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ABSTRACT. A result is found which is similar to BDG-inequalities, but in the framework of
exponential (hon moderate) Orlicz spaces. A special class of such spaces is introduced and its
properties are discussed with respect to probability measures, whose densities are connected by
an exponential model.
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1. INTRODUCTION

Exponential martingale inequalities are a very important and still relevant topic in Martingale
Theory: see e.gl [5],[10], [11] and|[9] for recent literature. In particular, inequalities involving
a continuous martingale and its quadratic variation are considered in [10]/land [5].

An attempt has been made to find exponential inequalities that relate a generic continuous
martingale and its quadratic variation by investigating results similar to Burkholder, Davis and
Gundy’s (BDG) inequalities, but in the framework of exponential (non moderate) Orlicz spaces.
A first attempt on this topic can be found in [6], where exponential BDG-type inequalities are
discussed for a Brownian motion.

The analytical framework of (exponential) Orlicz spaces has recently been given renewed rel-
evance - see e.d./[1] and |12] - and may have applications in the field of Mathematical Finance.
For instance, semimartingales such that their quadratic variation belongs to the exponential Or-
licz space are considered in [17]. Moreover, a general Orlicz space based approach for utility
maximization problems is described in [2] and [3]. However, BDG inequalities are interesting
in themselves. For instance, BDG-type inequalities are usédlin [18] to find closure properties in
Lebesgue spaces that are directly related to variance-optimal hedging strategies.

In order to state our results, a special class of exponential Orlicz spaces is introduced and its
properties are discussed in relation to different probability measures.
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More precisely, in Section 2 we analyze in detail the structure of exponential Orlicz spaces
by defining the class of™*' spaces as the sets of random variables whepewer belongs
to L®1, where®, (z) = cosh(z) — 1. Such discussions are generalizations of previous results
based on[[15],[[14] and [4], regarding the topology/dft and its applications to exponential
models. In particular, we study the equivalence of norms among these spaces with respect to
different probability measures, whose densities are connected by an open exponential arc.

The main result is given in Sectignn 3, where BDG-type inequalities are discussed within
the topology ofL™®* spaces, with respect to different measures. Finally, we show that such
measures are connected by an open exponential arc and therefore the corresponding spaces
have equivalent norms.

2. EXPONENTIAL ORLICZ SPACES

2.1. Analytical framework. Before showing the main results of this paper, a brief introduction
to Orlicz spaces is necessary: reference can be mage! to [16] for the general theory and to [15],
[14] and [4] for connections to exponential models.
Let us fix a probability spac&?, F, i) and letD(Q2, F, i) be the set of the-almost surely
strictly positive densities. Let® (1) be the Orlicz space associated to the Young functioit
can be proved that®(u) is a Banach space endowed with the Luxemburg norm

(2.1) full oy = inf{k > 0: E[®(u/k)] < 1}.

It is possible to characterize functions that belong to the closed unit balf gf) using the
following property - see e.g. [16, p. 54]

(2.2) lull@ <1 = E[®(u)] < 1.

Furthermore, this norm is monotone, that|ig, < |v| implies||u||@ ) < [|v]](@,u)-

From now on, we shall deal with the spat®&: (1) associated with the functiof, (z) :=
cosh(z) — 1. Let () := (1 + |z|)log(1 + |z|) — |z| be the conjugate function df(z) :=
exp(|z|) — |z| — 1. Since®;, and® are equivalent Young functions, we shall refeflitpas the
conjugate ofb, in the sequel.

The following result will be used hereatfter.

Proposition 2.1 (see [14]) Letp,q € D(2, F, ) be connected by a one-dimensional open
exponential model. More precisely, lete D(Q, F, 1) andu € L* (r - 1) and let us suppose
that there exists an exponential model

(2.3) p(0, ) = OO (),

whered € (6, — ¢, 6, + <), for some positive and(6) is the cumulant generating function,
such thatp(6y) = p andp(0,) = q. ThenL® (p - u) and L*1 (¢ - ;1) are equal as sets and have
equivalent norms.

2.2. The spaceL™?®!. The topology ofL.*' (1) is a natural framework to consider theoment
generating functiondE[e*] of a random variable. More generally, let us also take into account
the moment generating functional of powefs wheren > 1. For this purpose, we introduce a
more general class of Orlicz spaces.

Forn > 1, let us define

(2.4) L) = {u: ™ € LY ();

it is trivial to show that.™®1 (1) is a subspace af® (1), becauseu| < 1 + |u|" for each real
numberu.
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In fact, L™®1(p) is an Orlicz space with respect to the Young functigyiz) := cosh(z")—1.
Therefore, we can endow it with the usual norm: givea L™®1(x), we have
(2.5) l|u|l(@, ) == inf{r > 0: Elexp(u")] + Elexp(—u")] < 4}.

An easy computation shows that these norms are related to the topolagy(pf) through the
following equality

1
(2.6) ull@nm) = 1", -

Unfortunately, the conjugate function of, () does not simply admit an explicit expression.
However, if we definep,(z) := nz""!sinh(2™), a straight integration gives the following
expression for the conjugate, (x)

(2.7) U (x) = n(¢, (x))" sinh((¢, " (x))") — cosh((¢, ' (2))") + 1.

Sincecosh(z™) < cosh(z™) foranym > n > 1 andx > 1, from e.g. [16, p. 155] one
obtains
(2.8) L™ () € LM (1),

foranym > n > 1. More precisely, these inclusions correspond to continuous embedding
of one space into another, that is, for amy> n > 1 there exists a positive constaint:=
1+ @,(1)u(Q) = (e* + 1)/2¢e such that

(2.9) ull (@) < Ellull(@,-
It is natural to consider the intersection of such spaces: for this purpose, let us define
(2.10) L () o= () L ().
n>1

First of all, note that.>®* is not empty, since it contains all the bounded functions. Moreover,
since the productv can be upper bounded by the suf+ v?, it can be shown that>>®1 (1)
is an algebra.

At this point, it is possible to ask whether, in genedat:*! (1) and L> (1) are equal as sets.

Proposition 2.2. Let . be the Lebesgue measure [0n1]; then L>(u) is strictly included in
L% ().

Proof. Let us define
(2.11) u(z) :=log (1 — log(x))

and fixn > 1 andr < 1. Trivially, E[exp(—ru™)] < oo; let us study the convergence of
Elexp(ru™)]. For anyz belonging to a suitable neighborhood of zero, the following holds

(2.12) u(z) < [1—log(a)],
and hence
(2.13) exp(ru™) < e"exp (—rlog(z)).

SinceE[exp (—rlog(z))] < oo, we can conclude that € L™®(y), proving the thesis. [

We conclude this section by investigating relationships amoh spaces with respect to
different probability measures. Such a result will be useful to better understand the structure
of the Burkholder-type inequalities that will be discussed in the next section. The proof is a
consequence of [4, Lemma 18, p.40].

Proposition 2.3. For eachp, ¢ € D connected by a one-dimensional open exponential model,
L™®1(p - u) and L™®1(q - 1) are equal as sets and have equivalent norms.
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Remark 1. It should be noted that the definition 6f®* and its basic properties are similar to
the theory of classical Lebesgue spatés

From now on, we shall limit our study to the spac&®:. The following theorem states the
continuity of the productv in L.

Theorem 2.4.Letp > 1 andq be its conjugate; let us considerc L»®1(y) andv € L% (u);
then

(2.14) Huv][@, ) < ull@,m] V] @40

Proof. Lets := ||uP||(p, 4,y m = |[[vY|(®, 0, € = (s/m s andr 1= s%mé;from the inequality
( 17:”') ( 17”)

lw? 1
(2.15) uv < L + —viel
per  q

and by using the convexity @#, we obtain
uv uP pled
(2.16) Eb«7ﬂ<lq®<@0%—EF%ﬁfﬂ
p
<5l (5)] -2 ()
p S m
!

1
<-—4-=1
p 4q
Therefore, the following holds
1 1
(2.17) Nwv|l@r < 7 = [[W?[|{5, o105, 0
and [2.6) gives the inequality we were looking for. O

More generally, a standard argument shows the following corollary.

Corollary 2.5. The functionF" : L>®1(y) > u +— u? € L® () is continuous; furthermore, it is
Fréchet differentiable and its differentidF’ evaluated at the point in the directionv is equal
to dF'(u)[v] = 2uw.

Moreover, from Theoremn 2.4 and since the topology. f is stronger that any.? space, the
following statement can be easily proved.

Corollary 2.6. The scalar productu, v) ;> := E[uv] is continuous inL2® (1) x L>®1 ().

3. MARTINGALE |INEQUALITIES WITHIN L™®!' SPACES

Let (2, F, i, (F:):), Wwheret € [0, 7] andT < oo, be a filtered probability space that satis-
fies the usual conditions. From now on, we shall consider adapted processes with continuous
trajectories and denote the space of continuous martingales starting from zeyotwith

For the sequel, it is useful to reformulate a classical sufficient condition in the topology of
L™* () spaces which can ensure that the so-caddgbnential martingale

(3.1) &:wm(%—%@%):&@ﬂ

where M is a local martingale, is a true martingale. If this is the cas€)/) is actually a
Girsanov densitjor anyt € [0,7]. However, in the general casgis a supermartingale, so
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thatE[Z,] < 1 for eacht. For a deeper insight into these topics, reference can be made to [8].
In particular, in[8, p. 8] itis proved thdf is a martingale if there existsra > 1 such that

52 oo (5223

Proposition 3.1. Let A/ € M, be a continuous martingale such that/r ||, ,) < 2. Then
E(M) is a martingale.

< 00.

Proof. Since||Mr||s, ) < 2, there exists @ > 0 such that

1 vm
3.3 =X
33) 5 am 1)
for somem € (1, 00). Moreover,||Mr/3||, ) < 1, so that, from(2.2),
1
(3.4) E {exp (EMT)] <4 < .
SinceM € M., due to the convexity ob,(x), for any stopping time < T
(3.5) M@0 < [ Mr]|@,.00)-
Therefore
)| = rme oo (00
3.6 supE |e ——— M. || =supE |e — M. <4 < 0.
@0 o (g2 WE e >

O

3.1. BDG-inequalities within L™®1 spaces.Let ®(¢) be a Young function expressed in inte-
gral form as

(3.7) a(t) = /0 o(s)ds:
define

(3.8) Y = sup il?((;))
and

(3.9) Y = int %.

The function® is said to benoderatdf v < co. For instance¥(z) = (1+ |z|) log(1+ |z|) —
|z|, that is the conjugate function @f, () = cosh(x) — 1, is moderate, since it has logarithmic
form. Furthermore, whe = ®; a straightforward computation shows that= 2. Therefore,
see e.g.[]7, p. 186], the following generalized Doob’s inequality can be stafet! ip ).
Proposition 3.2. Let M € M. and M* := supy,r |M,|; then
(3.10) HM*H(%#) < 2||MTH(<I>17M)'

Given a local martingalé/ and a moderaté, Burkholder, Davis and Gundy’s (BDG) clas-
sical inequalities are the following ones, see €.g. [7, p. 304]

1. L
(3.11) 7 Nl < ||

< 6v||M* .
o = YNM™|| (@)

Wheny = oo, (3.11) becomes meaningless, therefore different results could be expected.
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In the sequel, we shall allow the norm of two different Orlicz spaces to appefr ifj (3.11),
provided they both belong to the exponential clag$:. In this way, we shall show that the
former inequality in[(3.1]1) still holds with a different constant, while the latter holds provided
that different measures are allowed.

Proposition 3.3. Let M € M. andT < T be a stopping time; if M)y € L% (u), then
M, € L*(u) and

1
(3.12) 1Ml @ < VE|20)2|
(P2,u)
Therefore
(3.13) 17w < 2V2|[(W0Z]|
(P2,1)

Proof. Since(M)r € L* (1) and due to the monotonicity of the norf\/), € L*'(u) for
eachr < T. Letq := ||[(M).||(s, ) < oo and define- := /2¢. Using Holder’s inequality we
obtain

i afen (1) (e (20 o))

therefore

(3.15) M@y < 7= VEIKM)-lIGy, = V2 (M3

(P2, #)

which provides|(3.1]2). The inequality (3]13) is a consequence of Propdsitign 3.10. [
Remark 2. By definition of norm, from[(3.13) one has

M*
(3.16) E [exp T < 4.
won
(P2,1)
For instance, for a Brownian motidm;);<r, one obtains
B*
3.17 E |ex A <4
(3.17) { b ( 2 _QT)} <

Similar exponential inequalities are widely discussed in [6].

Theorem 3.4(Main). Let M € M. be a non zero martingale such that; € L*®'(u), let
k € (2—+/2,2] and7 < T be a stopping time such that, # 0. Then:

(i): (M), € L* (qga, - ), Wheregy,, = & (k™' M/a.) anda, := ||M,||(e, .. Further-
more, the following holds

(3.18) | a2

< Vel M@y,

(CI)Q Akar M)

wherecy, := 4k*/(—2 + 4k — k?);
(27): if k = 1, we have the most stringent inequality and obtain

(3.19) a2

< 2| M.
(.0 1) [1Mrll100-
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Proof. Statement::) follows directly from(i) by minimizing the constant, with respect td:.
Hence,it is only necessary to prove assertion

Let us first show thaf (3.18) holds fer= 7. In order to prove this, we can suppase ) #
0; otherwise, the thesis is trivial.

Let us fixk € (2 — V2, 2] and prove thaty,, is a density. By definition ofr and since
k >  one obtains

(320) ||k_1MT/O-/T||(¢>1”u) < 2.

Thus, from Propositiop 3% (k~'M/ar) is a uniformly integrable martingale, so that,, is
a density. Let;, := 4k?/(—2+4k — k?) andr := ;o2 and defind /s? := —1/r +1/(2k*a2);
it should be noted that, is positive andl /s* is non negative. Therefore

(3.21) Eg., {exp <%<M>T>:|
=K {exp <_sl2<M>T + %MT — EMT + %)}
< {efer (Sar) (o (=507 )}
S 2’
since
1 1 1
(3.22) —2 (; — E) = |[Mrl[(q, .-
Therefore,
(3.23) Eiop [exp (%(M>T>} + Ey... {exp <—%<M>T)] < 4,

with strict inequality sincg )z # 0, so that|[(M)r||@,.4.,) < - Hence, due td (2]6), the
thesis follows immediately for = 7.
Now, letT < T such thatV/. # 0 and consideV := MT; it should be noted tha¥ € M,

andNy = M7 = M, € L* (u) due to(3.5). Hence,|(3.18) follows. O
Remark 3. Again, by definition of norm one may obtain the following bound fr¢m (B.18)

||MTH%<I>1,,LL) cr 2k kHMTH(‘I’hM) B

In particular, wherk = 1, (3.24]) reduces to

exp —§ (M) + My < 4.
Mz, .y M@ )|~

Propositior] 3.3 and Theorem B.4 give a BDG-type inequality between the mgaauarka
family of measures that depend on the paramiter (2 — v/2,2]. In fact, taking ) with
respect to the measugg,. -« and due to[(3.10) and the monotonicity of the norm, the following
proposition holds.

(3.24) E

(3.25) E

Proposition 3.5. For any non zera\/ € M., the following holds

1 * % *
(3.26) 7/ Mg < (407 < VI,

(©2 Akap M
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3.2. Discussion. It should be noted thay,...,. - © actually depends on the considered martingale

M. In order to better understand such a structure, it is useful to study the relationships between
this class of measures and the reference jen&or this purpose, we shall prove that, under
suitable conditions o/, for eachk € (1, 2], the densitiegy,,, and1 can be connected by a
one-dimensional exponential model, so that their corresponding norms are equivalent. Before
this, we need the following lemma.

Lemma 3.6. Let M € M., such thatMy € L*' (1) and suppose that
(3.27) 1 < Ey,,,. [cosh (r{(M)r)] < oo
for somer > 0. Then(M), € L*'(u) for each stopping time < 7.

Proof. If M = 0, the thesis is trivial; therefore, we can suppdse # 0. Letp := |[(M)7|(@, 400y 1)
so that

(3.28) E,.. {eXp (%ﬁ)] _E {exp (MT M)z <M>T)]

20 p 8a.

<4 < o0,

and define a real positivein such a way that
4 1 1
3.29 —=—-——.
(3.29) s p 8ak
In fact, due to the continuity of the function
(3.30) H,(r):= E[® (ru)],

see e.g.[[16, p. 54] conditiof (3]27) and the strict inequality sigh in(3.23) ensuré that (3.18)
also holds with strict inequality for = 2.
Hence, an application of the generalized Holder inequality gives

s o) |
(e () e o))
(el (R2)]) fef (2 20 )

<2 < oo,
due respectively tq (2.2) and (3]28). Therefore, there exist$0, co) such that
+(M
(3.32) E [exp (%)} <4 < o0,
so that(M); € L® (n). Finally, since the norm is monoton&/), € L% (u) for eachr <
T. U

Remark 4. For instance, conditior] (3.27) of Lemra 3.6 holds for a continuous martingale
M € M, with a bounded quadratic variation.

Proposition 3.7. Let M € M, be a non zero martingale that satisfies the conditions of Lemma
and considex € (1,2]; then, for each stopping time < 7' such thatM. # 0, the

two densitiesl and ¢, can be connected by a one-dimensional exponential model. Hence,
| (@ .qea. ) @NA]| - [|(e,..) @re equivalent norms.
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Proof. Letu, := M, /(ka,) — (M), /(2k*a?) and define, for an arbitrary small positive
(3.33) p(0) = exp(Bur, — (), € (e e+1),

wherey(6) := log Elexp(fu.,)]. Due to [3.5) and from Lemnja 3.6, € L®'(u); in fact, p(0)
is an exponential model such thad) = 1 andp(1) = ¢, , the two densities andgy,. being
in the interior of the model. Indeed, let us chodse (—¢, 1]; then

0
E, M <E|& oM <1< o0.
ko, ko,

On the other hand, whehe (1,1 + <) one obtains

M, \* oM
E T <E |exp T)| €4 < oo,
ko ko,

(3.34) E

(3.35) E

since‘ ‘% o < 1land duet2). The equivalence|pf| s, ) and||-||(s,, ¢ -u) follows
from Propositior@]& O
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