha) \frac{z}{1-z}+2 \alpha \frac{z}{1-z^{2}}=F(z) .
$$

For $0<\alpha \leq 2$, we see that F is the conformal mapping of the unit disk \mathbb{E} with $F(0)=0$ and

$$
F(\mathbb{E})=\mathbb{C} \backslash\{w \in \mathbb{C}: \Re w=\alpha-1,|\Im w| \geq \sqrt{\alpha(2-\alpha)}\}
$$

In view of the above remark, on writing $q(z)=\frac{1+z}{1-z}$ in Theorem 3.1, we have the following result.

Corollary 3.4. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec 1+2(1-\alpha) \frac{z}{1-z}+2 \alpha \frac{z}{1-z^{2}}
$$

where $0<\alpha \leq 2$ is a real number, then $\Re f^{\prime}(z)>0, z \in \mathbb{E}$. Therefore, f is close-to-convex and hence f is univalent in \mathbb{E}.

In view of Remark 1 and Corollary 3.4, we obtain the following result.
Corollary 3.5. Let $0<\alpha \leq 2$ be a real number. Suppose that $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies the condition

$$
(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec F(z) .
$$

Then f is close-to-convex and hence univalent in \mathbb{E}, where F is the conformal mapping of the unit disk \mathbb{E} with $F(0)=1$ and

$$
F(\mathbb{E})=\mathbb{C} \backslash\{w \in \mathbb{C}: \Re w=\alpha,|\Im w| \geq \sqrt{\alpha(2-\alpha)}\}
$$

From Corollary 3.4, we obtain the following result of Singh, Gupta and Singh [7].
Corollary 3.6. Let $0<\alpha<1$ be a real number. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies the differential inequality

$$
\Re\left[(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>\alpha
$$

then $\Re f^{\prime}(z)>0, z \in \mathbb{E}$. Therefore, f is close-to-convex and hence f is univalent in \mathbb{E}.
From Corollary 3.4, we obtain the following result.

Corollary 3.7. Let $1<\alpha \leq 2$, be a real number. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies the differential inequality

$$
\Re\left[(1-\alpha) f^{\prime}(z)+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]<\alpha
$$

then $\Re f^{\prime}(z)>0, z \in \mathbb{E}$. Therefore, f is close-to-convex and hence f is univalent in \mathbb{E}.
When we select $q(z)=\frac{1+z}{1-z}$ in Theorem 3.2, we obtain the following result.
Corollary 3.8. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
(1-2 \alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec(1-\alpha) \frac{1+z}{1-z}+2 \alpha \frac{z}{1-z^{2}}=F_{1}(z)
$$

where $0<\alpha \leq 2$ is a real number, then $f \in \mathcal{S}^{*}$.
In view of Corollary 3.8, we have the following result.
Corollary 3.9. Let $0<\alpha \leq 2$ be a real number. Suppose that $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the condition

$$
(1-2 \alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec F_{1}(z)
$$

Then $f \in \mathcal{S}^{*}$, where F_{1} is the conformal mapping of the unit disk \mathbb{E} with $F_{1}(0)=1-\alpha$ and

$$
F_{1}(\mathbb{E})=\mathbb{C} \backslash\{w \in \mathbb{C}: \Re w=0,|\Im w| \geq \sqrt{\alpha(2-\alpha)}\}
$$

In view of Corollary 3.8, we have the following result.
Corollary 3.10. Let $0<\alpha<1$ be a real number. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential inequality

$$
\Re\left[(1-2 \alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]>0
$$

then $f \in \mathcal{S}^{*}$.
In view of Corollary 3.8, we also have the following result.
Corollary 3.11. Let $1<\alpha \leq 2$, be a real number. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential inequality

$$
\Re\left[(1-2 \alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right]<0
$$

then $f \in \mathcal{S}^{*}$.
When we select $q(z)=\frac{1+z}{1-z}$ in Theorem 3.3, we obtain the following result.
Corollary 3.12. Let $0<\alpha \leq 2$ be a real number. Let $f \in \mathcal{A}$, $\frac{z f^{\prime}(z)}{\phi(f(z))} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$
(1-\alpha) \frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z[\phi(f(z))]^{\prime}}{\phi(f(z))}\right) \prec(1-\alpha) \frac{1+z}{1-z}+2 \alpha \frac{z}{1-z^{2}}=F_{1}(z)
$$

Then $\frac{z f^{\prime}(z)}{\phi(f(z))} \prec \frac{1+z}{1-z}$, where ϕ is analytic in a domain containing $f(\mathbb{E}), \phi(0)=0, \phi^{\prime}(0)=1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$.

In view of Corollary 3.12, we obtain the following result.
Corollary 3.13. Let $0<\alpha \leq 2$ be a real number. Let $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(f(z))} \neq 0, z \in \mathbb{E}$, satisfy the condition

$$
(1-\alpha) \frac{z f^{\prime}(z)}{\phi(f(z))}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z[\phi(f(z))]^{\prime}}{\phi(f(z))}\right) \prec F_{1}(z)
$$

Then f is ϕ-like in \mathbb{E}, where ϕ is analytic in a domain containing $f(\mathbb{E}), \phi(0)=0, \phi^{\prime}(0)=1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$ and F_{1} is the conformal mapping of the unit disk \mathbb{E} with $F_{1}(0)=1-\alpha$ and

$$
F_{1}(\mathbb{E})=\mathbb{C} \backslash\{w \in \mathbb{C}: \Re w=0,|\Im w| \geq \sqrt{\alpha(2-\alpha)}\}
$$

References

[1] H.S. AL-AMIRI AND M.O. READE, On a linear combination of some expressions in the theory of univalent functions, Monatshefto für Mathematik, 80 (1975), 257-264.
[2] L. BRICKMAN, ϕ-like analytic functions. I, Bull. Amer. Math. Soc., 79 (1973), 555-558.
[3] S.S. MILLER and P.T. MOCANU, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, (No. 225), Marcel Dekker, New York and Basel, 2000.
[4] K. NOSHIRO, On the theory of schlicht functions, J. Fac. Sci., Hokkaido Univ., 2 (1934-35), 129155.
[5] St. RUSCHEWEYH, A subordination theorem for ϕ-like functions, J. London Math. Soc., 2(13) (1976), 275-280.
[6] S. SINGH, S. GUPTA AND S. SINGH, On a problem of univalence of functions satisfying a differential inequality, Mathematical Inequalities and Applications, 10(1) (2007), 95-98.
[7] V. SINGH, S. SINGH AND S. GUPTA, A problem in the theory of univalent functions, Integral Transforms and Special Functions, 16(2) (2005), 179-186.
[8] S.E. WARCHAWSKI, On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc., 38 (1935), 310-340.

[^0]: The authors are thankful to the referee for valuable comments.

