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ABSTRACT. In the presented paper we will generalize the result of L. Leindler [3] to the class
M RBYV S and extend it to the strong summability with a mediate function satisfying the standard
conditions.
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1. INTRODUCTION

Let f be a continuous anglr-periodic function and let
(1.2) f(x)~ % + ; (ay, cosnx + by, sinnw)

be its Fourier series. Denote By, (x) = S, (f, z) then-th partial sum of[(1]1) and by (f, )
the modulus of continuity of € C,,. The usual supremum norm will be denoted|jpy .

Let A := (au) (k,n =0,1,...) be alower triangular infinite matrix of real numbers satisfy-
ing the following conditions:

(1.2) ane >0 (0<k<n), au=0,(k>n) and Zankzl,
k=0

wherek,n =0,1,2,....
Let the A—transformation of S, (f; z)) be given by

n

(1.3) to (f) =to (fi7) =Y auSi(f;z) (n=0,1,...)

k=0
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and the strong!, —transformation of S,, (f; x)) for » > 0 be given by

T, (f,r) =T, (f,rz) {Zank|5k fix)—f (o) }T(n:O,l,...).

Now we define two classes of sequences.
A sequence: := (c¢,) of nonnegative numbers tending to zero is called the Rest Bounded
Variation Sequence, or brieftye RBV S, if it has the property

(1.4) Z lcn — eng1| < K (¢) o
form =0,1,2,..., whereK (c) is a constant depending only orfsee [3]).

A null sequence := (c,,) of positive numbers is called of Mean Rest Bounded Variation, or
briefly c € M RBV'S, if it has the property

00 2m
1
1.5 n — n < K n
(1.5) g%w “”—(QWHZ;

form =0,1,2,... (seel5]).
Therefore we assume that the sequefi€éa,,)). -, is bounded, that is, there exists a con-
stantK such that

0< K (o) <K
holds for alln, where K («,,) denotes the sequence of constants appearing in the inequalities

(1.4) or [1.5) for the sequence, := (a,x);-,- Now we can give some conditions to be used
later on. We assume that for all

(1.6) D Mtk =tk < Kapm  (0<m <)
k=m
and
o) 1 2m
1.7 Ank — Qn, < K—— an 0<2m<n
(1.7) g%|k el +1Z e )

hold if av,, := (ank);-, belongs taRBV S or M RBV' S, respectively.
In [1] and [2] P. Chandra obtained some results on the degree of approximation for the means
(1.3) with a mediate functiof/ such that:

(1.8) / (tf Dt —0H @) (u—0.), H) >0
and
(1.9) /H O(H (1) (t—0,).

In [3], L. Leindler generalized this result to the cldg®V S. Namely, he proved the follow-
ing theorem:

Theorem 1.1.Let (1.2), (1.6),[(1/8) and (1].9) hold. Then fpre Cs,
[tn (f) = fII = O (anoH (ano)) -
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Itis clear that

(2.10) RBVS C MRBVS.
In [7], we proved thatr BV'S # M RBV S. Namely, we showed that the sequence
1 ifn=1,
d, =
1+m+(=1)"m

wherep,,, = 2™ form = 1,2, 3, ..., belongs to the clask/ RBV' S but it does not belong to the
classkBV'S.

In the present paper we will generalize the mentioned result of L. Leindler [3] to the class
MRBV S and extend it to strong summability with a mediate functiérdefined by the fol-
lowing conditions:

(1.11) /W o (tf;t)dt =O(H (r;u))  (u—04), H(t)>0andr > 0,
and
(1.12) / H(ru)du= O (tH (r:1))  (t— O4).

0

By Ky, K>, ... we shall denote either an absolute constant or a constant depending on the
indicated parameters, not necessarily the same in each occurrence.

2. MAIN RESULTS

Our main results are the following.

Theorem 2.1. Let (1.2), (1.7) and (1.11) hold. Then fgre C5, andr > 0

@) 5.0l =0 ({amtt (5 2)} ).

If, in addition (1.12) holds, then
(2.2) 1T (£.1) = O ({anoH (73 0,0)}7)

Using the inequality
[tn (f) = fIl < T (F, DI

we can formulate the following corollary.
Corollary 2.2. Let (1.2),[1.¥) and (1.11) hold. Then fére Cs,
s
Itn (F) = £ = O (an (1:7)).
If, in addition (1.12) holds, then
[tn (f) = fll = O (ano H (1; ano)) -

Remark 1. By the embedding relation (1.7) we can observe that Thegrem 1.1 follows from
Corollary[2.2.

For special cases, putting
tro=tif ar < 1,
H(r;t)=¢ In%T if ar=1,
Ky if ar>1,

~+
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wherer > 0 and0 < a < 1, we can derive from Theorem 2.1 the next corollary.

Corollary 2.3. Under the conditiong (1]2) anfl (1.7) we have, foe Cs, andr > 0,

O ({ano}”) if ar <1,
1T, ()l = O ({m (&) an} ) it ar=1,
O <{an0}?> if ar>1.

3. LEMMAS

To prove our main result we need the following lemmas.

Lemma 3.1([6]). If (1.17) and[(1.1R) hold, then for > 0

/s Mdt:O(sH (r;s)) (s —04).

t
Lemma 3.2. If (I.2) and [1.7) hold, then fof € Cy, andr > 0

(3.1) T, (7, c<0<{2anwk })

whereE, (f) denotes the best approximation of the functfdoy trigonometric polynomials of
order at most.

Proof. Itis clear that[(3.]1) holds for = 0, 1, ..., 5. Namely, by the well known inequality[8]

n+1
. < < <
(3.2) lowm = FI <2 == E(f) (0<m<n),
where
1 n
Un,m(f;ﬂff):m—+1 Sk(f§I)7

k=n—m

for m = 0, we obtain

(T (for2)} <127 amEf (f)

k=0

and [3.1) is obviously valid, for < 5.
Letn > 6 and letm = m,, be such that

omtl 4 4 <p <22 44,

Hence

{Tn (f7 T x)}T < Zank ’Sk <f7 x) - f (l,)|7’

m—12k+144 n
+Z Z ani |S; (f32) = f (@) + Z ank Sk (f;2) = f(2)]".
k=1 j=2k42 k=2m+5
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Applying the Abel transformation anf (3.2) to the first sum we obtain

{1, (f,r; x)}r

3 m—1 [2kt143 i
<8N anFBp (f) + D (i —ani) Y IS (fiw) = f (@)
k=0 k=1 \i=2k42 1=2k42
2k+1 14
Tt okt14g Z 1S; (fiz) — f ()]
=2k 42
n—1 k
+ Z (ank — ank+1) Z 1S (f;2) = f (o)
k=2m42 [=2m—1
k=2m42
3 m—1 [2k+143 2k+143
< 8rzankE]: (f) + Z Z |0Jni - an,iJrl‘ Z |Sl (fvx) - f (x)‘r
k=0 k=1 \i=2F42 1=2k+42
2k+1 44
Tt gk+144 Z 1Si (f;2) = f (@)
i=2k 42
n—1 2m+2..3
+ Z |Gk — An k1] Z 1S (fs2) — f (2)"
k=2m42 [=2m 42
2mt244
k=2m42

Using the well-known Leindler’s inequality [4]

k=0
m—1 ok+143
+ K (2k + 3) 5’“—5-2 (f) Z |am' - an,iJrl’ + Qp 2k+1 44
k=1 i=2k 42
n—1
32"+ 1) By ( Z |k — njos1| + a,m> } )
k=2m-+42
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Using (1.7) we get

k=0
+ K> (2k + 3) 542 (f) Km Z Upi + Qp ok+144
k=1 imoh 141

2M 42
m T 1
3(2" +1) Egnys (f) (Km > am+am>}.

=2m—141

In view of (1.7), we also obtain for < &k < m — 1,

oo o0
(p ok+14g = Z (Ani — Anip1) < Z |Gni — it
i=2k+144 i=2k+144
00 1 2k 42
< Z |ani — apiv1] < Km Z Qi
i=2k42 i=2k—141
and
o0 o0
Ann = Z (a'ni - a'ni-‘rl) S Z |ani - ani+1|
i=n i=n
o0 1 2m 492
< | Z |ani — apita] < Km‘ Z Q.
1=2"+2 i=2m"141
Hence
3
{Tn ( 75 x)}r < 8" Z ankEl: (f)
k=0
m—1 2k 42 2m 42
+ K3 Z E£k+2 (f) Z Anji + E2m+2 (f) Z An;
k=1 §=2k—141 i=2m—141
3 om 49
<8 awEp (f) +2Ks Y amE} (f)
k=0 k=3

This ends our proof.

4. PROOF OF THEOREM 2.1

Using Lemma 32 we have

(4.1) |Tn(f,r;:1c)|§K1{ZankE,:(f)} SKQ{Zankuﬂ" (f’kj—l)} .

k=0 k=0
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If (L.7) holds, then, forany» =1,2,....,n

m—

E ank ank:-‘,—l

k=0

m—1 o)
S Z |ank’ - a'nk:—‘r1| S Z |ank’ - ank+1| S Kan07
k=0 k=0

Apm — Qpo S |anm - CLnO' = |an0 - anm| -

whence
(4.2) A, < (K + 1) ap.
Therefore, by[(1]2),

k=0

First we prove[(2]1). Using (4.2), we get

S ot (Fihy) < 0+ e X (Fi5T5)

k=0

n+1 T

< Ksa, / w" | f; —) dt
sEn0 | ( t

= WKgano/ #du

n+1

and by [4.1),[(1.711) we obtain that (2.1) holds.
Now, we prove[(2.2). Fronj (4.3) we obtain

kzn%a”’f“ <f kil)
[eryens) 1

™ “ ™
< Z ankwr(f;k_f_l)—'_ > ankwr<f;k+1)-
k

k=0

=Tty )~

Again using[(1.),[(4]2) and the monotonicity of the modulus of continuity, we get

n [ty
T . ™

+ K (fim(K+1)an) > aw

k=] a1

<K+})a'no T
§K5ano/ w" <f,?) dt + Ky (f;7 (K + 1) ano)
1

(4.4) < K <an0 / ) (f ) g (f: ano))-
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Moreover
(4.5) W (Fran0) < 47w (f;50)

an0 T .
S 2. 47”/ Mdt

an0 t

an0 T .
o4 / W (fit)
0 t

Thus collecting our partial resulfs (4.1), (4.4), (4.5) and uging {1.11) and L¢mina 3.1 we can see
that [2.2) holds. This completes our proof. O
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