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ABSTRACT. In this paper we present sharp estimates for the difference of general integral means
with respect to even different finite measures. This is achieved by the use of the Ostrowski and
Fink inequalities and the Geometric Moment Theory Method. The produced inequalities are
with respect to the supnorm of a derivative of the involved function.
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1. I NTRODUCTION

Here our work is motivated by the works of J. Duoandikoetxea [5] and P. Cerone [4]. We
use Ostrowski’s ([8]) and Fink’s ([6]) inequalities along with the Geometric Moment Theory
Method, see [7], [1], [3], to prove our results.

We compare general averages of functions with respect to various finite measures over dif-
ferent subintervals of a domain, even disjoint. Our estimates are sharp and the inequalities are
attained. They are with respect to the supnorm of a derivative of the involved functionf .

To the best of our knowledge this type of work is totally new.

2. RESULTS

Part A
As motivation we give the following proposition.

Proposition 2.1. Let µ1, µ2 be finite Borel measures on[a, b] ⊆ R, [c, d], [ẽ, g] ⊆ [a, b], f ∈
C1([a, b]). Denoteµ1([c, d]) = m1 > 0, µ2([ẽ, g] = m2 > 0. Then

(2.1)

∣∣∣∣ 1

m1

∫ d

c

f(x)dµ1 −
1

m2

∫ g

ẽ

f(x)dµ2

∣∣∣∣ ≤ ‖f ′‖∞(b− a).
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2 GEORGEA. A NASTASSIOU

Proof. From the mean value theorem we have

|f(x)− f(y)| ≤ ‖f ′‖∞(b− a) =: γ, ∀x, y ∈ [a, b],

that is,
−γ ≤ f(x)− f(y) ≤ γ, ∀x, y ∈ [a, b],

and by fixingy we get

−γ ≤ 1

m1

∫ d

c

f(x)dµ1 − f(y) ≤ γ.

The last statement holds∀y ∈ [ẽ, g]. Hence

−γ ≤ 1

m1

∫ d

c

f(x)dµ1 −
1

m2

∫ g

ẽ

f(x)dµ2 ≤ γ,

proving the claim. �

As a related result we have

Corollary 2.2. Letf ∈ C1([a, b]), [c, d], [ẽ, g] ⊆ [a, b] ⊆ R. Then we have

(2.2)

∣∣∣∣ 1

d− c

∫ d

c

f(x)dx− 1

g − ẽ

∫ g

ẽ

f(x)dx

∣∣∣∣ ≤ ‖f ′‖∞ · (b− a).

We use the following famous Ostrowski inequality, see [8], [2].

Theorem 2.3.Letf ∈ C1([a, b]), x ∈ [a, b]. Then

(2.3)

∣∣∣∣f(x)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ ‖f ′‖∞
2(b− a)

(
(x− a)2 + (x− b)2

)
,

and inequality (2.3) is sharp, see[2].

We also have

Corollary 2.4. Letf ∈ C1([a, b]), x ∈ [c, d] ⊆ [a, b] ⊆ R. Then

(2.4)

∣∣∣∣f(x)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ ‖f ′‖∞

2(b− a)
max

{
((c− a)2 + (c− b)2), ((d− a)2 + (d− b)2)

}
.

Proof. Obvious. �

We denote byP([a, b]) the power set of[a, b]. We give the following.

Theorem 2.5. Let f ∈ C1([a, b]), µ be a finite measure on([c, d], P([c, d])), where[c, d] ⊆
[a, b] ⊆ R andm := µ([c, d]) > 0. Then

(1)

(2.5)

∣∣∣∣ 1

m

∫
[c,d]

f(x)dµ− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ ‖f ′‖∞

2(b− a)
max

{
((c− a)2 + (c− b)2), ((d− a)2 + (d− b)2)

}
.

(2) Inequality (2.5) is attained whend = b.
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DIFFERENCE OFGENERAL INTEGRAL MEANS 3

Proof. 1) By (2.4) integrating againstµ/m.
2) Here (2.5) collapses to

(2.6)

∣∣∣∣ 1

m

∫
[c,b]

f(x)dµ− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ ‖f ′‖∞
2

(b− a).

We prove that (2.6) is attained. Take

f ∗(x) =
2x− (a + b)

b− a
, a ≤ x ≤ b.

Thenf ∗′(x) = 2
b−a

and‖f ∗′‖∞ = 2
b−a

, along with∫ b

a

f ∗(x)dx = 0.

Therefore (2.6) becomes

(2.7)

∣∣∣∣ 1

m

∫
[c,b]

f ∗(x)dµ

∣∣∣∣ ≤ 1.

Finally pick µ
m

= δ{b} the Dirac measure supported at{b}, then (2.7) turns to equality. �

We further have

Corollary 2.6. Let f ∈ C1([a, b]) and [c, d] ⊆ [a, b] ⊆ R. LetM(c, d) := {µ : µ a measure on
([c, d], P([c, d])) of finite positive mass}, denotedm := µ([c, d]). Then

(1) The following result holds

sup
µ∈M(c,d)

∣∣∣∣ 1

m

∫
[c,d]

f(x)dµ− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ ‖f ′‖∞

2(b− a)
max

{
((c− a)2 + (c− b)2), ((d− a)2 + (d− b)2)

}
(2.8)

=
‖f ′‖∞

2(b− a)
×

{
(d− a)2 + (d− b)2, if d + c ≥ a + b

(c− a)2 + (c− b)2, if d + c ≤ a + b

}

≤ ‖f ′‖∞
2

(b− a).(2.9)

Inequality (2.9) becomes equality ifd = b or c = a or both.
(2) The following result holds

(2.10) sup
all c,d

a≤c<d≤b

(
sup

µ∈M(c,d)

∣∣∣∣ 1

m

∫
[c,d]

f(x)dµ− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
)
≤ ‖f ′‖∞

2
(b− a).

Next we restrict ourselves to a subclass ofM(c, d) of finite measuresµ with given first mo-
ment and by the use of the Geometric Moment Theory Method, see [7], [1], [3], we produce an
inequality sharper than (2.8). For that we need

Lemma 2.7. Letν be a probability measure on([a, b], P([a, b])) such that

(2.11)
∫

[a,b]

x dν = d1 ∈ [a, b]

is given. Then
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i)

(2.12) U1 := sup
ν as in(2.11)

∫
[a,b]

(x− a)2dν = (b− a)(d1 − a),

and
ii)

(2.13) U2 := sup
ν as in(2.11)

∫
[a,b]

(x− b)2dν = (b− a)(b− d1).

Proof. i) We observe the graph

G1 =
{
(x, (x− a)2) : a ≤ x ≤ b

}
,

which is a convex arc above thex-axis. We form the closed convex hull ofG1 and we call it
Ĝ1 which has as an upper concave envelope the line segment`1 from (a, 0) to (b, (b− a)2). We
consider the vertical linex = d1 which cuts`1 at the pointQ1. ThenU1 is the distance from
(d1, 0) to Q1. By using the equal ratios property of similar triangles related here we get

d1 − a

b− a
=

U1

(b− a)2
,

which proves the claim.
ii) We observe the graph

G2 =
{
(x, (x− b)2) : a ≤ x ≤ b

}
,

which is a convex arc above thex-axis. We form the closed convex hull ofG2 and we call it
Ĝ2 which has as an upper concave envelope the line segment`2 from (b, 0) to (a, (b− a)2). We
consider the vertical linex = d1 which intersects̀2 at the pointQ2.

ThenU2 is the distance from(d1, 0) to Q2. By using the equal ratios property of the related
similar triangles we obtain

U2

(b− a)2
=

b− d1

b− a
,

which proves the claim. �

Furthermore we need

Lemma 2.8. Let [c, d] ⊆ [a, b] ⊆ R and letν be a probability measure on([c, d],P([c, d])) such
that

(2.14)
∫

[c,d]

x dν = d1 ∈ [c, d]

is given. Then
(i)

(2.15) U1 := sup
ν as in (2.14)

∫
[c,d]

(x− a)2dν = d1(c + d− 2a)− cd + a2,

and
(ii)

(2.16) U2 := sup
ν as in (2.14)

∫
[c,d]

(x− b)2dν = d1(c + d− 2b)− cd + b2.

(iii) The following also holds:

(2.17) sup
ν as in (2.14)

∫
[c,d]

[
(x− a)2 + (x− b)2

]
dν = U1 + U2.
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Proof. (i) We see that∫ d

c

(x− a)2dν = (c− a)2 + 2(c− a)(d1 − c) +

∫ d

c

(x− c)2dν.

Using (2.12) which is applied on[c, d], we find

sup
ν as in (2.14)

∫ d

c

(x− a)2dν = (c− a)2 + 2(c− a)(d1 − c)

+ sup
ν as in (2.14)

∫ d

c

(x− c)2dν

= (c− a)2 + 2(c− a)(d1 − c) + (d− c)(d1 − c)

= d1(c + d− 2a)− cd + a2,

proving the claim.
(ii) We see that∫ d

c

(x− b)2dν = (b− d)2 + 2(b− d)(d− d1) +

∫ d

c

(x− d)2dν.

Using (2.13) which is applied on[c, d], we obtain

sup
ν as in (2.14)

∫ d

c

(x− b)2dν = (b− d)2 + 2(b− d)(d− d1)

+ sup
ν as in (2.14)

∫ d

c

(x− d)2dν

= (b− d)2 + 2(b− d)(d− d1) + (d− c)(d− d1)

= d1(c + d− 2b)− cd + b2,

proving the claim.
(iii) Similar to Lemma 2.7 and above and obvious on noting that(x− a)2 + (x− b)2 is convex,
etc. �

Now we are ready to present

Theorem 2.9.Let [c, d] ⊆ [a, b] ⊆ R, f ∈ C1([a, b]), µ a finite measure on([c, d], P([c, d])) of
massm := µ([c, d]) > 0. Assume that

(2.18)
1

m

∫ d

c

x dµ = d1, c ≤ d1 ≤ d,

is given.
Then

(2.19) sup
µ as above

∣∣∣∣ 1

m

∫ d

c

f(x)dµ− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ ‖f ′‖∞

(b− a)

[
d1

(
(c + d)− (a + b)

)
− cd +

a2 + b2

2

]
.

Proof. Denote

β(x) :=
‖f ′‖∞

2(b− a)

(
(x− a)2 + (x− b)2

)
,
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then by Theorem 2.3 we have

−β(x) ≤ f(x)− 1

b− a

∫ b

a

f(x)dx ≤ β(x), ∀x ∈ [c, d].

Thus

− 1

m

∫ d

c

β(x)dµ ≤ 1

m

∫ d

c

f(x)dµ− 1

b− a

∫ b

a

f(x)dx ≤ 1

m

∫ d

c

β(x)dµ,

and ∣∣∣∣ 1

m

∫ d

c

f(x)dµ− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣ ≤ 1

m

∫ d

c

β(x)dµ =: θ.

Hereν := µ
m

is a probability measure subject to (2.18) on([c, d], P([c, d])) and

θ =
‖f ′‖∞

2(b− a)

(∫ d

c

(x− a)2dµ

m
+

∫ d

c

(x− b)2dµ

m

)
=

‖f ′‖∞
2(b− a)

(∫ d

c

(x− a)2dν +

∫ d

c

(x− b)2dν

)
.

Using (2.14), (2.15), (2.16) and (2.17) we get

θ ≤ ‖f ′‖∞
2(b− a)

{
(d1(c + d− 2a)− cd + a2) + (d1(c + d− 2b)− cd + b2)

}
=
‖f ′‖∞
(b− a)

[
d1((c + d)− (a + b))− cd +

a2 + b2

2

]
,

proving the claim. �

We make the following remark.

Remark 2.10(Remark on Theorem 2.9). (1) Case ofc+d ≥ a+b, usingd1 ≤ d we obtain

(2.20) d1

(
(c + d)− (a + b)

)
− cd +

a2 + b2

2
≤ (d− a)2 + (d− b)2

2
.

(2) Case ofc + d ≤ a + b, usingd1 ≥ c we find that

(2.21) d1

(
(c + d)− (a + b)

)
− cd +

a2 + b2

2
≤ (c− a)2 + (c− b)2

2
.

Hence under (2.18) inequality (2.19) is sharper than (2.8).

We also give

Corollary 2.11. Let all the assumptions in Theorem 2.9 hold. Then

(2.22)

∣∣∣∣ 1

m

∫ d

c

f(x)dµ− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ ‖f ′‖∞

(b− a)

[
d1

(
(c + d)− (a + b)

)
− cd +

a2 + b2

2

]
.

By Remark 2.10, inequality (2.22) is sharper than (2.5).

Part B
Here we follow Fink’s work [6]. We require the following theorem.
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Theorem 2.12([6]). Letf : [a, b] → R, f (n−1) is absolutely continuous on[a, b], n ≥ 1. Then

(2.23) f(x) =
n

b− a

∫ b

a

f(t)dt

+
n−1∑
k=1

(
n− k

k!

)(
f (k−1)(b)(x− b)k − f (k−1)(a)(x− a)k

b− a

)
+

1

(n− 1)!(b− a)

∫ b

a

(x− t)n−1k(t, x)f (n)(t)dt,

where

(2.24) k(t, x) :=

{
t− a, a ≤ t ≤ x ≤ b,

t− b, a ≤ x < t ≤ b.

For n = 1 the sum in (2.23) is taken as zero.

We also need Fink’s inequality

Theorem 2.13([6]). Letf (n−1) be absolutely continuous on[a, b] andf (n) ∈ L∞(a, b), n ≥ 1.
Then

(2.25)

∣∣∣∣∣ 1n
(

f(x) +
n−1∑
k=1

Fk(x)

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ ‖f (n)‖∞

n(n + 1)!(b− a)

[
(b− x)n+1 + (x− a)n+1

]
, ∀x ∈ [a, b],

where

(2.26) Fk(x) :=

(
n− k

k!

)(
f (k−1)(a)(x− a)k − f (k−1)(b)(x− b)k

b− a

)
.

Inequality (2.25) is sharp, in the sense that it is attained by an optimalf for anyx ∈ [a, b].

We give

Corollary 2.14. Letf (n−1) be absolutely continuous on[a, b] andf (n) ∈ L∞(a, b), n ≥ 1. Then
∀x ∈ [c, d] ⊆ [a, b] we have∣∣∣∣∣ 1n

(
f(x) +

n−1∑
k=1

Fk(x)

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ ‖f (n)‖∞

n(n + 1)!(b− a)

[
(b− x)n+1 + (x− a)n+1

]
≤ ‖f (n)‖∞

n(n + 1)!
(b− a)n.(2.27)

Also we have

Proposition 2.15. Let f (n−1) be absolutely continuous on[a, b] and f (n) ∈ L∞(a, b), n ≥ 1.
Letµ be a finite measure of massm > 0 on(

[c, d],P([c, d])
)
, [c, d] ⊆ [a, b] ⊆ R.
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Then

K :=

∣∣∣∣∣ 1n
(

1

m

∫
[c,d]

f(x)dµ +
n−1∑
k=1

1

m

∫
[c,d]

Fk(x)dµ

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ ‖f (n)‖∞

n(n + 1)!(b− a)

[
1

m

∫
[c,d]

(b− x)n+1dµ +
1

m

∫
[c,d]

(x− a)n+1dµ

]
≤ ‖f (n)‖∞

n(n + 1)!
(b− a)n.(2.28)

Proof. By (2.27). �

Similarly, based on Theorem A of [6] we also conclude

Proposition 2.16.Letf (n−1) be absolutely continuous on[a, b] andf (n) ∈ Lp(a, b), where1 <
p < ∞, n ≥ 1. Letµ be a finite measure of massm > 0 on([c, d],P([c, d])), [c, d] ⊆ [a, b] ⊆ R.

Herep′ > 1 such that1
p

+ 1
p′

= 1. Then∣∣∣∣∣ 1n
(

1

m

∫
[c,d]

f(x)dµ +
n−1∑
k=1

1

m

∫
[c,d]

Fk(x)dµ

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤

(
B
(
(n− 1)p′ + 1, p′ + 1)

)1/p′‖f (n)‖p

n!(b− a)

)

·
(

1

m

∫
[c,d]

(
(x− a)np′+1 + (b− x)np′+1)1/p′dµ

)

≤

(
B
(
(n− 1)p′ + 1, p′ + 1)

)1/p′
(b− a)

n−1+ 1
p′

n!

)
‖f (n)‖p.(2.29)

We make the following remark.

Remark 2.17. Clearly we have the following for

(2.30) g(x) := (b− x)n+1 + (x− a)n+1 ≤ (b− a)n+1, a ≤ x ≤ b,

wheren ≥ 1. Herex = a+b
2

is the only critical number ofg and

g′′
(

a + b

2

)
= n(n + 1)

(b− a)n−1

2n−2
> 0,

giving thatg
(

a+b
2

)
= (b−a)n+1

2n > 0 is the global minimum ofg over[a, b]. Alsog is convex over
[a, b]. Therefore for[c, d] ⊆ [a, b] we have

M := max
c≤x≤d

{
(x− a)n+1 + (b− x)n+1

}
= max

{
(c− a)n+1 + (b− c)n+1, (d− a)n+1 + (b− d)n+1

}
.(2.31)

We get further that

(2.32) M =

{
(d− a)n+1 + (b− d)n+1, if c + d ≥ a + b

(c− a)n+1 + (b− c)n+1, if c + d ≤ a + b.

If d = b or c = a or both then

(2.33) M = (b− a)n+1.
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Based on Remark 2.17 we give

Theorem 2.18.Let all assumptions, terms and notations be as in Proposition 2.15. Then

(1)

K ≤ ‖f (n)‖∞
n(n + 1)!(b− a)

max
{
(c− a)n+1 + (b− c)n+1,

(d− a)n+1 + (b− d)n+1
}

(2.34)

=
‖f (n)‖∞

n(n + 1)!(b− a)
×

 (d− a)n+1 + (b− d)n+1, if c + d ≥ a + b,

(c− a)n+1 + (b− c)n+1, if c + d ≤ a + b


≤ ‖f (n)‖∞

n(n + 1)!
(b− a)n,(2.35)

whereK is as in (2.28). Ifd = b or c = a or both, then (2.35) becomes equality. When
d = b, µ

m
= δ{b} andf(x) = (x−a)n

n!
, a ≤ x ≤ b, then inequality (2.34) is attained, i.e. it

becomes equality, proving that (2.34) is a sharp inequality.
(2) We also have

(2.36) sup
µ∈M(c,d)

K ≤ R.H.S (2.34)

and

(2.37) sup
all c,d

a≤c≤d≤b

(
sup

µ∈M(c,d)

K

)
≤ R.H.S (2.35)

Proof. It remains to prove only the sharpness, via attainability of (2.34) whend = b. In that
case (2.34) collapses to

(2.38)

∣∣∣∣∣ 1n
(

1

m

∫
[c,d]

f(x)dµ +
n−1∑
k=1

1

m

∫
[c,b]

Fk(x)dµ

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ ‖f (n)‖∞

n(n + 1)!
(b− a)n.

The optimal measure here will beµ
m

= δ{b} and then (2.38) becomes

(2.39)

∣∣∣∣∣ 1n
(

f(b) +
n−1∑
k=1

Fk(b)

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ ‖f (n)‖∞
n(n + 1)!

(b− a)n.

The optimal function here will be

f ∗(x) =
(x− a)n

n!
, a ≤ x ≤ b.

Then we see that

f ∗(k−1)(x) =
(x− a)n−k+1

(n− k + 1)!
, k − 1 = 0, 1, . . . , n− 2,

andf ∗(k−1)(a) = 0 for k− 1 = 0, 1, . . . , n− 2. Clearly hereFk(b) = 0, k = 1, . . . , n− 1. Also
we have

1

b− a

∫ b

a

f ∗(x)dx =
(b− a)n

(n + 1)!
and ‖f ∗(n)‖∞ = 1.
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Putting all these elements in (2.39) we have∣∣∣∣(b− a)n

nn!
− (b− a)n

(n + 1)!

∣∣∣∣ =
(b− a)n

n(n + 1)!
,

proving the claim. �

Next, we again restrict ourselves to the subclass ofM(c, d) of finite measuresµ with given
first moment and by the use of the Geometric Moment Theory Method, see [7], [1], [3], we
produce an inequality sharper than (2.36). For that we need the follwing result.

Lemma 2.19. Let [c, d] ⊆ [a, b] ⊆ R andν be a probability measure on([c, d], P([c, d])) such
that

(2.40)
∫

[c,d]

x dν = d1 ∈ [c, d]

is given,n ≥ 1. Then

W1 := sup
ν as in(2.40)

∫
[c,d]

(x− a)n+1dν(2.41)

=

(
n∑

k=0

(d− a)n−k(c− a)k

)
(d1 − d) + (d− a)n+1.(2.42)

Proof. We observe the graph

G1 =
{
(x, (x− a)n+1) : c ≤ x ≤ d

}
,

which is a convex arc above thex-axis. We form the closed convex hull ofG1 and we call
it Ĝ1, which has as an upper concave envelope the line segment`1 from (c, (c − a)n+1) to
(d, (d − a)n+1). Call `1 the line through̀ 1. The line`1 intersects thex-axis at(t, 0), where
a ≤ t ≤ c. We need to determinet: the slope of̀ 1 is

m̃ =
(d− a)n+1 − (c− a)n+1

d− c
=

n∑
k=0

(d− a)n−k(c− a)k.

The equation of linè1 is
y = m̃ · x + (d− a)n+1 − m̃d.

Hencem̃t + (d− a)n+1 − m̃d = 0 and

t = d− (d− a)n+1

m̃
.

Next we consider the moment right triangle with vertices(t, 0), (d, 0) and(d, (d − a)n+1).
Clearly(d1, 0) is between(t, 0) and(d, 0). Consider the vertical linex = d1, it intersects̀ 1 atQ.
Clearly thenW1 = length((d1, 0), Q), the line segment of which length we find by the formed
two similar right triangles with vertices{(t, 0), (d1, 0), Q} and{(t, 0), (d, 0), (d, (d− a)n+1)}.
We have the equal ratios

d1 − t

d− t
=

W1

(d− a)n+1
,

i.e.

W1 = (d− a)n+1

(
d1 − t

d− t

)
.

�

We also need
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Lemma 2.20. Let [c, d] ⊆ [a, b] ⊆ R andν be a probability measure on([c, d], P([c, d])) such
that

(2.43)
∫

[c,d]

x dν = d1 ∈ [c, d]

is given,n ≥ 1. Then

(1)

W2 := sup
ν as in(2.43)

∫
[c,d]

(b− x)n+1dν

=

(
n∑

k=0

(b− c)n−k(b− d)k

)
(c− d1) + (b− c)n+1.(2.44)

(2) The following result holds

(2.45) sup
ν as in(2.43)

∫
[c,d]

[
(x− a)n+1 + (b− x)n+1

]
dν = W1 + W2,

whereW1 is as in (2.41).

Proof. (1) We observe the graph

G2 =
{
(x, (b− x)n+1) : c ≤ x ≤ d

}
,

which is a convex arc above thex-axis. We form the closed convex hull ofG2 and we
call it Ĝ2, which has as an upper concave envelope the line segment`2 from (c, (b −
c)n+1) to (d, (b− d)n+1). Call `2 the line through̀ 2. The line`2 intersects thex-axis at
(t∗, 0), whered ≤ t∗ ≤ b. We need to determinet∗: The slope of̀ 2 is

m̃∗ =
(b− c)n+1 − (b− d)n+1

c− d
= −

(
n∑

k=0

(b− c)n−k(b− d)k

)
.

The equation of linè2 is

y = m̃∗x + (b− c)n+1 − m̃∗c.

Hence
m̃∗t∗ + (b− c)n+1 − m̃∗c = 0

and

t∗ = c− (b− c)n+1

m̃∗ .

Next we consider the moment right triangle with vertices(c, (b− c)n+1), (c, 0), (t∗, 0).
Clearly (d1, 0) is between(c, 0) and(t∗, 0). Consider the vertical linex = d1, it inter-
sects̀ 2 atQ∗. Clearly then

W2 = length((d1, 0), Q∗),

the line segment of which length we find by the formed two similar right triangles with
vertices{Q∗, (d1, 0), (t∗, 0)} and{(c, (b − c)n+1), (c, 0), (t∗, 0)}. We have the equal
ratios

t∗ − d1

t∗ − c
=

W2

(b− c)n+1
,

i.e.

W2 = (b− c)n+1

(
t∗ − d1

t∗ − c

)
.

J. Inequal. Pure and Appl. Math., 7(5) Art. 185, 2006 http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


12 GEORGEA. A NASTASSIOU

(2) Similar to that above and obvious.
�

We make the following useful remark.

Remark 2.21. By Lemmas 2.19, 2.20 we obtain

λ := W1 + W2(2.46)

=

(
n∑

k=0

(d− a)n−k(c− a)k

)
(d1 − d)

+

(
n∑

k=0

(b− c)n−k(b− d)k

)
(c− d1) + (d− a)n+1 + (b− c)n+1 > 0,

n ≥ 1.

We present the following important result.

Theorem 2.22.Let f (n−1) be absolutely continuous on[a, b] andf (n) ∈ L∞(a, b), n ≥ 1. Let
µ be a finite measure of massm > 0 on ([c, d], P([c, d])), [c, d] ⊆ [a, b] ⊆ R. Furthermore we
assume that

(2.47)
1

m

∫
[c,d]

x dµ = d1 ∈ [c, d]

is given. Then

(2.48) sup
µ as above

K ≤ ‖f (n)‖∞
n(n + 1)!(b− a)

λ,

and

(2.49) K ≤ R.H.S (2.48),

whereK is as in (2.28) andλ is as in (2.46).

Proof. By Proposition 2.15 and Lemmas 2.19 and 2.20. �

We make the following remark.

Remark 2.23. We compareM as in (2.31) and (2.32) andλ as in (2.46). We easily obtain that

(2.50) λ ≤ M.

As a result we have that (2.49) is sharper than (2.34) and (2.48) is sharper than (2.36). That is
reasonable since we restricted ourselves to a subclass ofM(c, d) of measuresµ by assuming
the moment condition (2.47).

We finish with the following comment.

Remark 2.24.
I) When c = a and d = b then d1 plays no role in the best upper bounds we found

with the Geometric Moment Theory Method. That is, the restriction on measuresµ via
the first momentd1 has no effect in producing sharper estimates as it happens when
a < c < d < b. More precisely we notice that:
(a)

(2.51) R.H.S.(2.19) =
‖f ′‖∞

2
(b− a) = R.H.S.(2.9),
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(b) by (2.46) hereλ = (b− a)n+1 and

(2.52) R.H.S.(2.48) =
‖f (n)‖∞
n(n + 1)!

(b− a)n = R.H.S.(2.35).

II) Further differences of general means over any[c1, d1] and[c2, d2] subsets of[a, b] (even
disjoint) with respect toµ1 andµ2, respectively, can be found by straightforward appli-
cation of the above results and the triangle inequality.
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