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1. I NTRODUCTION

Brenner [2] has given some interesting inequalities for certain polynomial–like functions. In
particular he derived the following.

Theorem A. Supposem > 1, 0 < p1, . . . , pk < 1 andPk =
∑k

i=1 pi ≤ 1. Then

(1.1)
k∑

i=1

(1− pm
i )m > k − 1 + (1− Pk)

m .

Alzer [1] considered the sum

Ak(x, s) =
k∑

i=0

(s

i

)
xi(1− x)s−i (0 ≤ x ≤ 1)

and proved the following companion inequality to (1.1).
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2 C.E.M. PEARCE AND J. PEČARIĆ

Theorem B. Letp, q, m andn be positive real numbers andk a nonnegative integer. Ifp+q ≤ 1
andm, n > k + 1, then

(1.2) Ak(p
m, n) + Ak(q

n, m) > 1 + Ak((p + q)min(m,n), max(m, n)).

In the special casek = 0 this provides

(1.3) (1− pm)n + (1− qn)m > 1 + (1− (p + q)min(m,n))max(m,n) for p, q > 0.

In Section 2 we use (1.3) to derive an improvement of Theorem A and a corresponding
version of Theorem B. In Section 3 we give a related Jensen inequality and concavity result.

2. BASIC RESULTS

Theorem 2.1.Under the conditions of Theorem A we have

(2.1)
k∑

i=1

(1− pm
i )m > k − 1 + (1− Pm

k )m.

Proof. We proceed by mathematical induction, (1.3) withn = m providing a basis

(2.2) (1− pm)m + (1− qm)m > 1 + (1− (p + q)m)m for p, q > 0 andp + q ≤ 1

for k = 2. For the inductive step, suppose that (2.1) holds for somek ≥ 2, so that

k+1∑
i=1

(1− pm
i )m =

k∑
i=1

(1− pm
i )m + (1− pm

k+1)
m

> k − 1 + (1− Pm
k )m + (1− pm

k+1)
m.

Applying (2.2) yields

k+1∑
i=1

(1− pm
i )m > k − 1 + 1 + (1− (Pk + pk+1)

m)
m

= k +
(
1− Pm

k+1

)m
.

�

For the remaining results in this paper it is convenient, for a fixed nonnegative integerk and
m > k + 1, to define

B(x) := Ak (xm, m) .

Theorem 2.2.Letp1, . . . , p` andm be positive real numbers. If

P` :=
∑̀
i=1

pi,

then

(2.3)
∑̀
j=1

B(pj) > `− 1 + B (P`) .

Proof. We establish the result by induction, (1.2) withn = m providing a basis

(2.4) B(p) + B(q) > 1 + B(p + q) for p, q > 0 andp + q ≤ 1
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POLYNOMIAL –LIKE INEQUALITIES OF BRENNER AND ALZER 3

for ` = 2. Suppose (2.3) to be true for some` ≥ 2. Then by the inductive hypothesis
`+1∑
j=1

B(pj) =
∑̀
j=1

B(pj) + B(p`+1)

> `− 1 + B(P`) + B(p`+1).

Now applying (2.4) yields
`+1∑
j=1

B(pj) > `− 1 + 1 + B(P` + p`+1)

= ` + B(P`+1)(2.5)

as desired. �

3. CONCAVITY OF B

Inequality (2.3) is of the form
n∑

j=1

f(pj) > (n− 1)f(0) + f

(
n∑

j=1

pi

)
,

that is, the Petrović inequality for a concave functionf . A natural question is whetherB satisfies
the corresponding Jensen inequality

(3.1) B

(
1

n

n∑
j=1

pj

)
≥ 1

n

n∑
j=1

B(pj)

for positivep1, p2, . . . , pn satisfying
∑n

j=1 pj ≤ 1 and indeed whetherB is concave. We now
address these questions. It is convenient to first deal separately with the casen = 2.

Theorem 3.1.Supposep, q are positive and distinct withp + q ≤ 1. Then

(3.2) B

(
p + q

2

)
>

1

2
[B(p) + B(q)] .

Proof. Let u ∈ [0, 1). Forp ∈ [0, 1− u] we define

G(p) = B(p) + B(1− u− p).

By an argument of Alzer [1] we have

(3.3) G′(p) =
(m

k

)
(m− k)mpm−1(1− pm)m−1

(
pm

1− pm

)k

[g(p)− 1],

where

(3.4) g(p) =

(
1− u− p

1− pm

)m−1(
1− (1− u− p)m

p

)m−1

×
(

(1− u− p)m

1− (1− u− p)m

)k (
1− pm

pm

)k

is a strictly decreasing function.
It was shown in [1] that there existsp0 ∈ (0, 1 − u) such thatG(p) is strictly increasing on

[0, p0] and strictly decreasing on[p0, 1− u], so that

G(p) < G(p0) for p ∈ [0, 1− u], p 6= p0.
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4 C.E.M. PEARCE AND J. PEČARIĆ

On the other hand, we have by (3.4) thatg((1−u)/2) = 1 and so from (3.3)G′((1−u)/2) = 0.
Hencep0 = (1− u)/2 and therefore

G(p) < G

(
1− u

2

)
for p 6= (1− u)/2.

Setu = 1− (p + q). Sincep 6= q, we must havep 6= (1− u)/2. Therefore

G(p) < G

(
p + q

2

)
,

which is simply (3.2). �

Corollary 3.2. The mapB is concave on(0, 1).

Proof. Theorem 3.1 gives thatB is Jensen concave, so that−B is Jensen–convex. SinceB is
continuous, we have by a classical result [3, Chapter 3] that−B must also be convex and soB
is concave. �

The following result funishes additional information about strictness.

Theorem 3.3.Letp1, . . . , pn, be positive numbers with
∑n

j=1 pj ≤ 1. Then (3.1) applies. If not
all thepj are equal, then the inequality is strict.

Proof. The result is trivial with equality if thepj all share a common value, so we assume at
least two different values.

We proceed by induction, Theorem 3.1 providing a basis forn = 2. For the inductive step,
suppose that (3.1) holds for somen ≥ 2 and that

∑n+1
j=1 pj ≤ 1. Without loss of generality we

may assume thatpn+1 is the greatest of the valuespj. Since not all the valuespj are equal, we
therefore have

pn+1 >
1

n

n∑
j=1

pj.

This rearranges to give

1

n

n∑
j=1

pj <
1

n

[
pn+1 +

n− 1

n + 1

n+1∑
j=1

pj

]
.

Both sides of this inequality take values in(0, 1).
Also we have

1

n + 1

n+1∑
j=1

pj =
1

2

[
1

n

n∑
j=1

pj +
1

n

{
pn+1 +

n− 1

n + 1

n+1∑
j=1

pj

}]
.

Hence applying (3.2) provides

B

(
1

n + 1

n+1∑
j=1

pj

)
>

1

2

[
B

(
1

n

n∑
j=1

pj

)
+ B

(
1

n

{
pn+1 +

n− 1

n + 1

n+1∑
j=1

pj

})]
.

By the inductive hypothesis

B

(
1

n

n∑
j=1

pj

)
≥ 1

n

n∑
j=1

B(pj)

and

B

(
1

n

{
pn+1 +

n− 1

n + 1

n+1∑
j=1

pj

})
≥ 1

n

[
B(pn+1) + (n− 1)B

(
1

n + 1

n+1∑
j=1

pj

)]
.
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Hence

B

(
1

n + 1

n+1∑
j=1

pj

)
>

1

2n

[
n+1∑
j=1

B(pj) + (n− 1)B

(
1

n + 1

n+1∑
j=1

pj

)]
.

Rearrangement of this inequality yields

B

(
1

n + 1

n+1∑
j=1

pj

)
>

1

n + 1

n+1∑
j=1

B(pj),

the desired result. �

Remark 3.4. Taken together, relations (2.5) and (3.1) give

(3.5) n− 1 + B

(
n∑

j=1

pj

)
<

n∑
j=1

B(pj) ≤ nB

(
1

n

n∑
j=1

pj

)
,

the second inequality being strict unless all the valuespj are equal. If
∑n

j=1 pj = 1, this
simplifies to

(3.6) n− 1 <
n∑

j=1

B(pj) ≤ nB(n−1),

sinceB(1) = 0.
Fork = 0, (3.5) and (3.6) become (form > 1) respectively

n− 1 +

(
1−

(
n∑

j=1

pj

)m)m

<
n∑

j=1

(1− pm
j )m ≤ n

(
1−

(
1

n

n∑
j=1

pj

)m)m

and

n− 1 <
n∑

j=1

(1− pm
j )m ≤ n(1− n−m)m.
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