Journal of Inequalities in Pure and Applied Mathematics http://jipam.vu.edu.au/

Volume 6, Issue 1, Article 24, 2005

ON SOME POLYNOMIAL-LIKE INEQUALITIES OF BRENNER AND ALZER

C.E.M. PEARCE AND J. PEČARIĆ

School of Applied Mathematics
The University of Adelaide Adelaide SA 5005

Australia
cpearce@maths.adelaide.edu.au
URL: http://www.maths.adelaide.edu.au/applied/staff/cpearce.html
Faculty of Textile Technology
University of Zagreb
Pierottijeva 6, 10000 Zagreb
Croatia
pecaric@mahazu.hazu.hr
URL: http://mahazu.hazu.hr/DepMPCS/indexJP.html
Received 30 September, 2003; accepted 07 November, 2003
Communicated by T.M. Mills

AbStract. Refinements and extensions are presented for some inequalities of Brenner and Alzer for certain polynomial-like functions.

Key words and phrases: Polynomial inequalities, Switching inequalities, Jensen's inequality.
2000 Mathematics Subject Classification. Primary 26D15.

1. Introduction

Brenner [2] has given some interesting inequalities for certain polynomial-like functions. In particular he derived the following.
Theorem A. Suppose $m>1,0<p_{1}, \ldots, p_{k}<1$ and $P_{k}=\sum_{i=1}^{k} p_{i} \leq 1$. Then

$$
\begin{equation*}
\sum_{i=1}^{k}\left(1-p_{i}^{m}\right)^{m}>k-1+\left(1-P_{k}\right)^{m} \tag{1.1}
\end{equation*}
$$

Alzer [1] considered the sum

$$
A_{k}(x, s)=\sum_{i=0}^{k}\binom{s}{i} x^{i}(1-x)^{s-i} \quad(0 \leq x \leq 1)
$$

and proved the following companion inequality to (1.1).

[^0]Theorem B. Let p, q, m and n be positive real numbers and k a nonnegative integer. If $p+q \leq 1$ and $m, n>k+1$, then

$$
\begin{equation*}
A_{k}\left(p^{m}, n\right)+A_{k}\left(q^{n}, m\right)>1+A_{k}\left((p+q)^{\min (m, n)}, \max (m, n)\right) . \tag{1.2}
\end{equation*}
$$

In the special case $k=0$ this provides

$$
\begin{equation*}
\left(1-p^{m}\right)^{n}+\left(1-q^{n}\right)^{m}>1+\left(1-(p+q)^{\min (m, n)}\right)^{\max (m, n)} \quad \text { for } p, q>0 \tag{1.3}
\end{equation*}
$$

In Section 2 we use (1.3) to derive an improvement of Theorem A and a corresponding version of Theorem B. In Section 3 we give a related Jensen inequality and concavity result.

2. BASIC Results

Theorem 2.1. Under the conditions of Theorem A we have

$$
\begin{equation*}
\sum_{i=1}^{k}\left(1-p_{i}^{m}\right)^{m}>k-1+\left(1-P_{k}^{m}\right)^{m} \tag{2.1}
\end{equation*}
$$

Proof. We proceed by mathematical induction, (1.3) with $n=m$ providing a basis

$$
\begin{equation*}
\left(1-p^{m}\right)^{m}+\left(1-q^{m}\right)^{m}>1+\left(1-(p+q)^{m}\right)^{m} \quad \text { for } p, q>0 \text { and } p+q \leq 1 \tag{2.2}
\end{equation*}
$$

for $k=2$. For the inductive step, suppose that (2.1) holds for some $k \geq 2$, so that

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(1-p_{i}^{m}\right)^{m} & =\sum_{i=1}^{k}\left(1-p_{i}^{m}\right)^{m}+\left(1-p_{k+1}^{m}\right)^{m} \\
& >k-1+\left(1-P_{k}^{m}\right)^{m}+\left(1-p_{k+1}^{m}\right)^{m}
\end{aligned}
$$

Applying (2.2) yields

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(1-p_{i}^{m}\right)^{m} & >k-1+1+\left(1-\left(P_{k}+p_{k+1}\right)^{m}\right)^{m} \\
& =k+\left(1-P_{k+1}^{m}\right)^{m}
\end{aligned}
$$

For the remaining results in this paper it is convenient, for a fixed nonnegative integer k and $m>k+1$, to define

$$
B(x):=A_{k}\left(x^{m}, m\right) .
$$

Theorem 2.2. Let p_{1}, \ldots, p_{ℓ} and m be positive real numbers. If

$$
P_{\ell}:=\sum_{i=1}^{\ell} p_{i}
$$

then

$$
\begin{equation*}
\sum_{j=1}^{\ell} B\left(p_{j}\right)>\ell-1+B\left(P_{\ell}\right) \tag{2.3}
\end{equation*}
$$

Proof. We establish the result by induction, (1.2) with $n=m$ providing a basis

$$
\begin{equation*}
B(p)+B(q)>1+B(p+q) \quad \text { for } p, q>0 \text { and } p+q \leq 1 \tag{2.4}
\end{equation*}
$$

for $\ell=2$. Suppose (2.3) to be true for some $\ell \geq 2$. Then by the inductive hypothesis

$$
\begin{aligned}
\sum_{j=1}^{\ell+1} B\left(p_{j}\right) & =\sum_{j=1}^{\ell} B\left(p_{j}\right)+B\left(p_{\ell+1}\right) \\
& >\ell-1+B\left(P_{\ell}\right)+B\left(p_{\ell+1}\right)
\end{aligned}
$$

Now applying (2.4) yields

$$
\begin{align*}
\sum_{j=1}^{\ell+1} B\left(p_{j}\right) & >\ell-1+1+B\left(P_{\ell}+p_{\ell+1}\right) \\
& =\ell+B\left(P_{\ell+1}\right) \tag{2.5}
\end{align*}
$$

as desired.

3. Concavity of B

Inequality 2.3 is of the form

$$
\sum_{j=1}^{n} f\left(p_{j}\right)>(n-1) f(0)+f\left(\sum_{j=1}^{n} p_{i}\right)
$$

that is, the Petrović inequality for a concave function f. A natural question is whether B satisfies the corresponding Jensen inequality

$$
\begin{equation*}
B\left(\frac{1}{n} \sum_{j=1}^{n} p_{j}\right) \geq \frac{1}{n} \sum_{j=1}^{n} B\left(p_{j}\right) \tag{3.1}
\end{equation*}
$$

for positive $p_{1}, p_{2}, \ldots, p_{n}$ satisfying $\sum_{j=1}^{n} p_{j} \leq 1$ and indeed whether B is concave. We now address these questions. It is convenient to first deal separately with the case $n=2$.
Theorem 3.1. Suppose p, q are positive and distinct with $p+q \leq 1$. Then

$$
\begin{equation*}
B\left(\frac{p+q}{2}\right)>\frac{1}{2}[B(p)+B(q)] \tag{3.2}
\end{equation*}
$$

Proof. Let $u \in[0,1)$. For $p \in[0,1-u]$ we define

$$
G(p)=B(p)+B(1-u-p)
$$

By an argument of Alzer [1] we have

$$
\begin{equation*}
G^{\prime}(p)=\binom{m}{k}(m-k) m p^{m-1}\left(1-p^{m}\right)^{m-1}\left(\frac{p^{m}}{1-p^{m}}\right)^{k}[g(p)-1], \tag{3.3}
\end{equation*}
$$

where

$$
\begin{align*}
& g(p)=\left(\frac{1-u-p}{1-p^{m}}\right)^{m-1}\left(\frac{1-(1-u-p)^{m}}{p}\right)^{m-1} \tag{3.4}\\
& \quad \times\left(\frac{(1-u-p)^{m}}{1-(1-u-p)^{m}}\right)^{k}\left(\frac{1-p^{m}}{p^{m}}\right)^{k}
\end{align*}
$$

is a strictly decreasing function.
It was shown in [1] that there exists $p_{0} \in(0,1-u)$ such that $G(p)$ is strictly increasing on [$0, p_{0}$] and strictly decreasing on $\left[p_{0}, 1-u\right.$], so that

$$
G(p)<G\left(p_{0}\right) \quad \text { for } \quad p \in[0,1-u], p \neq p_{0} .
$$

On the other hand, we have by (3.4) that $g((1-u) / 2)=1$ and so from 3.3) $G^{\prime}((1-u) / 2)=0$. Hence $p_{0}=(1-u) / 2$ and therefore

$$
G(p)<G\left(\frac{1-u}{2}\right) \quad \text { for } \quad p \neq(1-u) / 2
$$

Set $u=1-(p+q)$. Since $p \neq q$, we must have $p \neq(1-u) / 2$. Therefore

$$
G(p)<G\left(\frac{p+q}{2}\right)
$$

which is simply (3.2).
Corollary 3.2. The map B is concave on $(0,1)$.
Proof. Theorem 3.1 gives that B is Jensen concave, so that $-B$ is Jensen-convex. Since B is continuous, we have by a classical result [3, Chapter 3] that $-B$ must also be convex and so B is concave.

The following result funishes additional information about strictness.
Theorem 3.3. Let p_{1}, \ldots, p_{n}, be positive numbers with $\sum_{j=1}^{n} p_{j} \leq 1$. Then (3.1) applies. If not all the p_{j} are equal, then the inequality is strict.
Proof. The result is trivial with equality if the p_{j} all share a common value, so we assume at least two different values.

We proceed by induction, Theorem 3.1 providing a basis for $n=2$. For the inductive step, suppose that 3.1 holds for some $n \geq 2$ and that $\sum_{j=1}^{n+1} p_{j} \leq 1$. Without loss of generality we may assume that p_{n+1} is the greatest of the values p_{j}. Since not all the values p_{j} are equal, we therefore have

$$
p_{n+1}>\frac{1}{n} \sum_{j=1}^{n} p_{j} .
$$

This rearranges to give

$$
\frac{1}{n} \sum_{j=1}^{n} p_{j}<\frac{1}{n}\left[p_{n+1}+\frac{n-1}{n+1} \sum_{j=1}^{n+1} p_{j}\right] .
$$

Both sides of this inequality take values in $(0,1)$.
Also we have

$$
\frac{1}{n+1} \sum_{j=1}^{n+1} p_{j}=\frac{1}{2}\left[\frac{1}{n} \sum_{j=1}^{n} p_{j}+\frac{1}{n}\left\{p_{n+1}+\frac{n-1}{n+1} \sum_{j=1}^{n+1} p_{j}\right\}\right] .
$$

Hence applying (3.2) provides

$$
B\left(\frac{1}{n+1} \sum_{j=1}^{n+1} p_{j}\right)>\frac{1}{2}\left[B\left(\frac{1}{n} \sum_{j=1}^{n} p_{j}\right)+B\left(\frac{1}{n}\left\{p_{n+1}+\frac{n-1}{n+1} \sum_{j=1}^{n+1} p_{j}\right\}\right)\right]
$$

By the inductive hypothesis

$$
B\left(\frac{1}{n} \sum_{j=1}^{n} p_{j}\right) \geq \frac{1}{n} \sum_{j=1}^{n} B\left(p_{j}\right)
$$

and

$$
B\left(\frac{1}{n}\left\{p_{n+1}+\frac{n-1}{n+1} \sum_{j=1}^{n+1} p_{j}\right\}\right) \geq \frac{1}{n}\left[B\left(p_{n+1}\right)+(n-1) B\left(\frac{1}{n+1} \sum_{j=1}^{n+1} p_{j}\right)\right]
$$

Hence

$$
B\left(\frac{1}{n+1} \sum_{j=1}^{n+1} p_{j}\right)>\frac{1}{2 n}\left[\sum_{j=1}^{n+1} B\left(p_{j}\right)+(n-1) B\left(\frac{1}{n+1} \sum_{j=1}^{n+1} p_{j}\right)\right] .
$$

Rearrangement of this inequality yields

$$
B\left(\frac{1}{n+1} \sum_{j=1}^{n+1} p_{j}\right)>\frac{1}{n+1} \sum_{j=1}^{n+1} B\left(p_{j}\right),
$$

the desired result.
Remark 3.4. Taken together, relations (2.5) and (3.1) give

$$
\begin{equation*}
n-1+B\left(\sum_{j=1}^{n} p_{j}\right)<\sum_{j=1}^{n} B\left(p_{j}\right) \leq n B\left(\frac{1}{n} \sum_{j=1}^{n} p_{j}\right) \tag{3.5}
\end{equation*}
$$

the second inequality being strict unless all the values p_{j} are equal. If $\sum_{j=1}^{n} p_{j}=1$, this simplifies to

$$
\begin{equation*}
n-1<\sum_{j=1}^{n} B\left(p_{j}\right) \leq n B\left(n^{-1}\right) \tag{3.6}
\end{equation*}
$$

since $B(1)=0$.
For $k=0$, (3.5) and (3.6) become (for $m>1$) respectively

$$
n-1+\left(1-\left(\sum_{j=1}^{n} p_{j}\right)^{m}\right)^{m}<\sum_{j=1}^{n}\left(1-p_{j}^{m}\right)^{m} \leq n\left(1-\left(\frac{1}{n} \sum_{j=1}^{n} p_{j}\right)^{m}\right)^{m}
$$

and

$$
n-1<\sum_{j=1}^{n}\left(1-p_{j}^{m}\right)^{m} \leq n\left(1-n^{-m}\right)^{m} .
$$

References

[1] H. ALZER, On an inequality of J.L. Brenner, J. Math. Anal. Appl., 183 (1994), 547-550.
[2] J.L. BRENNER, Analytical inequalities with applications to special functions, J. Math. Anal. Appl., 106 (1985), 427-442.
[3] G.H. HARDY, J. E. LITTLEWOOD and G. PÓLYA, Inequalities, Cambridge University Press, Cambridge (1934).
[4] J.E. PEČARIĆ, F. PROSCHAN AND Y.L. TONG, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, New York (1992).

[^0]: ISSN (electronic): 1443-5756
 (c) 2005 Victoria University. All rights reserved.

 135-03

