AN EXTENSION OF THE REGION OF VARIABILITY OF A SUBCLASS OF UNIVALENT FUNCTIONS

SUKHWINDER SINGH

Department of Applied Sciences B.B.S.B. Engineering College Fatehgarh Sahib-140 407 Punjab, India EMail: ssbilling@gmail.com

Received:03 May, 2009Accepted:05 November, 2009Communicated by:S.S. Dragomir2000 AMS Sub. Class.:30C80, 30C45.Key words:Analytic Function, Univalent function, Starlike function, Differential subordination.

Department of Mathematics S.L.I.E.T. Longowal-148 106 Punjab, India EMail: sushmagupta1@yahoo.com EMail: sukhjit_d@yahoo.com

in pure and applied mathematics

Abstract:

We show that for $\alpha \in (0,2]$, if $f \in \mathcal{A}$ with $f'(z) \neq 0, z \in \mathbb{E}$, satisfies the condition

$$(1-\alpha)f'(z) + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec F(z)$$

then f is univalent in $\mathbb E,$ where F is the conformal mapping of the unit disk $\mathbb E$ with F(0)=1 and

$$F(\mathbb{E}) = \mathbb{C} \setminus \left\{ w \in \mathbb{C} : \Re \ w = \alpha, \ |\Im \ w| \ge \sqrt{\alpha(2-\alpha)} \right\}.$$

Our result extends the region of variability of the differential operator

 $(1-\alpha)f'(z) + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right),$

implying univalence of $f \in \mathcal{A}$ in \mathbb{E} , for $0 < \alpha \leq 2$.

Acknowledgment: The authors are thankful to the referee for valuable comments.

© 2007 Victoria University. All rights reserved.

Contents

- 2 Main Result
- **3** Applications to Univalent Functions

4

7

9

Region of Variability of a Subclass of Univalent Functions Sukhwinder Singh, Sushma Gupta and Sukhjit Singh

vol. 10, iss. 4, art. 113, 2009

journal of inequalities in pure and applied mathematics

issn: 1443-5756

© 2007 Victoria University. All rights reserved.

1. Introduction and Preliminaries

Let \mathcal{H} be the class of functions analytic in $\mathbb{E} = \{z : |z| < 1\}$ and for $a \in \mathbb{C}$ (set of complex numbers) and $n \in \mathbb{N}$ (set of natural numbers), let $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots$. Let \mathcal{A} be the class of functions f, analytic in \mathbb{E} and normalized by the conditions f(0) = f'(0) - 1 = 0.

Let f be analytic in \mathbb{E} , g analytic and univalent in \mathbb{E} and f(0) = g(0). Then, by the symbol $f(z) \prec g(z)$ (f subordinate to g) in \mathbb{E} , we shall mean $f(\mathbb{E}) \subset g(\mathbb{E})$.

Let $\psi : \mathbb{C} \times \mathbb{C} \to \mathbb{C}$ be an analytic function, p be an analytic function in \mathbb{E} , with $(p(z), zp'(z)) \in \mathbb{C} \times \mathbb{C}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E} , then the function p is said to satisfy first order differential subordination if

(1.1)
$$\psi(p(z), zp'(z)) \prec h(z), \qquad \psi(p(0), 0) = h(0)$$

A univalent function q is called a dominant of the differential subordination (1.1) if p(0) = q(0) and $p \prec q$ for all p satisfying (1.1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1.1), is said to be the best dominant of (1.1). The best dominant is unique up to a rotation of \mathbb{E} .

Denote by $S^*(\alpha)$ and $\mathcal{K}(\alpha)$, respectively, the classes of starlike functions of order α and convex functions of order α , which are analytically defined as follows:

$$\mathcal{S}^*(\alpha) = \left\{ f \in \mathcal{A} : \Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \ z \in \mathbb{E}, \ 0 \le \alpha < 1 \right\},\$$

and

$$\mathcal{K}(\alpha) = \left\{ f \in \mathcal{A} : \Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, \ z \in \mathbb{E}, \ 0 \le \alpha < 1 \right\}.$$

We write $S^* = S^*(0)$, the class of univalent starlike convex functions (w.r.t. the origin) and $\mathcal{K}(0) = \mathcal{K}$, the class of univalent convex functions.

journal of inequalities in pure and applied mathematics

A function $f \in \mathcal{A}$ is said to be close-to-convex if there is a real number $\alpha, -\pi/2 < \infty$ $\alpha < \pi/2$, and a convex function g (not necessarily normalized) such that

$$\Re\left(e^{i\alpha}\frac{f'(z)}{g'(z)}\right) > 0, \qquad z \in \mathbb{E}.$$

It is well-known that every close-to-convex function is univalent. In 1934/35, Noshiro [4] and Warchawski [8] obtained a simple but interesting criterion for univalence of analytic functions. They proved that if an analytic function f satisfies the condition $\Re f'(z) > 0$ for all z in \mathbb{E} , then f is close-to-convex and hence univalent in \mathbb{E} .

Let ϕ be analytic in a domain containing $f(\mathbb{E}), \phi(0) = 0$ and $\Re \phi'(0) > 0$, then, the function $f \in \mathcal{A}$ is said to be ϕ -like in \mathbb{E} if

$$\Re\left(\frac{zf'(z)}{\phi(f(z))}\right) > 0, \qquad z \in \mathbb{E}$$

This concept was introduced by Brickman [2]. He proved that an analytic function $f \in \mathcal{A}$ is univalent if and only if f is ϕ -like for some ϕ . Later, Ruscheweyh [5] investigated the following general class of ϕ -like functions:

Let ϕ be analytic in a domain containing $f(\mathbb{E}), \phi(0) = 0, \phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. Then the function $f \in \mathcal{A}$ is called ϕ -like with respect to a univalent function q, q(0) = 1, if

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z), \qquad z \in \mathbb{E}$$

Let $\mathcal{H}_{\alpha}(\beta)$ denote the class of functions $f \in \mathcal{A}$ which satisfy the condition

$$\Re\left[(1-\alpha)f'(z) + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] > \beta, \qquad z \in \mathbb{E},$$

where α and β are pre-assigned real numbers. Al-Amiri and Reade [1], in 1975, have shown that for $\alpha \leq 0$ and for $\alpha = 1$, the functions in $\mathcal{H}_{\alpha}(0)$ are univalent in

of Univalent Functions Sukhwinder Singh, Sushma Gupta and Sukhjit Singh					
vol. 10, iss. 4, art. 113, 2009					
Title Page					
	The Page				
	Contents				
	44	••			
	•	•			
	Page 5 of 15				
	Go E	Back			
	Full S	creen			
	Clo	ose			
jc in m	purnal of i pure and nathemat	nequaliti d applied ics	es d		

E. In 2005, Singh, Singh and Gupta [7] proved that for $0 < \alpha < 1$, the functions in $\mathcal{H}_{\alpha}(\alpha)$ are also univalent. In 2007, Singh, Gupta and Singh [6] proved that the functions in $\mathcal{H}_{\alpha}(\beta)$ satisfy the differential inequality $\Re f'(z) > 0, z \in \mathbb{E}$. Hence they are univalent for all real numbers α and β satisfying $\alpha \leq \beta < 1$ and the result is sharp in the sense that the constant β cannot be replaced by any real number less than α .

The main objective of this paper is to extend the region of variability of the operator (1 + 1)

$$(1-\alpha)f'(z) + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right),$$

implying univalence of $f \in \mathcal{A}$ in \mathbb{E} , for $0 < \alpha \leq 2$. We prove a subordination theorem and as applications of the main result, we find the sufficient conditions for $f \in \mathcal{A}$ to be univalent, starlike and ϕ -like.

To prove our main results, we need the following lemma due to Miller and Mocanu.

Lemma 1.1 ([3, p.132, Theorem 3.4 h]). Let q be univalent in \mathbb{E} and let θ and ϕ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\phi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q(z) = zq'(z)\phi[q(z)]$, $h(z) = \theta[q(z)] + Q(z)$ and suppose that either

(i) h is convex, or

(ii) Q is starlike.

In addition, assume that

(iii) $\Re \frac{zh'(z)}{Q(z)} > 0, \ z \in \mathbb{E}.$ If p is analytic in \mathbb{E} , with $p(0) = q(0), \ p(\mathbb{E}) \subset \mathbb{D}$ and $\theta[p(z)] + zp'(z)\phi[p(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)],$

then $p \prec q$ *and* q *is the best dominant.*

journal of inequalities in pure and applied mathematics

2. Main Result

Theorem 2.1. Let $\alpha \neq 0$ be a complex number. Let q, $q(z) \neq 0$, be a univalent function in \mathbb{E} such that

(2.1)
$$\Re\left[1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right] > \max\left\{0, \Re\left(\frac{\alpha - 1}{\alpha}q(z)\right)\right\}.$$

If $p, p(z) \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

(2.2)
$$(1-\alpha)(p(z)-1) + \alpha \frac{zp'(z)}{p(z)} \prec (1-\alpha)(q(z)-1) + \alpha \frac{zq'(z)}{q(z)},$$

then $p \prec q$ *and* q *is the best dominant.*

Proof. Let us define the functions θ and ϕ as follows:

$$\theta(w) = (1 - \alpha)(w - 1),$$

and

$$\phi(w) = \frac{\alpha}{w}$$

Obviously, the functions θ and ϕ are analytic in domain $\mathbb{D} = \mathbb{C} \setminus \{0\}$ and $\phi(w) \neq 0$ in \mathbb{D} .

Now, define the functions Q and h as follows:

$$Q(z) = zq'(z)\phi(q(z)) = \alpha \frac{zq'(z)}{q(z)},$$

and

$$h(z) = \theta(q(z)) + Q(z) = (1 - \alpha)(q(z) - 1) + \alpha \frac{zq'(z)}{q(z)}.$$

Go Back

Full Screen

Close

journal of inequalities in pure and applied mathematics

Then in view of condition (2.1), we have (1) Q is starlike in \mathbb{E} and (2) $\Re \frac{z h'(z)}{Q(z)} > 0, \ z \in \mathbb{E}$. Thus conditions (ii) and (iii) of Lemma 1.1, are satisfied. In view of (2.2), we have

 $\theta[p(z)] + zp'(z)\phi[p(z)] \prec \theta[q(z)] + zq'(z)\phi[q(z)].$

Therefore, the proof, now, follows from Lemma 1.1.

Region of Variability of a Subclass				
of Univalent Functions				
Sukhwinder Singh, Sushma Gupta				
and Sukhjit Singh				

 \square

vol. 10, iss. 4, art. 113, 2009

journal of inequalities in pure and applied mathematics

3. Applications to Univalent Functions

On writing p(z) = f'(z) in Theorem 2.1, we obtain the following result.

Theorem 3.1. Let $\alpha \neq 0$ be a complex number. Let q, $q(z) \neq 0$, be a univalent function in \mathbb{E} and satisfy the condition (2.1) of Theorem 2.1. If $f \in A$, $f'(z) \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$(1-\alpha)(f'(z)-1) + \alpha \frac{zf''(z)}{f'(z)} \prec (1-\alpha)(q(z)-1) + \alpha \frac{zq'(z)}{q(z)},$$

then $f'(z) \prec q(z)$ and q is the best dominant.

On writing $p(z) = \frac{zf'(z)}{f(z)}$ in Theorem 2.1, we obtain the following result.

Theorem 3.2. Let $\alpha \neq 0$ be a complex number. Let q, $q(z) \neq 0$, be a univalent function in \mathbb{E} and satisfy the condition (2.1) of Theorem 2.1. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$(1-2\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec (1-\alpha)q(z) + \alpha\frac{zq'(z)}{q(z)},$$

then $\frac{zf'(z)}{f(z)} \prec q(z)$ and q is the best dominant.

By taking $p(z) = \frac{zf'(z)}{\phi(f(z))}$ in Theorem 2.1, we obtain the following result.

Theorem 3.3. Let $\alpha \neq 0$ be a complex number. Let q, $q(z) \neq 0$, be a univalent function in \mathbb{E} and satisfy the condition (2.1) of Theorem 2.1. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$(1-\alpha)\frac{zf'(z)}{\phi(f(z))} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z[\phi(f(z))]'}{\phi(f(z))}\right) \prec (1-\alpha)q(z) + \alpha \frac{zq'(z)}{q(z)},$$

journal of inequalities in pure and applied mathematics

where ϕ is analytic in a domain containing $f(\mathbb{E})$, $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$, then $\frac{zf'(z)}{\phi(f(z))} \prec q(z)$ and q is the best dominant.

Remark 1. When we select the dominant $q(z) = \frac{1+z}{1-z}, \ z \in \mathbb{E}$, then

$$Q(z) = \frac{\alpha z q'(z)}{q(z)} = \frac{2\alpha z}{1 - z^2},$$

and

$$\frac{zQ'(z)}{Q(z)} = \frac{1+z^2}{1-z^2}.$$

Therefore, we have

$$\Re \frac{zQ'(z)}{Q(z)} > 0, \qquad z \in \mathbb{E},$$

and hence Q is starlike. We also have

$$1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)} + \frac{1-\alpha}{\alpha}q(z) = \frac{1+z^2}{1-z^2} + \frac{1-\alpha}{\alpha}\frac{1+z}{1-z}$$

Thus, for any real number $0 < \alpha \leq 2$, we obtain

$$\Re\left[1+\frac{zq''(z)}{q'(z)}-\frac{zq'(z)}{q(z)}+\frac{1-\alpha}{\alpha}q(z)\right]>0,\qquad z\in\mathbb{E}$$

Therefore, $q(z) = \frac{1+z}{1-z}$, $z \in \mathbb{E}$, satisfies the conditions of Theorem 3.1, Theorem 3.2 and Theorem 3.3.

Moreover,

$$(1-\alpha)(q(z)-1) + \alpha \frac{zq'(z)}{q(z)} = 2(1-\alpha)\frac{z}{1-z} + 2\alpha \frac{z}{1-z^2} = F(z).$$

journal of inequalities in pure and applied mathematics

For $0 < \alpha \leq 2$, we see that F is the conformal mapping of the unit disk \mathbb{E} with F(0) = 0 and

$$F(\mathbb{E}) = \mathbb{C} \setminus \left\{ w \in \mathbb{C} : \Re \ w = \alpha - 1, \ |\Im \ w| \ge \sqrt{\alpha(2 - \alpha)} \right\}.$$

In view of the above remark, on writing $q(z) = \frac{1+z}{1-z}$ in Theorem 3.1, we have the following result.

Corollary 3.4. If $f \in A$, $f'(z) \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$(1-\alpha)f'(z) + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) \prec 1 + 2(1-\alpha)\frac{z}{1-z} + 2\alpha\frac{z}{1-z^2},$$

where $0 < \alpha \leq 2$ is a real number, then $\Re f'(z) > 0, z \in \mathbb{E}$. Therefore, f is close-to-convex and hence f is univalent in \mathbb{E} .

In view of Remark 1 and Corollary 3.4, we obtain the following result.

Corollary 3.5. Let $0 < \alpha \leq 2$ be a real number. Suppose that $f \in A$, $f'(z) \neq 0$, $z \in \mathbb{E}$, satisfies the condition

$$(1-\alpha)f'(z) + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec F(z).$$

Then f is close-to-convex and hence univalent in \mathbb{E} , where F is the conformal mapping of the unit disk \mathbb{E} with F(0) = 1 and

$$F(\mathbb{E}) = \mathbb{C} \setminus \left\{ w \in \mathbb{C} : \Re \ w = \alpha, \ |\Im \ w| \ge \sqrt{\alpha(2-\alpha)} \right\}.$$

From Corollary 3.4, we obtain the following result of Singh, Gupta and Singh [7].

Region of Variability of a Subclas of Univalent Functions Sukhwinder Singh, Sushma Gupta and Sukhjit Singh vol. 10, iss. 4, art. 113, 2009				
	Title	Page	-	
	Contents			
	44	••		
	•	•		
	Page 11 of 15			
	Go Back			
	Full Screen			
	Close			

journal of inequalities in pure and applied mathematics

Corollary 3.6. Let $0 < \alpha < 1$ be a real number. If $f \in A$, $f'(z) \neq 0$, $z \in \mathbb{E}$, satisfies the differential inequality

$$\Re\left[(1-\alpha)f'(z) + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] > \alpha,$$

then $\Re f'(z) > 0$, $z \in \mathbb{E}$. Therefore, f is close-to-convex and hence f is univalent in \mathbb{E} .

From Corollary 3.4, we obtain the following result.

Corollary 3.7. Let $1 < \alpha \leq 2$, be a real number. If $f \in A$, $f'(z) \neq 0$, $z \in \mathbb{E}$, satisfies the differential inequality

$$\Re\left[(1-\alpha)f'(z) + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] < \alpha$$

then $\Re f'(z) > 0$, $z \in \mathbb{E}$. Therefore, f is close-to-convex and hence f is univalent in \mathbb{E} .

When we select $q(z) = \frac{1+z}{1-z}$ in Theorem 3.2, we obtain the following result.

Corollary 3.8. If $f \in A$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$(1-2\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec (1-\alpha)\frac{1+z}{1-z} + 2\alpha\frac{z}{1-z^2} = F_1(z),$$

where $0 < \alpha \leq 2$ is a real number, then $f \in S^*$.

In view of Corollary 3.8, we have the following result.

Region of Variability of a Subclass of Univalent Functions Sukhwinder Singh, Sushma Gupta and Sukhjit Singh

vol. 10, iss. 4, art. 113, 2009

journal of inequalities in pure and applied mathematics

Corollary 3.9. Let $0 < \alpha \leq 2$ be a real number. Suppose that $f \in A$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the condition

$$(1-2\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec F_1(z)$$

Then $f \in S^*$, where F_1 is the conformal mapping of the unit disk \mathbb{E} with $F_1(0) = 1 - \alpha$ and

$$F_1(\mathbb{E}) = \mathbb{C} \setminus \left\{ w \in \mathbb{C} : \Re \ w = 0, \ |\Im \ w| \ge \sqrt{\alpha(2-\alpha)} \right\}.$$

In view of Corollary 3.8, we have the following result.

Corollary 3.10. Let $0 < \alpha < 1$ be a real number. If $f \in A$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential inequality

$$\Re\left[(1-2\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] > 0,$$

then $f \in S^*$.

In view of Corollary 3.8, we also have the following result.

Corollary 3.11. Let $1 < \alpha \leq 2$, be a real number. If $f \in A$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential inequality

$$\Re\left[(1-2\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right] < 0$$

then $f \in S^*$.

When we select $q(z) = \frac{1+z}{1-z}$ in Theorem 3.3, we obtain the following result.

of Univalent Functions Sukhwinder Singh, Sushma Gupta and Sukhjit Singh vol. 10, iss. 4, art. 113, 2009 Title Page Contents 44 ◀ Page 13 of 15 Go Back Full Screen Close

journal of inequalities in pure and applied mathematics

Corollary 3.12. Let $0 < \alpha \leq 2$ be a real number. Let $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy the differential subordination

$$(1-\alpha)\frac{zf'(z)}{\phi(f(z))} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z[\phi(f(z))]'}{\phi(f(z))}\right) \prec (1-\alpha)\frac{1+z}{1-z} + 2\alpha\frac{z}{1-z^2} = F_1(z).$$

Then $\frac{zf'(z)}{\phi(f(z))} \prec \frac{1+z}{1-z}$, where ϕ is analytic in a domain containing $f(\mathbb{E})$, $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$.

In view of Corollary 3.12, we obtain the following result.

Corollary 3.13. Let $0 < \alpha \leq 2$ be a real number. Let $f \in A$, $\frac{zf'(z)}{\phi(f(z))} \neq 0$, $z \in \mathbb{E}$, satisfy the condition

$$(1-\alpha)\frac{zf'(z)}{\phi(f(z))} + \alpha \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z[\phi(f(z))]'}{\phi(f(z))}\right) \prec F_1(z).$$

Then f is ϕ -like in \mathbb{E} , where ϕ is analytic in a domain containing $f(\mathbb{E})$, $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$ and F_1 is the conformal mapping of the unit disk \mathbb{E} with $F_1(0) = 1 - \alpha$ and

$$F_1(\mathbb{E}) = \mathbb{C} \setminus \left\{ w \in \mathbb{C} : \Re \ w = 0, \ |\Im \ w| \ge \sqrt{\alpha(2-\alpha)} \right\}.$$

Region of Variability of a Subclass of Univalent Functions Sukhwinder Singh, Sushma Gupta and Sukhjit Singh

vol. 10, iss. 4, art. 113, 2009

Title Page		
Contents		
44	••	
◀	►	
Page 14 of 15		
Go Back		
Full Screen		
Close		

journal of inequalities in pure and applied mathematics

References

- [1] H.S. AL-AMIRI AND M.O. READE, On a linear combination of some expressions in the theory of univalent functions, *Monatshefto für Mathematik*, **80** (1975), 257–264.
- [2] L. BRICKMAN, φ-like analytic functions. I, *Bull. Amer. Math. Soc.*, **79** (1973), 555–558.
- [3] S.S. MILLER AND P.T. MOCANU, *Differential Subordinations: Theory and Applications*, Series on Monographs and Textbooks in Pure and Applied Mathematics, (No. **225**), Marcel Dekker, New York and Basel, 2000.
- [4] K. NOSHIRO, On the theory of schlicht functions, *J. Fac. Sci., Hokkaido Univ.*, **2** (1934-35), 129–155.
- [5] St. RUSCHEWEYH, A subordination theorem for φ-like functions, J. London Math. Soc., 2(13) (1976), 275–280.
- [6] S. SINGH, S. GUPTA AND S. SINGH, On a problem of univalence of functions satisfying a differential inequality, *Mathematical Inequalities and Applications*, **10**(1) (2007), 95–98.
- [7] V. SINGH, S. SINGH AND S. GUPTA, A problem in the theory of univalent functions, *Integral Transforms and Special Functions*, **16**(2) (2005), 179–186.
- [8] S.E. WARCHAWSKI, On the higher derivatives at the boundary in conformal mappings, *Trans. Amer. Math. Soc.*, **38** (1935), 310–340.

Region of Variability of a Subclass of Univalent Functions Sukhwinder Singh, Sushma Gupta and Sukhjit Singh

vol. 10, iss. 4, art. 113, 2009

Title Page		
Contents		
44	••	
◀		
Page 15 of 15		
Go Back		
Full Screen		
Close		

journal of inequalities in pure and applied mathematics