Journal of Inequalities in Pure and Applied Mathematics

DIFFERENCE OF GENERAL INTEGRAL MEANS

Department of Mathematical Sciences The University of Memphis Memphis, TN 38152, U.S.A.

EMail: ganastss@memphis.edu

volume 7, issue 5, article 185, 2006.

Received 02 May, 2006; accepted 02 June, 2006.

Communicated by: S.S. Dragomir

©2000 Victoria University ISSN (electronic): 1443-5756 129-06

Abstract

In this paper we present sharp estimates for the difference of general integral means with respect to even different finite measures. This is achieved by the use of the Ostrowski and Fink inequalities and the Geometric Moment Theory Method. The produced inequalities are with respect to the supnorm of a derivative of the involved function.

2000 Mathematics Subject Classification: 26D10, 26D15, 28A25, 60A10, 60E15.
Key words: Inequalities, Averages of functions, General averages or means, Moments.

Contents

1	Introduction	3
2	Results	4
Ref	erences	

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 2 of 28

1. Introduction

Here our work is motivated by the works of J. Duoandikoetxea [5] and P. Cerone [4]. We use Ostrowski's ([8]) and Fink's ([6]) inequalities along with the Geometric Moment Theory Method, see [7], [1], [3], to prove our results.

We compare general averages of functions with respect to various finite measures over different subintervals of a domain, even disjoint. Our estimates are sharp and the inequalities are attained. They are with respect to the supnorm of a derivative of the involved function f.

To the best of our knowledge this type of work is totally new.

Difference of General Integral Means

George A. Anastassiou

2. Results

Part A

As motivation we give the following proposition.

Proposition 2.1. Let μ_1 , μ_2 be finite Borel measures on $[a,b] \subseteq \mathbb{R}$, [c,d], $[\tilde{e},g] \subseteq [a,b]$, $f \in C^1([a,b])$. Denote $\mu_1([c,d]) = m_1 > 0$, $\mu_2([\tilde{e},g] = m_2 > 0$. Then

(2.1)
$$\left| \frac{1}{m_1} \int_c^d f(x) d\mu_1 - \frac{1}{m_2} \int_{\tilde{e}}^g f(x) d\mu_2 \right| \le ||f'||_{\infty} (b - a).$$

Proof. From the mean value theorem we have

$$|f(x) - f(y)| \le ||f'||_{\infty} (b - a) =: \gamma, \quad \forall x, y \in [a, b],$$

that is,

$$-\gamma \le f(x) - f(y) \le \gamma, \quad \forall x, y \in [a, b],$$

and by fixing y we get

$$-\gamma \le \frac{1}{m_1} \int_c^d f(x) d\mu_1 - f(y) \le \gamma.$$

The last statement holds $\forall y \in [\tilde{e}, g]$. Hence

$$-\gamma \le \frac{1}{m_1} \int_c^d f(x) d\mu_1 - \frac{1}{m_2} \int_{\tilde{e}}^g f(x) d\mu_2 \le \gamma,$$

proving the claim.

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 4 of 28

J. Ineq. Pure and Appl. Math. 7(5) Art. 185, 2006 http://jipam.vu.edu.au As a related result we have

Corollary 2.2. Let $f \in C^1([a,b])$, [c,d], $[\tilde{e},g] \subseteq [a,b] \subseteq \mathbb{R}$. Then we have

$$(2.2) \qquad \left| \frac{1}{d-c} \int_{c}^{d} f(x) dx - \frac{1}{g-\tilde{e}} \int_{\tilde{e}}^{g} f(x) dx \right| \leq \|f'\|_{\infty} \cdot (b-a).$$

We use the following famous Ostrowski inequality, see [8], [2].

Theorem 2.3. Let $f \in C^1([a, b]), x \in [a, b]$. Then

(2.3)
$$\left| f(x) - \frac{1}{b-a} \int_a^b f(x) dx \right| \le \frac{\|f'\|_{\infty}}{2(b-a)} \left((x-a)^2 + (x-b)^2 \right),$$

and inequality (2.3) is sharp, see [2].

We also have

Corollary 2.4. Let $f \in C^1([a,b])$, $x \in [c,d] \subseteq [a,b] \subseteq \mathbb{R}$. Then

(2.4)
$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right|$$

$$\leq \frac{\|f'\|_{\infty}}{2(b-a)} \max \left\{ ((c-a)^{2} + (c-b)^{2}), ((d-a)^{2} + (d-b)^{2}) \right\}.$$

Proof. Obvious.

We denote by $\mathcal{P}([a,b])$ the power set of [a,b]. We give the following.

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 5 of 28

Theorem 2.5. Let $f \in C^1([a,b])$, μ be a finite measure on $([c,d], \mathcal{P}([c,d]))$, where $[c,d] \subseteq [a,b] \subseteq \mathbb{R}$ and $m := \mu([c,d]) > 0$. Then

1.

(2.5)
$$\left| \frac{1}{m} \int_{[c,d]} f(x) d\mu - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right|$$

$$\leq \frac{\|f'\|_{\infty}}{2(b-a)} \max \left\{ ((c-a)^{2} + (c-b)^{2}), ((d-a)^{2} + (d-b)^{2}) \right\}.$$

2. Inequality (2.5) is attained when d = b.

Proof. 1) By (2.4) integrating against μ/m .

2) Here (2.5) collapses to

(2.6)
$$\left| \frac{1}{m} \int_{[c,b]} f(x) d\mu - \frac{1}{b-a} \int_a^b f(x) dx \right| \le \frac{\|f'\|_{\infty}}{2} (b-a).$$

We prove that (2.6) is attained. Take

$$f^*(x) = \frac{2x - (a+b)}{b-a}, \quad a \le x \le b.$$

Then $f^{*\prime}(x) = \frac{2}{b-a}$ and $||f^{*\prime}||_{\infty} = \frac{2}{b-a}$, along with

$$\int_a^b f^*(x)dx = 0.$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Close

Quit

Page 6 of 28

Therefore (2.6) becomes

$$\left|\frac{1}{m}\int_{[c,b]}f^*(x)d\mu\right| \le 1.$$

Finally pick $\frac{\mu}{m} = \delta_{\{b\}}$ the Dirac measure supported at $\{b\}$, then (2.7) turns to equality.

We further have

Corollary 2.6. Let $f \in C^1([a,b])$ and $[c,d] \subseteq [a,b] \subseteq \mathbb{R}$. Let $M(c,d) := \{\mu : \mu \text{ a measure on } ([c,d], \mathcal{P}([c,d])) \text{ of finite positive mass}\}$, denoted $m := \mu([c,d])$. Then

1. The following result holds

$$\sup_{\mu \in M(c,d)} \left| \frac{1}{m} \int_{[c,d]} f(x) d\mu - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right|$$

$$(2.8) \qquad \leq \frac{\|f'\|_{\infty}}{2(b-a)} \max \left\{ ((c-a)^{2} + (c-b)^{2}), ((d-a)^{2} + (d-b)^{2}) \right\}$$

$$= \frac{\|f'\|_{\infty}}{2(b-a)} \times \left\{ \begin{aligned} (d-a)^{2} + (d-b)^{2}, & \text{if } d+c \geq a+b \\ (c-a)^{2} + (c-b)^{2}, & \text{if } d+c \leq a+b \end{aligned} \right\}$$

$$(2.9) \qquad \leq \frac{\|f'\|_{\infty}}{2} (b-a).$$

Inequality (2.9) becomes equality if d = b or c = a or both.

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 7 of 28

2. The following result holds

(2.10)
$$\sup_{\substack{all \ c,d \\ a \le c < d \le b}} \left(\sup_{\mu \in M(c,d)} \left| \frac{1}{m} \int_{[c,d]} f(x) d\mu - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right| \right)$$

$$\le \frac{\|f'\|_{\infty}}{2} (b-a).$$

Next we restrict ourselves to a subclass of M(c,d) of finite measures μ with given first moment and by the use of the Geometric Moment Theory Method, see [7], [1], [3], we produce an inequality sharper than (2.8). For that we need

Lemma 2.7. Let ν be a probability measure on $([a,b], \mathcal{P}([a,b]))$ such that

(2.11)
$$\int_{[a,b]} x \, d\nu = d_1 \in [a,b]$$

is given. Then

i)

(2.12)
$$U_1 := \sup_{\nu \text{ as in } (2.11)} \int_{[a,b]} (x-a)^2 d\nu = (b-a)(d_1-a),$$

and

ii)

(2.13)
$$U_2 := \sup_{\nu \text{ as in } (2.11)} \int_{[a,b]} (x-b)^2 d\nu = (b-a)(b-d_1).$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Close

Quit

Page 8 of 28

Proof. i) We observe the graph

$$G_1 = \{(x, (x-a)^2) : a \le x \le b\},\$$

which is a convex arc above the x-axis. We form the closed convex hull of G_1 and we call it \widehat{G}_1 which has as an upper concave envelope the line segment ℓ_1 from (a,0) to $(b,(b-a)^2)$. We consider the vertical line $x=d_1$ which cuts ℓ_1 at the point Q_1 . Then U_1 is the distance from $(d_1,0)$ to Q_1 . By using the equal ratios property of similar triangles related here we get

$$\frac{d_1 - a}{b - a} = \frac{U_1}{(b - a)^2} \,,$$

which proves the claim.

ii) We observe the graph

$$G_2 = \{(x, (x-b)^2) : a \le x \le b\},\$$

which is a convex arc above the x-axis. We form the closed convex hull of G_2 and we call it \widehat{G}_2 which has as an upper concave envelope the line segment ℓ_2 from (b,0) to $(a,(b-a)^2)$. We consider the vertical line $x=d_1$ which intersects ℓ_2 at the point Q_2 .

Then U_2 is the distance from $(d_1, 0)$ to Q_2 . By using the equal ratios property of the related similar triangles we obtain

$$\frac{U_2}{(b-a)^2} = \frac{b-d_1}{b-a} \,,$$

which proves the claim.

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Close

Quit

Page 9 of 28

J. Ineq. Pure and Appl. Math. 7(5) Art. 185, 2006 http://jipam.vu.edu.au

Furthermore we need

Lemma 2.8. Let $[c,d] \subseteq [a,b] \subseteq \mathbb{R}$ and let ν be a probability measure on $([c,d], \mathcal{P}([c,d]))$ such that

(2.14)
$$\int_{[c,d]} x \, d\nu = d_1 \in [c,d]$$

is given. Then

(i)

(2.15)
$$U_1 := \sup_{\nu \text{ as in (2.14)}} \int_{[c,d]} (x-a)^2 d\nu = d_1(c+d-2a) - cd + a^2,$$
 and

(ii)

(2.16)
$$U_2 := \sup_{\nu \text{ as in (2.14)}} \int_{[c,d]} (x-b)^2 d\nu = d_1(c+d-2b) - cd + b^2.$$

(iii) The following also holds:

(2.17)
$$\sup_{\nu \text{ as in } (2.14)} \int_{[c,d]} \left[(x-a)^2 + (x-b)^2 \right] d\nu = U_1 + U_2.$$

Proof. (i) We see that

$$\int_{c}^{d} (x-a)^{2} d\nu = (c-a)^{2} + 2(c-a)(d_{1}-c) + \int_{c}^{d} (x-c)^{2} d\nu.$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Close

Quit

Page 10 of 28

J. Ineq. Pure and Appl. Math. 7(5) Art. 185, 2006 http://jipam.vu.edu.au Using (2.12) which is applied on [c, d], we find

$$\sup_{\nu \text{ as in (2.14)}} \int_{c}^{d} (x-a)^{2} d\nu = (c-a)^{2} + 2(c-a)(d_{1}-c)$$

$$+ \sup_{\nu \text{ as in (2.14)}} \int_{c}^{d} (x-c)^{2} d\nu$$

$$= (c-a)^{2} + 2(c-a)(d_{1}-c) + (d-c)(d_{1}-c)$$

$$= d_{1}(c+d-2a) - cd + a^{2},$$

proving the claim.

(ii) We see that

$$\int_{c}^{d} (x-b)^{2} d\nu = (b-d)^{2} + 2(b-d)(d-d_{1}) + \int_{c}^{d} (x-d)^{2} d\nu.$$

Using (2.13) which is applied on [c, d], we obtain

$$\sup_{\nu \text{ as in (2.14)}} \int_{c}^{d} (x-b)^{2} d\nu = (b-d)^{2} + 2(b-d)(d-d_{1})$$

$$+ \sup_{\nu \text{ as in (2.14)}} \int_{c}^{d} (x-d)^{2} d\nu$$

$$= (b-d)^{2} + 2(b-d)(d-d_{1}) + (d-c)(d-d_{1})$$

$$= d_{1}(c+d-2b) - cd + b^{2},$$

proving the claim.

(iii) Similar to Lemma 2.7 and above and obvious on noting that $(x-a)^2 + (x-b)^2$ is convex, etc.

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 11 of 28

Now we are ready to present

Theorem 2.9. Let $[c,d] \subseteq [a,b] \subseteq \mathbb{R}$, $f \in C^1([a,b])$, μ a finite measure on $([c,d], \mathcal{P}([c,d]))$ of mass $m := \mu([c,d]) > 0$. Assume that

(2.18)
$$\frac{1}{m} \int_{c}^{d} x \, d\mu = d_{1}, \quad c \le d_{1} \le d,$$

is given.

Then

(2.19)
$$\sup_{\mu \text{ as above}} \left| \frac{1}{m} \int_{c}^{d} f(x) d\mu - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right| \\ \leq \frac{\|f'\|_{\infty}}{(b-a)} \left[d_{1} \left((c+d) - (a+b) \right) - cd + \frac{a^{2}+b^{2}}{2} \right].$$

Proof. Denote

$$\beta(x) := \frac{\|f'\|_{\infty}}{2(b-a)} ((x-a)^2 + (x-b)^2),$$

then by Theorem 2.3 we have

$$-\beta(x) \le f(x) - \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \beta(x), \quad \forall x \in [c, d].$$

Thus

$$-\frac{1}{m}\int_{c}^{d}\beta(x)d\mu \leq \frac{1}{m}\int_{c}^{d}f(x)d\mu - \frac{1}{b-a}\int_{a}^{b}f(x)dx \leq \frac{1}{m}\int_{c}^{d}\beta(x)d\mu,$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Close

Quit

Page 12 of 28

J. Ineq. Pure and Appl. Math. 7(5) Art. 185, 2006 http://jipam.vu.edu.au and

$$\left| \frac{1}{m} \int_{c}^{d} f(x) d\mu - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right| \leq \frac{1}{m} \int_{c}^{d} \beta(x) d\mu =: \theta.$$

Here $\nu:=\frac{\mu}{m}$ is a probability measure subject to (2.18) on $([c,d],\mathcal{P}([c,d]))$ and

$$\theta = \frac{\|f'\|_{\infty}}{2(b-a)} \left(\int_{c}^{d} (x-a)^{2} \frac{d\mu}{m} + \int_{c}^{d} (x-b)^{2} \frac{d\mu}{m} \right)$$
$$= \frac{\|f'\|_{\infty}}{2(b-a)} \left(\int_{c}^{d} (x-a)^{2} d\nu + \int_{c}^{d} (x-b)^{2} d\nu \right).$$

Using (2.14), (2.15), (2.16) and (2.17) we get

$$\theta \le \frac{\|f'\|_{\infty}}{2(b-a)} \left\{ (d_1(c+d-2a) - cd + a^2) + (d_1(c+d-2b) - cd + b^2) \right\}$$
$$= \frac{\|f'\|_{\infty}}{(b-a)} \left[d_1((c+d) - (a+b)) - cd + \frac{a^2 + b^2}{2} \right],$$

proving the claim.

We make the following remark.

Remark 1 (Remark on Theorem 2.9). 1. Case of $c+d \ge a+b$, using $d_1 \le d$ we obtain

$$(2.20) \quad d_1((c+d) - (a+b)) - cd + \frac{a^2 + b^2}{2} \le \frac{(d-a)^2 + (d-b)^2}{2}.$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 13 of 28

2. Case of $c + d \le a + b$, using $d_1 \ge c$ we find that

$$(2.21) \quad d_1((c+d) - (a+b)) - cd + \frac{a^2 + b^2}{2} \le \frac{(c-a)^2 + (c-b)^2}{2}.$$

Hence under (2.18) inequality (2.19) is sharper than (2.8).

We also give

Corollary 2.10. *Let all the assumptions in Theorem* **2.9** *hold. Then*

$$(2.22) \quad \left| \frac{1}{m} \int_{c}^{d} f(x) d\mu - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right| \\ \leq \frac{\|f'\|_{\infty}}{(b-a)} \left[d_{1} \left((c+d) - (a+b) \right) - cd + \frac{a^{2} + b^{2}}{2} \right].$$

By Remark 1, inequality (2.22) is sharper than (2.5).

Part B

Here we follow Fink's work [6]. We require the following theorem.

Theorem 2.11 ([6]). Let $f:[a,b] \to \mathbb{R}$, $f^{(n-1)}$ is absolutely continuous on [a,b], $n \ge 1$. Then

(2.23)
$$f(x) = \frac{n}{b-a} \int_{a}^{b} f(t)dt$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 14 of 28

$$+\sum_{k=1}^{n-1} \left(\frac{n-k}{k!}\right) \left(\frac{f^{(k-1)}(b)(x-b)^k - f^{(k-1)}(a)(x-a)^k}{b-a}\right) + \frac{1}{(n-1)!(b-a)} \int_a^b (x-t)^{n-1} k(t,x) f^{(n)}(t) dt,$$

where

(2.24)
$$k(t,x) := \begin{cases} t-a, & a \le t \le x \le b, \\ t-b, & a \le x < t \le b. \end{cases}$$

For n = 1 the sum in (2.23) is taken as zero.

We also need Fink's inequality

Theorem 2.12 ([6]). Let $f^{(n-1)}$ be absolutely continuous on [a,b] and $f^{(n)} \in L_{\infty}(a,b)$, $n \ge 1$. Then

$$(2.25) \quad \left| \frac{1}{n} \left(f(x) + \sum_{k=1}^{n-1} F_k(x) \right) - \frac{1}{b-a} \int_a^b f(x) dx \right| \\ \leq \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!(b-a)} \left[(b-x)^{n+1} + (x-a)^{n+1} \right], \quad \forall x \in [a,b],$$

where

$$(2.26) F_k(x) := \left(\frac{n-k}{k!}\right) \left(\frac{f^{(k-1)}(a)(x-a)^k - f^{(k-1)}(b)(x-b)^k}{b-a}\right).$$

Inequality (2.25) is sharp, in the sense that it is attained by an optimal f for any $x \in [a, b]$.

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Close

Quit

Page 15 of 28

We give

Corollary 2.13. Let $f^{(n-1)}$ be absolutely continuous on [a,b] and $f^{(n)} \in L_{\infty}(a,b)$, $n \ge 1$. Then $\forall x \in [c,d] \subseteq [a,b]$ we have

$$\left| \frac{1}{n} \left(f(x) + \sum_{k=1}^{n-1} F_k(x) \right) - \frac{1}{b-a} \int_a^b f(x) dx \right|$$

$$\leq \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!(b-a)} \left[(b-x)^{n+1} + (x-a)^{n+1} \right]$$

$$\leq \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!} (b-a)^n.$$
(2.27)

Also we have

Proposition 2.14. Let $f^{(n-1)}$ be absolutely continuous on [a,b] and $f^{(n)} \in L_{\infty}(a,b)$, $n \ge 1$. Let μ be a finite measure of mass m > 0 on

$$([c,d], \mathcal{P}([c,d])), [c,d] \subseteq [a,b] \subseteq \mathbb{R}.$$

Then

(2.28)
$$K := \left| \frac{1}{n} \left(\frac{1}{m} \int_{[c,d]} f(x) d\mu + \sum_{k=1}^{n-1} \frac{1}{m} \int_{[c,d]} F_k(x) d\mu \right) - \frac{1}{b-a} \int_{a}^{b} f(x) dx \right|$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 16 of 28

$$\leq \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!(b-a)} \left[\frac{1}{m} \int_{[c,d]} (b-x)^{n+1} d\mu + \frac{1}{m} \int_{[c,d]} (x-a)^{n+1} d\mu \right]
\leq \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!} (b-a)^{n}.$$
(2.29)

Proof. By (2.27).

Similarly, based on Theorem A of [6] we also conclude

Proposition 2.15. Let $f^{(n-1)}$ be absolutely continuous on [a,b] and $f^{(n)} \in L_p(a,b)$, where $1 , <math>n \ge 1$. Let μ be a finite measure of mass m > 0 on $([c,d], \mathcal{P}([c,d]))$, $[c,d] \subseteq [a,b] \subseteq \mathbb{R}$.

Here p' > 1 such that $\frac{1}{p} + \frac{1}{p'} = 1$. Then

$$\left| \frac{1}{n} \left(\frac{1}{m} \int_{[c,d]} f(x) d\mu + \sum_{k=1}^{n-1} \frac{1}{m} \int_{[c,d]} F_k(x) d\mu \right) - \frac{1}{b-a} \int_a^b f(x) dx \right| \\
\leq \left(\frac{B \left((n-1)p' + 1, p' + 1 \right) \right)^{1/p'} \|f^{(n)}\|_p}{n! (b-a)} \right) \\
\cdot \left(\frac{1}{m} \int_{[c,d]} \left((x-a)^{np'+1} + (b-x)^{np'+1} \right)^{1/p'} d\mu \right) \\
\leq \left(\frac{B \left((n-1)p' + 1, p' + 1 \right) \right)^{1/p'} (b-a)^{n-1+\frac{1}{p'}}}{n!} \right) \|f^{(n)}\|_p. \tag{2.30}$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 17 of 28

J. Ineq. Pure and Appl. Math. 7(5) Art. 185, 2006 http://jipam.vu.edu.au We make the following remark.

Remark 2. Clearly we have the following for

$$(2.31) g(x) := (b-x)^{n+1} + (x-a)^{n+1} \le (b-a)^{n+1}, a \le x \le b,$$

where $n \ge 1$. Here $x = \frac{a+b}{2}$ is the only critical number of g and

$$g''\left(\frac{a+b}{2}\right) = n(n+1)\frac{(b-a)^{n-1}}{2^{n-2}} > 0,$$

giving that $g\left(\frac{a+b}{2}\right) = \frac{(b-a)^{n+1}}{2^n} > 0$ is the global minimum of g over [a,b]. Also g is convex over [a,b]. Therefore for $[c,d] \subseteq [a,b]$ we have

$$M := \max_{c \le x \le d} \left\{ (x - a)^{n+1} + (b - x)^{n+1} \right\}$$

$$= \max \left\{ (c - a)^{n+1} + (b - c)^{n+1}, (d - a)^{n+1} + (b - d)^{n+1} \right\}.$$

We get further that

(2.33)
$$M = \begin{cases} (d-a)^{n+1} + (b-d)^{n+1}, & \text{if } c+d \ge a+b \\ (c-a)^{n+1} + (b-c)^{n+1}, & \text{if } c+d \le a+b. \end{cases}$$

If d = b or c = a or both then

$$(2.34) M = (b-a)^{n+1}.$$

Based on Remark 2 we give

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 18 of 28

Theorem 2.16. Let all assumptions, terms and notations be as in Proposition 2.14. Then

1.

$$K \leq \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!(b-a)} \max\{(c-a)^{n+1} + (b-c)^{n+1},$$

$$(2.35) \qquad (d-a)^{n+1} + (b-d)^{n+1}\}$$

$$= \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!(b-a)}$$

$$\times \left\{ \begin{array}{l} (d-a)^{n+1} + (b-d)^{n+1}, & \text{if } c+d \geq a+b, \\ (c-a)^{n+1} + (b-c)^{n+1}, & \text{if } c+d \leq a+b \end{array} \right\}$$

$$(2.36) \leq \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!} (b-a)^{n},$$

where K is as in (2.28). If d=b or c=a or both, then (2.36) becomes equality. When d=b, $\frac{\mu}{m}=\delta_{\{b\}}$ and $f(x)=\frac{(x-a)^n}{n!}$, $a\leq x\leq b$, then inequality (2.35) is attained, i.e. it becomes equality, proving that (2.35) is a sharp inequality.

2. We also have

(2.37)
$$\sup_{\mu \in M(c,d)} K \le R.H.S(2.35)$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 19 of 28

and

(2.38)
$$\sup_{\substack{all \ c,d \\ a < c < d < b}} \left(\sup_{\mu \in M(c,d)} K \right) \le R.H.S (2.36)$$

Proof. It remains to prove only the sharpness, via attainability of (2.35) when d = b. In that case (2.35) collapses to

$$(2.39) \quad \left| \frac{1}{n} \left(\frac{1}{m} \int_{[c,d]} f(x) d\mu + \sum_{k=1}^{n-1} \frac{1}{m} \int_{[c,b]} F_k(x) d\mu \right) - \frac{1}{b-a} \int_a^b f(x) dx \right| \\ \leq \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!} (b-a)^n.$$

The optimal measure here will be $\frac{\mu}{m} = \delta_{\{b\}}$ and then (2.39) becomes

$$(2.40) \quad \left| \frac{1}{n} \left(f(b) + \sum_{k=1}^{n-1} F_k(b) \right) - \frac{1}{b-a} \int_a^b f(x) dx \right| \le \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!} (b-a)^n.$$

The optimal function here will be

$$f^*(x) = \frac{(x-a)^n}{n!}, \quad a \le x \le b.$$

Then we see that

$$f^{*(k-1)}(x) = \frac{(x-a)^{n-k+1}}{(n-k+1)!}, \quad k-1 = 0, 1, \dots, n-2,$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Close

Quit

Page 20 of 28

and $f^{*(k-1)}(a) = 0$ for k - 1 = 0, 1, ..., n - 2. Clearly here $F_k(b) = 0$, k = 1, ..., n - 1. Also we have

$$\frac{1}{b-a} \int_a^b f^*(x) dx = \frac{(b-a)^n}{(n+1)!} \quad \text{and} \quad \|f^{*(n)}\|_{\infty} = 1.$$

Putting all these elements in (2.40) we have

$$\left| \frac{(b-a)^n}{nn!} - \frac{(b-a)^n}{(n+1)!} \right| = \frac{(b-a)^n}{n(n+1)!},$$

proving the claim.

Next, we again restrict ourselves to the subclass of M(c,d) of finite measures μ with given first moment and by the use of the Geometric Moment Theory Method, see [7], [1], [3], we produce an inequality sharper than (2.37). For that we need the follwing result.

Lemma 2.17. Let $[c,d] \subseteq [a,b] \subseteq \mathbb{R}$ and ν be a probability measure on $([c,d], \mathcal{P}([c,d]))$ such that

(2.41)
$$\int_{[c,d]} x \, d\nu = d_1 \in [c,d]$$

is given, $n \geq 1$. Then

(2.42)
$$W_1 := \sup_{\nu \text{ as in } (2.41)} \int_{[c,d]} (x-a)^{n+1} d\nu$$

(2.43)
$$= \left(\sum_{k=0}^{n} (d-a)^{n-k} (c-a)^k\right) (d_1 - d) + (d-a)^{n+1}.$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 21 of 28

Proof. We observe the graph

$$G_1 = \{(x, (x-a)^{n+1}) : c \le x \le d\},\$$

which is a convex arc above the x-axis. We form the closed convex hull of G_1 and we call it \widehat{G}_1 , which has as an upper concave envelope the line segment $\overline{\ell}_1$ from $(c,(c-a)^{n+1})$ to $(d,(d-a)^{n+1})$. Call ℓ_1 the line through $\overline{\ell}_1$. The line ℓ_1 intersects the x-axis at (t,0), where $a \leq t \leq c$. We need to determine t: the slope of ℓ_1 is

$$\tilde{m} = \frac{(d-a)^{n+1} - (c-a)^{n+1}}{d-c} = \sum_{k=0}^{n} (d-a)^{n-k} (c-a)^{k}.$$

The equation of line ℓ_1 is

$$y = \tilde{m} \cdot x + (d - a)^{n+1} - \tilde{m}d.$$

Hence $\tilde{m}t + (d-a)^{n+1} - \tilde{m}d = 0$ and

$$t = d - \frac{(d-a)^{n+1}}{\tilde{m}}.$$

Next we consider the moment right triangle with vertices (t,0), (d,0) and $(d,(d-a)^{n+1})$. Clearly $(d_1,0)$ is between (t,0) and (d,0). Consider the vertical line $x=d_1$, it intersects $\overline{\ell}_1$ at Q. Clearly then $W_1=\operatorname{length}(\overline{(d_1,0)},\overline{Q})$, the line segment of which length we find by the formed two similar right triangles with vertices $\{(t,0),\ (d_1,0),\ Q\}$ and $\{(t,0),\ (d,0),\ (d,(d-a)^{n+1})\}$. We have the equal ratios

$$\frac{d_1 - t}{d - t} = \frac{W_1}{(d - a)^{n+1}},$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 22 of 28

i.e.

$$W_1 = (d-a)^{n+1} \left(\frac{d_1-t}{d-t}\right).$$

We also need

Lemma 2.18. Let $[c,d] \subseteq [a,b] \subseteq \mathbb{R}$ and ν be a probability measure on $([c,d], \mathcal{P}([c,d]))$ such that

(2.44)
$$\int_{[c,d]} x \, d\nu = d_1 \in [c,d]$$

is given, $n \geq 1$. Then

1.

$$W_2 := \sup_{\nu \text{ as in } (2.44)} \int_{[c,d]} (b-x)^{n+1} d\nu$$

$$= \left(\sum_{k=0}^n (b-c)^{n-k} (b-d)^k\right) (c-d_1) + (b-c)^{n+1}.$$

2. The following result holds

(2.46)
$$\sup_{\nu \text{ as in } (2.44)} \int_{[c,d]} \left[(x-a)^{n+1} + (b-x)^{n+1} \right] d\nu = W_1 + W_2,$$

where W_1 is as in (2.42).

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Close

Quit

Page 23 of 28

J. Ineq. Pure and Appl. Math. 7(5) Art. 185, 2006 http://jipam.vu.edu.au *Proof.* 1. We observe the graph

$$G_2 = \{(x, (b-x)^{n+1}) : c \le x \le d\},\$$

which is a convex arc above the x-axis. We form the closed convex hull of G_2 and we call it \widehat{G}_2 , which has as an upper concave envelope the line segment $\overline{\ell}_2$ from $(c,(b-c)^{n+1})$ to $(d,(b-d)^{n+1})$. Call ℓ_2 the line through $\overline{\ell}_2$. The line ℓ_2 intersects the x-axis at $(t^*,0)$, where $d \leq t^* \leq b$. We need to determine t^* : The slope of ℓ_2 is

$$\tilde{m}^* = \frac{(b-c)^{n+1} - (b-d)^{n+1}}{c-d} = -\left(\sum_{k=0}^n (b-c)^{n-k} (b-d)^k\right).$$

The equation of line ℓ_2 is

$$y = \tilde{m}^* x + (b - c)^{n+1} - \tilde{m}^* c$$

Hence

$$\tilde{m}^* t^* + (b - c)^{n+1} - \tilde{m}^* c = 0$$

and

$$t^* = c - \frac{(b-c)^{n+1}}{\tilde{m}^*}.$$

Next we consider the moment right triangle with vertices $(c, (b-c)^{n+1})$, (c,0), $(t^*,0)$. Clearly $(d_1,0)$ is between (c,0) and $(t^*,0)$. Consider the vertical line $x=d_1$, it intersects $\overline{\ell}_2$ at Q^* . Clearly then

$$W_2 = \text{length}\overline{((d_1, 0), Q^*)},$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 24 of 28

the line segment of which length we find by the formed two similar right triangles with vertices $\{Q^*, (d_1, 0), (t^*, 0)\}$ and $\{(c, (b-c)^{n+1}), (c, 0), (t^*, 0)\}$. We have the equal ratios

$$\frac{t^* - d_1}{t^* - c} = \frac{W_2}{(b - c)^{n+1}},$$

i.e.

$$W_2 = (b-c)^{n+1} \left(\frac{t^* - d_1}{t^* - c}\right).$$

2. Similar to that above and obvious.

We make the following useful remark.

Remark 3. By Lemmas 2.17, 2.18 we obtain

$$(2.47) \quad \lambda := W_1 + W_2$$

$$= \left(\sum_{k=0}^n (d-a)^{n-k} (c-a)^k\right) (d_1 - d)$$

$$+ \left(\sum_{k=0}^n (b-c)^{n-k} (b-d)^k\right) (c-d_1) + (d-a)^{n+1} + (b-c)^{n+1}$$

$$> 0,$$

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Close

Quit

Page 25 of 28

We present the following important result.

Theorem 2.19. Let $f^{(n-1)}$ be absolutely continuous on [a,b] and $f^{(n)} \in L_{\infty}(a,b)$, $n \geq 1$. Let μ be a finite measure of mass m > 0 on $([c,d], \mathcal{P}([c,d]))$, $[c,d] \subseteq [a,b] \subseteq \mathbb{R}$. Furthermore we assume that

(2.48)
$$\frac{1}{m} \int_{[c,d]} x \, d\mu = d_1 \in [c,d]$$

is given. Then

(2.49)
$$\sup_{\mu \text{ as above}} K \leq \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!(b-a)} \lambda,$$

and

$$(2.50) K \le R.H.S(2.49),$$

where K is as in (2.28) and λ is as in (2.47).

Proof. By Proposition 2.14 and Lemmas 2.17 and 2.18.

We make the following remark.

Remark 4. We compare M as in (2.32) and (2.33) and λ as in (2.47). We easily obtain that

$$(2.51) \lambda \leq M.$$

As a result we have that (2.50) is sharper than (2.35) and (2.49) is sharper than (2.37). That is reasonable since we restricted ourselves to a subclass of M(c,d) of measures μ by assuming the moment condition (2.48).

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 26 of 28

J. Ineq. Pure and Appl. Math. 7(5) Art. 185, 2006 http://jipam.vu.edu.au We finish with the following comment.

Remark 5.

I) When c = a and d = b then d_1 plays no role in the best upper bounds we found with the Geometric Moment Theory Method. That is, the restriction on measures μ via the first moment d_1 has no effect in producing sharper estimates as it happens when a < c < d < b. More precisely we notice that:

(a)

(2.52)
$$R.H.S.(2.19) = \frac{\|f'\|_{\infty}}{2}(b-a) = R.H.S.(2.9),$$

(b) by (2.47) here $\lambda = (b-a)^{n+1}$ and

(2.53)
$$R.H.S.(2.49) = \frac{\|f^{(n)}\|_{\infty}}{n(n+1)!} (b-a)^n = R.H.S.(2.36).$$

II) Further differences of general means over any $[c_1, d_1]$ and $[c_2, d_2]$ subsets of [a, b] (even disjoint) with respect to μ_1 and μ_2 , respectively, can be found by straightforward application of the above results and the triangle inequality.

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 27 of 28

References

- [1] G.A. ANASTASSIOU, *Moments in Probability and Approximation Theory*, Pitman/Longman, #287, UK, 1993.
- [2] G.A. ANASTASSIOU, On Ostrowski type inequalities, *Proc. AMS*, **123**(12) (1995), 3775–3781.
- [3] G.A. ANASTASSIOU, General moment optimization problems, in *Encyclopedia of Optimation*, C. Floudas and P. Pardalos, Eds., Kluwer, pp. 198–205, Vol. II, 2001.
- [4] P. CERONE, Difference between weighted integral means, in *Demonstratio Mathematica*, **35**(2) (2002), 251–265.
- [5] J. DUOANDIKOETXEA, A unified approach to several inequalities involving functions and derivatives, *Czechoslovak Mathematical Journal*, **51** (126) (2001), 363–376.
- [6] A.M. FINK, Bounds on the deviation of a function from its averages, *Czechoslovak Mathematical Journal*, **42** (117) (1992), 289–310.
- [7] J.H.B. KEMPERMAN, The general moment problem, a geometric approach, *The Annals of Mathematical Statistics*, **39**(1) (1968), 93–122.
- [8] A. OSTROWSKI, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert, *Comment. Math. Helv.*, **10** (1938), 226–227.

Difference of General Integral Means

George A. Anastassiou

Title Page

Contents

Go Back

Close

Quit

Page 28 of 28