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Abstract: We show that forα ∈ (0, 2], if f ∈ A with f ′(z) 6= 0, z ∈ E, satisfies the
condition

(1− α)f ′(z) + α

(
1 +

zf ′′(z)
f ′(z)

)
≺ F (z),

thenf is univalent inE, whereF is the conformal mapping of the unit disk
E with F (0) = 1 and

F (E) = C \
{

w ∈ C : < w = α, |= w| ≥
√

α(2− α)
}

.

Our result extends the region of variability of the differential operator

(1− α)f ′(z) + α

(
1 +

zf ′′(z)
f ′(z)

)
,

implying univalence off ∈ A in E, for 0 < α ≤ 2.
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1. Introduction and Preliminaries

Let H be the class of functions analytic inE = {z : |z| < 1} and for a ∈ C
(set of complex numbers) andn ∈ N (set of natural numbers), letH[a, n] be the
subclass ofH consisting of functions of the formf(z) = a+anz

n +an+1z
n+1 + · · · .

Let A be the class of functionsf, analytic inE and normalized by the conditions
f(0) = f ′(0)− 1 = 0.

Let f be analytic inE, g analytic and univalent inE andf(0) = g(0). Then, by
the symbolf(z) ≺ g(z) (f subordinate tog) in E, we shall meanf(E) ⊂ g(E).

Let ψ : C× C → C be an analytic function,p be an analytic function inE, with
(p(z), zp′(z)) ∈ C × C for all z ∈ E andh be univalent inE, then the functionp is
said to satisfy first order differential subordination if

(1.1) ψ(p(z), zp′(z)) ≺ h(z), ψ(p(0), 0) = h(0).

A univalent functionq is called a dominant of the differential subordination (1.1) if
p(0) = q(0) andp ≺ q for all p satisfying (1.1). A dominantq̃ that satisfies̃q ≺ q for
all dominantsq of (1.1), is said to be the best dominant of (1.1). The best dominant
is unique up to a rotation ofE.

Denote byS∗(α) andK(α), respectively, the classes of starlike functions of order
α and convex functions of orderα, which are analytically defined as follows:

S∗(α) =

{
f ∈ A : <

(
zf ′(z)

f(z)

)
> α, z ∈ E, 0 ≤ α < 1

}
,

and

K(α) =

{
f ∈ A : <

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ E, 0 ≤ α < 1

}
.

We write S∗ = S∗(0), the class of univalent starlike convex functions (w.r.t. the
origin) andK(0) = K, the class of univalent convex functions.
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A functionf ∈ A is said to be close-to-convex if there is a real numberα,−π/2 <
α < π/2, and a convex functiong (not necessarily normalized) such that

<
(
eiαf

′(z)

g′(z)

)
> 0, z ∈ E.

It is well-known that every close-to-convex function is univalent. In 1934/35, Noshiro
[4] and Warchawski [8] obtained a simple but interesting criterion for univalence of
analytic functions. They proved that if an analytic functionf satisfies the condition
< f ′(z) > 0 for all z in E, thenf is close-to-convex and hence univalent inE.

Let φ be analytic in a domain containingf(E), φ(0) = 0 and< φ′(0) > 0, then,
the functionf ∈ A is said to beφ-like in E if

<
(
zf ′(z)

φ(f(z))

)
> 0, z ∈ E.

This concept was introduced by Brickman [2]. He proved that an analytic function
f ∈ A is univalent if and only iff is φ-like for someφ. Later, Ruscheweyh [5]
investigated the following general class ofφ-like functions:

Letφ be analytic in a domain containingf(E), φ(0) = 0, φ′(0) = 1 andφ(w) 6= 0
for w ∈ f(E) \ {0}. Then the functionf ∈ A is calledφ-like with respect to a
univalent functionq, q(0) = 1, if

zf ′(z)

φ(f(z))
≺ q(z), z ∈ E.

LetHα(β) denote the class of functionsf ∈ A which satisfy the condition

<
[
(1− α)f ′(z) + α

(
1 +

zf ′′(z)

f ′(z)

)]
> β, z ∈ E,

whereα andβ are pre-assigned real numbers. Al-Amiri and Reade [1], in 1975,
have shown that forα ≤ 0 and forα = 1, the functions inHα(0) are univalent in
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E. In 2005, Singh, Singh and Gupta [7] proved that for0 < α < 1, the functions
in Hα(α) are also univalent. In 2007, Singh, Gupta and Singh [6] proved that the
functions inHα(β) satisfy the differential inequality< f ′(z) > 0, z ∈ E. Hence
they are univalent for all real numbersα andβ satisfyingα ≤ β < 1 and the result
is sharp in the sense that the constantβ cannot be replaced by any real number less
thanα.

The main objective of this paper is to extend the region of variability of the oper-
ator

(1− α)f ′(z) + α

(
1 +

zf ′′(z)

f ′(z)

)
,

implying univalence off ∈ A in E, for 0 < α ≤ 2. We prove a subordination
theorem and as applications of the main result, we find the sufficient conditions for
f ∈ A to be univalent, starlike andφ-like.

To prove our main results, we need the following lemma due to Miller and Mo-
canu.

Lemma 1.1 ([3, p.132, Theorem 3.4 h]).Let q be univalent inE and letθ andφ be
analytic in a domainD containingq(E), withφ(w) 6= 0, whenw ∈ q(E).
SetQ(z) = zq′(z)φ[q(z)], h(z) = θ[q(z)] +Q(z) and suppose that either

(i) h is convex, or

(ii) Q is starlike.
In addition, assume that

(iii) < zh′(z)
Q(z)

> 0, z ∈ E.
If p is analytic inE, with p(0) = q(0), p(E) ⊂ D and

θ[p(z)] + zp′(z)φ[p(z)] ≺ θ[q(z)] + zq′(z)φ[q(z)],

thenp ≺ q andq is the best dominant.
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2. Main Result

Theorem 2.1. Let α 6= 0 be a complex number. Letq, q(z) 6= 0, be a univalent
function inE such that

(2.1) <
[
1 +

zq′′(z)

q′(z)
− zq′(z)

q(z)

]
> max

{
0,<

(
α− 1

α
q(z)

)}
.

If p, p(z) 6= 0, z ∈ E, satisfies the differential subordination

(2.2) (1− α)(p(z)− 1) + α
zp′(z)

p(z)
≺ (1− α)(q(z)− 1) + α

zq′(z)

q(z)
,

thenp ≺ q andq is the best dominant.

Proof. Let us define the functionsθ andφ as follows:

θ(w) = (1− α)(w − 1),

and
φ(w) =

α

w
.

Obviously, the functionsθ andφ are analytic in domainD = C \ {0} andφ(w) 6= 0
in D.

Now, define the functionsQ andh as follows:

Q(z) = zq′(z)φ(q(z)) = α
zq′(z)

q(z)
,

and

h(z) = θ(q(z)) +Q(z) = (1− α)(q(z)− 1) + α
zq′(z)

q(z)
.
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Then in view of condition (2.1), we have
(1)Q is starlike inE and
(2)< z h′(z)

Q(z)
> 0, z ∈ E.

Thus conditions (ii) and (iii) of Lemma1.1, are satisfied.
In view of (2.2), we have

θ[p(z)] + zp′(z)φ[p(z)] ≺ θ[q(z)] + zq′(z)φ[q(z)].

Therefore, the proof, now, follows from Lemma1.1.
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3. Applications to Univalent Functions

On writingp(z) = f ′(z) in Theorem2.1, we obtain the following result.

Theorem 3.1. Let α 6= 0 be a complex number. Letq, q(z) 6= 0, be a univalent
function inE and satisfy the condition (2.1) of Theorem2.1. If f ∈ A, f ′(z) 6=
0, z ∈ E, satisfies the differential subordination

(1− α)(f ′(z)− 1) + α
zf ′′(z)

f ′(z)
≺ (1− α)(q(z)− 1) + α

zq′(z)

q(z)
,

thenf ′(z) ≺ q(z) andq is the best dominant.

On writingp(z) = zf ′(z)
f(z)

in Theorem2.1, we obtain the following result.

Theorem 3.2. Let α 6= 0 be a complex number. Letq, q(z) 6= 0, be a univalent
function inE and satisfy the condition (2.1) of Theorem2.1. If f ∈ A, zf ′(z)

f(z)
6=

0, z ∈ E, satisfies the differential subordination

(1− 2α)
zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ (1− α)q(z) + α

zq′(z)

q(z)
,

then zf ′(z)
f(z)

≺ q(z) andq is the best dominant.

By takingp(z) = zf ′(z)
φ(f(z))

in Theorem2.1, we obtain the following result.

Theorem 3.3. Let α 6= 0 be a complex number. Letq, q(z) 6= 0, be a univalent
function inE and satisfy the condition (2.1) of Theorem2.1. If f ∈ A, zf ′(z)

φ(f(z))
6=

0, z ∈ E, satisfies the differential subordination

(1− α)
zf ′(z)

φ(f(z))
+ α

(
1 +

zf ′′(z)

f ′(z)
− z[φ(f(z))]′

φ(f(z))

)
≺ (1− α)q(z) + α

zq′(z)

q(z)
,
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whereφ is analytic in a domain containingf(E), φ(0) = 0, φ′(0) = 1 andφ(w) 6= 0

for w ∈ f(E) \ {0}, then zf ′(z)
φ(f(z))

≺ q(z) andq is the best dominant.

Remark1. When we select the dominantq(z) = 1+z
1−z

, z ∈ E, then

Q(z) =
αzq′(z)

q(z)
=

2αz

1− z2
,

and
zQ′(z)

Q(z)
=

1 + z2

1− z2
.

Therefore, we have

<zQ
′(z)

Q(z)
> 0, z ∈ E,

and henceQ is starlike. We also have

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
+

1− α

α
q(z) =

1 + z2

1− z2
+

1− α

α

1 + z

1− z
.

Thus, for any real number0 < α ≤ 2, we obtain

<
[
1 +

zq′′(z)

q′(z)
− zq′(z)

q(z)
+

1− α

α
q(z)

]
> 0, z ∈ E.

Therefore,q(z) = 1+z
1−z

, z ∈ E, satisfies the conditions of Theorem3.1, Theorem
3.2and Theorem3.3.

Moreover,

(1− α)(q(z)− 1) + α
zq′(z)

q(z)
= 2(1− α)

z

1− z
+ 2α

z

1− z2
= F (z).
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For 0 < α ≤ 2, we see thatF is the conformal mapping of the unit diskE with
F (0) = 0 and

F (E) = C \
{
w ∈ C : < w = α− 1, |= w| ≥

√
α(2− α)

}
.

In view of the above remark, on writingq(z) = 1+z
1−z

in Theorem3.1, we have the
following result.

Corollary 3.4. If f ∈ A, f ′(z) 6= 0, z ∈ E, satisfies the differential subordination

(1− α)f ′(z) + α

(
1 +

zf ′′(z)

f ′(z)

)
≺ 1 + 2(1− α)

z

1− z
+ 2α

z

1− z2
,

where0 < α ≤ 2 is a real number, then< f ′(z) > 0, z ∈ E. Therefore,f is
close-to-convex and hencef is univalent inE.

In view of Remark1 and Corollary3.4, we obtain the following result.

Corollary 3.5. Let 0 < α ≤ 2 be a real number. Suppose thatf ∈ A, f ′(z) 6=
0, z ∈ E, satisfies the condition

(1− α)f ′(z) + α

(
1 +

zf ′′(z)

f ′(z)

)
≺ F (z).

Thenf is close-to-convex and hence univalent inE, whereF is the conformal map-
ping of the unit diskE with F (0) = 1 and

F (E) = C \
{
w ∈ C : < w = α, |= w| ≥

√
α(2− α)

}
.

From Corollary3.4, we obtain the following result of Singh, Gupta and Singh
[7].
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Corollary 3.6. Let 0 < α < 1 be a real number. Iff ∈ A, f ′(z) 6= 0, z ∈ E,
satisfies the differential inequality

<
[
(1− α)f ′(z) + α

(
1 +

zf ′′(z)

f ′(z)

)]
> α,

then< f ′(z) > 0, z ∈ E. Therefore,f is close-to-convex and hencef is univalent
in E.

From Corollary3.4, we obtain the following result.

Corollary 3.7. Let 1 < α ≤ 2, be a real number. Iff ∈ A, f ′(z) 6= 0, z ∈ E,
satisfies the differential inequality

<
[
(1− α)f ′(z) + α

(
1 +

zf ′′(z)

f ′(z)

)]
< α,

then< f ′(z) > 0, z ∈ E. Therefore,f is close-to-convex and hencef is univalent
in E.

When we selectq(z) = 1+z
1−z

in Theorem3.2, we obtain the following result.

Corollary 3.8. If f ∈ A, zf ′(z)
f(z)

6= 0, z ∈ E, satisfies the differential subordination

(1− 2α)
zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ (1− α)

1 + z

1− z
+ 2α

z

1− z2
= F1(z),

where0 < α ≤ 2 is a real number, thenf ∈ S∗.

In view of Corollary3.8, we have the following result.
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Corollary 3.9. Let 0 < α ≤ 2 be a real number. Suppose thatf ∈ A, zf ′(z)
f(z)

6=
0, z ∈ E, satisfies the condition

(1− 2α)
zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)
≺ F1(z).

Thenf ∈ S∗, whereF1 is the conformal mapping of the unit diskE with F1(0) =
1− α and

F1(E) = C \
{
w ∈ C : < w = 0, |= w| ≥

√
α(2− α)

}
.

In view of Corollary3.8, we have the following result.

Corollary 3.10. Let 0 < α < 1 be a real number. Iff ∈ A, zf ′(z)
f(z)

6= 0, z ∈ E,
satisfies the differential inequality

<
[
(1− 2α)

zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)]
> 0,

thenf ∈ S∗.

In view of Corollary3.8, we also have the following result.

Corollary 3.11. Let 1 < α ≤ 2, be a real number. Iff ∈ A, zf ′(z)
f(z)

6= 0, z ∈ E,
satisfies the differential inequality

<
[
(1− 2α)

zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)]
< 0,

thenf ∈ S∗.

When we selectq(z) = 1+z
1−z

in Theorem3.3, we obtain the following result.
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Corollary 3.12. Let 0 < α ≤ 2 be a real number. Letf ∈ A, zf ′(z)
φ(f(z))

6= 0, z ∈ E,
satisfy the differential subordination

(1−α)
zf ′(z)

φ(f(z))
+α

(
1 +

zf ′′(z)

f ′(z)
− z[φ(f(z))]′

φ(f(z))

)
≺ (1−α)

1 + z

1− z
+2α

z

1− z2
= F1(z).

Then zf ′(z)
φ(f(z))

≺ 1+z
1−z

, whereφ is analytic in a domain containingf(E), φ(0) =

0, φ′(0) = 1 andφ(w) 6= 0 for w ∈ f(E) \ {0}.

In view of Corollary3.12, we obtain the following result.

Corollary 3.13. Let 0 < α ≤ 2 be a real number. Letf ∈ A, zf ′(z)
φ(f(z))

6= 0, z ∈ E,
satisfy the condition

(1− α)
zf ′(z)

φ(f(z))
+ α

(
1 +

zf ′′(z)

f ′(z)
− z[φ(f(z))]′

φ(f(z))

)
≺ F1(z).

Thenf is φ-like in E, whereφ is analytic in a domain containingf(E), φ(0) =
0, φ′(0) = 1 andφ(w) 6= 0 for w ∈ f(E) \ {0} andF1 is the conformal mapping of
the unit diskE with F1(0) = 1− α and

F1(E) = C \
{
w ∈ C : < w = 0, |= w| ≥

√
α(2− α)

}
.
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